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1. Introduction. It is an interesting problem to detect infinite families
of positive integers D for which one can readily describe the fundamental
unit of the quadratic number field Q(

√
D ). We will discuss here a class

of cases D = F (X) with F a polynomial of even degree and with leading
coefficient a square, for which one obtains particularly small units, essentially
because the period length is independent of the integer parameter X. That
of course means a particularly large class number for the field Q(

√
D ).

The context is a result of Schinzel [4], [5], who shows that if F is an
integer-valued polynomial, either of odd degree, or of even degree with
its leading coefficient not a square, then as the integer X varies one has
lim lp(

√
F (X) ) =∞; here lp(δ) denotes the length of the period of the con-

tinued fraction expansion of the quadratic irrational δ. On the other hand,
in the quadratic case Schinzel shows that lim lp(

√
F (X) ) <∞ if and only if

F (X) = A2X2 +BX+C with A > 0, discriminant ∆ = B2−4A2C 6= 0 and
∆ | 4(2A2, B)2. Well known examples of such F include the Richaud–Degert
types: A2X2 ± A, A2X2 ± 2A, and A2X2 ± 4A, which provide periods of
length at most 12. As these Richaud–Degert types have been fully investi-
gated (see, for example, Theorem 3.2.1 of Mollin [1]), we will exclude them
from our investigations here.

It will also be convenient to deal only with those F (X) such that 2 |A
and 2 |B. There is no loss of generality in doing so as we can divide the
possible values of X into even (X = 2W ) or odd (X = 2W +1) integers and
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write

F (X) = G(W ) = A′2W 2 +B′W + C ′,

where, if X = 2W ,

A′ = 2A, B′ = 2B, C ′ = C,

or, if X = 2W + 1,

A′ = 2A, B′ = 4A2 + 2B, C ′ = A2 +B + C.

In either case we get ∆′ = B′2 − A′2C = 4∆ and 2(2A2, B) | (2A′2, B′);
hence ∆′ | 4(2A′2, B′)2 whenever ∆ | 4(2A2, B)2. As we may always assume
that 2 |B it will be convenient in what follows to replace B by 2B in F (X)
and rewrite it as

F (X) = A2X2 + 2BX + C.

In this case Schinzel’s condition becomes B2 −A2C | 4(A2, B)2.
In [6], Stender determines the fundamental unit of Q(

√
D ) when D =

F (X) with F quadratic as above, provided that D is squarefree. In this pa-
per we consider the quadratic case only. We find that for X > 0, Schinzel’s
condition, together with (A2, 2B,C) squarefree, entails that the “approxi-
mation” AX +B/A to

√
F (X) usually provides the first half of a period of√

F (X). Thus, aside from some possibly degenerate cases with X small and
a special case we are about to allude to, the period of

√
F (X) is not just of

bounded, but in fact of constant length. However, if F (X) ≡ 1 mod 4 and
both the numerator and denominator, after division by the greatest com-
mon divisor of A and B, of the approximation AX +B/A are odd, then the
expansion of that approximation provides just the first sixth of the period.
Indeed, we shall show that, under our conditions, if C ≤ 0 or C is a perfect
square, then F (X) is of Richaud–Degert type; but if C is positive and not a
square then the continued fraction expansion of

√
F (X) can usually be ex-

pressed very simply in terms of the continued fraction of
√
C. Furthermore,

we show that no matter how large a value of N is selected there are always
some A,B,C obeying Schinzel’s condition such that lp(

√
F (X)) > N . Fur-

thermore, this value of the period length is independent of X as long as X
is large enough to avoid some degenerate cases. For example, we must have
X large enough that F (X) cannot be a perfect square; this will certainly
be the case if 2(A2X + |B|) > |∆|. We should mention that some of our
results were known to Stern [7], but we will be more general than he and
use different techniques.

2. Preliminary observations. To begin our investigation it is neces-
sary to characterise those values of A,B,C such that B2−A2C | 4(A2, B)2,
and (A2, 2B,C) is squarefree.
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Lemma 2.1. Set S = (A,B) and (B/S)2− (A/S)2C = G2H, where H is
squarefree. If B2 − A2C divides 4(A2, B)2, then GH divides 2A, 2B/S and
2S, and G2H divides 4(A2, 2B,C). Therefore if (A2, 2B,C) is squarefree,
then G = 1, 2.

P r o o f. Since G2H | 4(A2/S,B/S)2 and (A/S,B/S) = 1, it follows
that GH | 2(S,B/S). Also, since GH | 2B/S we must have G2H | 4C; hence,
G2H | 4(A2, 2B,C).

Theorem 2.2. Assume that B2−A2C divides 4(A2, B)2 and (A2, 2B,C)
is squarefree. Then F (X) = A2X2 + 2BX + C is of Richaud–Degert type
when C ≤ 0 or C is a perfect square; that is F (X) = R2 +S where S divides
4R.

P r o o f. If C = 0, then B | 2A2 and since gcd(A2, 2B) is squarefree, we
must have B | 2A and F (X) = A2X2 + 2BX where 2BX | 4AX. This is of
Richaud–Degert type. If C < 0, we see from Lemma 2.1 that

H(2B/(SGH))2 + (A/S)24|C|/(G2H) = 4.

We must have H > 0 and H(2B/(SGH))2 ≤ 3; hence 2|B| = SG|H| and
|H| = 1, 2, 3. If |H| = 2, then |A| = S, 2|C| = 2G2 and |B| = SG. By
Lemma 2.1 we get G |A; it follows that F (X) = A2X2 ± 2|A|GX − G2 =
(|A|X±G)2−2G2, where by Lemma 2.1 we have 2G2 | 4(|A|X±G). If |H| = 1
or 3, then 4|C| = 3G2, |A| = S, 2|B| = SG|H|. Since G = 1, 2 we must get
G = 2, C = −3, |B| = S|H|, |A| = S. Hence, F (X) = (SX ±H)2 −H2 − 3,
where, by Lemma 2.1, H |S. Since H2 + 3 | 4H when H = 1, 3 we see that
F (X) is of Richaud–Degert type.

Now suppose C = K2. Since G2H | 4C, we get GH | 2K and
(

2B
SGH

)2

−
(

2K
GH

)2(
A

S

)2

=
4
H

;

thus |H| = 1, 2. Since a difference of two squares can never be 2, we must
have |H| = 1. Since two squares can differ by 4 only when both are even,
we get 2 | (2B/(SG)) and 2 | (2K/G); hence,

|B/(SG)|+ (K/G)|A/S| = 1

and B = 0, |A| = S, K = G. Since F (X) = A2X2 + G2 and G = 1, 2, we
get G2 | 4AX and F (X) is of Richaud–Degert type.

Note that if X < 0, we may write F (X) = A2|X|2 − 2B|X| + C; thus,
we may always assume that X > 0. Also, if we put X = W + h, then

F (X) = G(W ) = A2(W + h)2 + 2B(W + h) + C = A′2W 2 + 2B′W + C ′,

where A′ = A, B′ = A2h + B, C ′ = A2h2 + 2Bh + C. We get ∆′ =
4B′2− 4A′2C = 4B2− 4A2C = ∆, (A′2, B′) = (A2, B), and (A′2, 2B′, C ′) =
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(A2, 2B,C). Thus, since B′ > 0 for h > −B/A2, we may assume that B > 0
for X large enough. Indeed, since

C ′ −G4H2 = A2(h2 −G4H2/A2) +Bh+ C,

we see that C ′ > G4H2 when h > G2H/A ≥ 2G ≥ 4. Thus, we may also
assume that C > G4H2 for X large enough.

From all of these observations it is clear that if the conditions of Theo-
rem 2.2 hold, and F (X) is not of Richaud–Degert type, then we may assume
with no loss of generality that F (X) = A2X2 + 2BX + C, where X > 0,
2 |A, A > 0, C is not a perfect integral square, and B > 0, C > G4H2 for
X large enough. To avoid repeating all of these conditions in the sequel, we
will simply use the expression F (W ) = A2W 2 + 2BW + C to represent a
form satisfying all of these conditions.

3. Continued fractions. Suppose D is a positive integer, not a square,
and let δ be an integer of Q(

√
D) with trace t and norm n. In pursuing

the continued fraction expansion of δ one obtains a sequence ((δ+Ph)/Qh)
of complete quotients and a sequence (ch) of partial quotients given by the
formulae
(δ + Ph)/Qh = ch − (δ + Ph+1)/Qh and Norm(δ + Ph+1) = −QhQh+1.

Here δ denotes the conjugate of δ, and plainly t+ Ph + Ph+1 = chQh. The
usual notation for continued fractions has us write

δ = [ c0, c1, . . . , ch, (δ + Ph+1)/Qh+1 ].

We denote the convergents [ c0, c1, . . . , ch ] by xh/yh. It is often convenient
to drop subscripts, writing xh = x, xh−1 = x′, and so forth. Then we have
the decomposition(

x −ny
y x− ty

)
=
(
x x′

y y′

)(
1 P
0 Q

)

=
(
c0 1
1 0

)(
c1 1
1 0

)
· · ·
(
ch 1
1 0

)(
1 P
0 Q

)

where P = Ph+1,Q = Qh+1; hence x2−txy+ny2 = (−1)h+1Q. In particular,
the case Q = Qh+1 = 1 (Ph+1 = P1 = c0) yields a nontrivial solution

X2 − tXY + nY 2 = (X − δY )(X − δY ) = ±1

to “Pell’s equation”. A central remark is that

Lemma 3.1. A nontrivial solution X2 − tXY + nY 2 = ±1 to “Pell’s
equation” formally corresponds to a period of δ in that(

X −nY
Y X − tY

)
=
(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
ar+1 1

1 0

)
,

entails δ = [ a0, a1, . . . , ar+1 ].
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For details see [2] or [3]. Note, however, that the entries in the “period”
may not be admissible, as they might not all be positive. For example,
δ = (

√
D + 1)/2 has a periodic expansion of the shape

[ a0, a1, . . . , ar, 0 ] = [ a0, a1, . . . , ar, 0, a0 ] = [ a0, a1, . . . , ar + a0 ].

The case Q = 1, signalling a complete period—and thus halfway to two such
periods—is a special case of Q | t + 2P , signalling halfway to a period. We
note

Lemma 3.2. Suppose (δ + P )/Q is a complete quotient of the quadratic
integer δ with norm n and trace t. If Q | t+ 2P then Q | t2 − 4n; and if Q is
squarefree and Q | t2 − 4n then Q | t+ 2P .

P r o o f. It is easy to verify that every complete quotient has Q |Norm(δ+
P ), that is, Q |n+ tP +P 2. Hence 4Q | (t2− 4n)− (t+ 2P )2 and the claims
are immediate.

Of course this is well known and says no more than that the Z-module
〈Q, δ+P 〉 is equal to its conjugate essentially when its norm Q is squarefree
and divides the discriminant t2 − 4n. The point is that it is easy to check
that such Z-modules—to wit, with Q |Norm(δ+P )—are Z[δ]-modules, and
thus precisely the ideals of the order Z[δ]. The condition just mentioned is
the ambiguity of the ideal. These matters are discussed in extenso in [2].

We will find it useful to introduce the definitions

L =
(

1 0
1 1

)
, R =

(
1 1
0 1

)
, J =

(
0 1
1 0

)
,

the point being that
(
c 1
1 0

)
J = Rc, J

(
c 1
1 0

)
= Lc,

whilst J2 = I. This notation allows one the alternative of viewing a product
(
c0 1
1 0

)(
c1 1
1 0

)
· · ·
(
ch 1
1 0

)
· · · ,

corresponding to a continued fraction expansion, as an R–L sequence

Rc0Lc1Rc2Lc3 . . .

Lemma 3.3. If x2− txy+ny2 = ±Q, and Q | t+ 2P , then x/y yields half
a period of δ.

P r o o f. It is convenient to notice that a matrix(
x −ny
y x− ty

)
RtJ =

(−ny + tx x
x y

)
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is symmetric. Hence, if t+ 2P = cQ, we have
(
x −ny
y x− ty

)2

=
(
x x′

y y′

)(
1 P
0 Q

)
RtJ

(
1 0
P Q

)(
x y
x′ y′

)
JR−t

=
(
x x′

y y′

)(
t+ 2P Q
Q 0

)(
y x
y′ x′

)
R−t

= Q

(
x x′

y y′

)(
c 1
1 0

)(
y x
y′ x′

)
R−t,

yielding a product of unimodular matrices corresponding to the expansion

[ c0, c1, . . . , ch, c, ch, . . . , c1, c0 − t, 0 ];

that is,

δ = [ c0, c1, . . . , ch, c, ch, . . . , c1, 2c0 − t ].

Here we use the observation that if the continued fraction [ c0, c1, . . . , ch ]
corresponds to the matrix

(
x x′

y y′
)
, then the matrix

(
y x
y′ x′

)
corresponds to the

expansion [ ch, ch−1, . . . , c0, 0 ].

We also point out that if some Q | t+2P , then Q = Qn where n ≡ lp(δ)/2
(mod lp(δ)) and Pn = Pn+1.

We conclude these “rappels” by recalling that

Lemma 3.4. If D > 0, and x, y are integers satisfying x2 − Dy2 =
K where |K| < √D, then x/y is a convergent in the continued fraction
expansion of

√
D.

4. A continued fraction expansion of
√
A2W 2 + 2BW + C. We set

out to expand
√
D, where D = A2W 2 + 2BW + C. As in Lemma 2.1, put

S = gcd(A,B); so S |B. We notice that
√
D = AW +B/A− (−

√
D +AW +B/A),

suggesting we consider the approximation u/v of
√
D, where v = A/S and

u = (A2/S)W +B/S. We compute that

u2 −Dv2 = (B2 −A2C)/S2 = G2H,

where H is squarefree.
We set x = B/S, y = A/S and remark that

u/v −AW = B/A = [ c0, c1, . . . , cn ] = x/y.

This may appear not well defined. Thus we shall insist that cn ≥ 2 unless
B/A = 0 or 1, cases which are excluded by our insistence that D not be of
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Richaud–Degert type. Then, writing x′/y′ = [ c0, c1, . . . , cn−1 ], we have
(
u Dv
v u

)
= RAW

(
B/S AC/S
A/S B/S

)
RAW

= RAW
(
x x′

y y′

)(
1 P
0 G2|H|

)
RAW .

Here (x′y − y′x)P = xx′ − yy′C, which is ±P = y′AC/S − x′B/S. The
square of the matrix above is readily seen (1) to be

RAW
(
x x′

y y′

)(
1 P
0 G2|H|

)
R2AW

(
P G2|H|
1 0

)(
y x
y′ x′

)
RAW

= RAW
(
x x′

y y′

)(
2P + 2AW G2|H|
G2|H| 0

)(
y x
y′ x′

)
RAW .

The equation for P and Lemma 2.1 show that always GH | 2P + 2AW , so
the product has the constant divisor GH. In other words, if we “nearly”
disregard a possibly unpleasant 2, we see that

|GH|−1
(
u Dv
v u

)2

is “nearly” a unimodular matrix and “nearly” corresponds to a period of√
D.

Theorem 4.1. Suppose G = 1 in Lemma 2.1. Then, if |H| > 1, we get
√
D = [AW + c0,

−→w , 2(P +AW )/|H|,←−w , 2(AW + c0) ],

where x/y = B/A = [ c0, c1, . . . , cn ]. Since we set −→w = c1, . . . , cn for brevity ,
we also write ←−w = cn, cn−1, . . . , c1. If |H| = 1, then

√
D = [AW + c0,

−→w , 2(AW + c0) ].

P r o o f. The claim follows easily from Lemma 3.1 and
(
u Dv
v u

)2

= |H|RAW
(
x x′

y y′

)(
2(P +AW )/|H| 1

1 0

)(
y x
y′ x′

)
RAW .

Note that if |H| = 1, then Q = 1, P = P1 = c0.

Theorem 4.2. If G = 2 in Lemma 2.1, then D ≡ 5 (mod 8). If |H| > 1,
then

1
2 (
√
D + 1) =

[
1
2 (AW + c0 + 1),−→w , (P +AW )/|H|,←−w ,AW + c0

]

(1) The matrix
(
B/S AC/S
A/S B/S

)
is false symmetric. Taking its false transpose we get

(
G2|H| P

0 1

)(
y′ x′
y x

)
=
(
G2|H| P

0 1

)
J · J

(
y′ x′
y x

)
=
(
P G2|H|
1 0

)(
y x
y′ x′

)
.
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displays the period of 1
2 (
√
D+1). Here,

[
1
2c0 + 1

2 ,
−→w ]= 1

2x/y+ 1
2 = 1

2 (B/(2A)
+ 1). If |H| = 1, then

1
2 (
√
D + 1) =

[
1
2 (AW + c0 + 1),−→w ,AW + c0

]
.

P r o o f. On referring to Lemma 2.1 we see that if 2 |A/S, then 2 |B/S,
which is impossible. If 2 |B/S, then 4 |C and 4 | gcd(A2, 2B,C), which is
also impossible. Hence, we must have 2 -B/S and 2 -A/S. It follows that C
is odd and, since H |C, that H is odd; hence, D ≡ 5 (mod 8).

We note that u ≡ v (mod 2) and
(

1
2 (u+ v) 1

4 (D − 1)v
v 1

2 (u− v)

)
=

1
4

(
1 0
0 2

)
R

(
u Dv
v u

)
R−1

(
2 0
0 1

)
.

Also,
(

1 0
0 2

)
R

(
x x′

y y′

)(
1 P
0 4|H|

)
R−1

(
2 0
0 1

)

= 2
(

1
2 (x+ y) x′ + y′

y 2y′

)(
2 P − 1
0 2|H|

)
,

whence
(

(u+ v)/2 1
4 (D − 1)v

v (u− v)/2

)2

= |H|RAW/2
(

1
2 (x+ y) x′ + y′

y 2y′

)

×
(

(P +AW )/|H| 1
1 0

)(
y 1

2 (x+ y)
2y′ x′ + y′

)
RAW/2−1.

Our result now follows from Lemma 3.1.

As hinted at earlier, all these expansions are of the shape
[
b0 + 1

2 (QWy + s), b1, . . . , bh, b+Wy, bh, . . . , b1, 2b0 +QWy
]
.

To sustain this remark we note that above [ c0, c1, . . . , ch ] = (B/S)/(A/S)
whence y = A/S and Qy = QA/S. Thus S = Q and |H| = Q throughout.
Finally, we observe that all the

√
A2W 2 + 2BW + C have the same period

length for all W with W large enough to avoid some degenerate cases.
We can also produce the continued fraction expansion of

√
A2W 2 + 2BW + C

in terms of the continued fraction expansion of
√
C.
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Theorem 4.3. If G = 1 in Lemma 2.1, let
√
C = [ c0, c1, . . . , cn, . . . ].

Set −→w = c1, . . . , cn, and so ←−w = cn, . . . , c1. Here Qn+1 = |H|. Then
√
D = [AW + c0,

−→w , 2AW/Qn+1 + cn+1,
←−w , 2(AW + c0) ]

if |H| > 1. When |H| = 1,
√
D = [AW + c0,

−→w , 2(AW + c0) ].

P r o o f. By Lemma 3.4, we know that if

(B/S)2 − (A/S)2C = H

is soluble, then |H| must be some Qn+1. Further, n + 1 = (2k + 1)π/2,
where π = lp(

√
C ), P = Pn+1 = Pn, and cn+1 = 2Pn+1/Qn+1. Also, by

Lemma 3.1, (
x x′

y y′

)
=
(
c0 1
1 0

)
· · ·
(
cn 1
1 0

)
.

The result now follows in a similar fashion to that of Theorem 4.1.

We also have a result connecting the continued fraction expansion of
1
2 (
√
D + 1) to that of 1

2 (
√
C + 1).

Theorem 4.4. If we take G = 2 in Lemma 2.1 and 1
2 (
√
C + 1) =

[ c0, c1, . . . , cn, . . . ], where Qn+1 = |H|, then
1
2 (
√
D + 1) = [AW/2 + c0,

−→w ,AW/Qn+1 + cn+1,
←−w ,AW + 2c0 − 1 ]

if |H| > 1, and when |H| = 1
1
2 (
√
D + 1) = [AW/2 + c0,

−→w ,AW + 2c0 − 1 ].

P r o o f. As in the proof of Theorem 4.3 we have n+ 1 = (2h+ 1)π/2—
recall that π = lp

(
1
2 (
√
C+ 1)

)
—Qn+1 = |H|, Pn+1 = Pn+2, Qn+1 | 2Pn+1 +

1, P = 2Pn+1 + 1, and cn+1 = P/Qn+1. Since by Lemma 3.1 we have
(

(x+ y)/2 x′ + y′

y 2y′

)
=
(
c0 1
1 0

)(
c1 1
1 0

)
· · ·
(
cn 1
1 0

)
,

we get our result as in the proof of Theorem 4.2.

Notice that in the case of Theorem 4.3 we get

lp(
√
D ) =

{
(2k + 1)π if |H| > 1,
(2k + 1)π/2 if |H| = 1,

where π = lp(
√
C); hence lp(

√
D ) can be as large as we want by selecting k

large enough. There is, of course, a similar result in the case of Theorem 4.4.

5. The final case. Our task at this point is still incomplete. We under-
took to produce the continued fraction expansion of

√
D, but we have only
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that of (
√
D + 1)/2 in the case of G = 2. However, we can get a result, like

that of Theorem 4.3, in which we relate the continued fraction expansion
of
√
D to that of

√
C. First we need some results concerning the continued

fraction expansion of
√
C.

Theorem 5.1. Let C ≡ 5 (mod 8) and suppose that in the continued
fraction expansion of

√
C we get 4 |Qm+1, 1 < 1

4Qm+1 < C, 1
4Qm+1 square-

free, and 1
4Qm+1 |C. If m is the least nonnegative integer for which these

conditions hold , then the fundamental unit ε of the order O = 〈1,√C〉 is
given by

ε = δ6/Q3
m+1,

where δ = xm +
√
C ym.

P r o o f. We know that 2Qm+1 |xm(x2
m + 3Cy2

m) and 2Qm+1 | ym(Cy2
m +

3x2
m) by the same reasoning as that used above. Hence ν = λ3/(2Qm+1)

∈ O. Now |n(ν)| = 1
4Qm+1 and 1

4Qm+1 |C. Thus, ε ≡ 4ν2/Qm+1 ∈ O and
n(ε) = 1. It follows that ε = λ6/Q3

m+1 is a unit of O. Also there must exist
some θ = xr + yr

√
C such that Qr+1 = Qm+1 and η = 4θ2/Qm+1 is the

fundamental unit of O. By definition of λ we have λ < θ; consequently,
λ2 < η and ε < η3. It follows that ε = 1, η, or η2. If ε = 1, we get
λ2/Qm+1 = 1 and λ2 = Qm+1. If ε = η2, we get (λ3/(Qm+1η))2 = Qm+1.
In either case we find that Qm+1 = α2 where α ∈ O. If α = a+ b

√
C, then

ab = 0. If b = 0, then Qm+1 = a2; if Q = 0, then 1
4Qm+1 = (b/2)2C. Thus

ε = η.

Corollary 5.2. If µ = 2λ2/Qm+1, then µ = xn+
√
Cyn, where n is the

least nonnegative integer such that Qn+1 = 4. Also, ν = xp +
√
Cyp, where

p = π/2 and π = lp(
√
C ).

Corollary 5.3. If Qk+1 = Qm+1 and k < π, then k = m or k =
π − m − 2; if Qk+1 = 4 and k < π, then k = n or k = π − n − 2; if
Qk+1 = Qp+1 and k < π, then k + 1 = π/2.

Corollary 5.4. Suppose r = m+ kπ (for some k ≥ 0). Set

2(xr+
√
Dyr)2/Qm+1 = xs+

√
C ys, (xr+

√
C yr)3/(2Qm+1) = xt+

√
C yt.

Then s = n + 2kπ and t = p + 3kπ. If r = −m + (k + 1)π (k ≥ 0), then
s = −n+ 2(k + 1)π and t = −p+ 3(k + 1)π.

Corollary 5.5. Let r , s, and t be defined as in Corollary 5.4. We must
have s > r + 1 and , unless yr = 1, we must have t > s+ 1.

P r o o f. We have |xk −
√
C yr| < 1 as a property of the convergents in

a continued fraction expansion; hence, xm +
√
Cym > Qm+1, and therefore

µ > ν > λ. It follows that p > n > m. Thus, we must have s > r. If s = r+1,
then 4 |Qr+1 and 4 |Qr+2, which means that P 2

r+2−C ≡ 0 (mod 16), which
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is impossible as C ≡ 5 (mod 8). If t = s+ 1, then we can only have r = m,
s = n, and t = p. Now

(
xm Cym
ym xm

)
= Qn+1

(
xn Cyn
yn xn

)−1(
xp Cyp
yp xp

)

=
(
Qn+1 −Pn+1

0 1

)(
cn+1 1

1 0

)(
1 Pp+1

0 Qp+1

)
,

by our observations at the beginning of Section 3. Hence, yr = ym = 1. We
note that if t = s + 1, then v = A/S = yr = 1 and u2 −D = 4Qr+1. Since
u = (A2/S)W +B/S and Qr+1 = |H| and H is odd, we get 4Qr+1 | 4u and
D is of Richaud–Degert type.

In the following theorem we will, as usual, assume that D is not of
Richaud–Degert type and that therefore t > s + 1. We are now able to
derive the form of the continued fraction expansion of

√
D.

Theorem 5.6. If G= 2 in Lemma 2.1, then for
√
C = [ c0, c1, . . . , ck, . . . ],

we must get G2|H| = Qr+1 for r = m + kπ, or r = −m + (k + 1)π
(k ≥ 0), where m is defined in Theorem 5.1 and π is defined in Corol-
lary 5.2. Put −→w1 = c1, . . . , cp;

−→w2 = cr+2, . . . , cs;
−→w3 = cs+2, . . . , ct, where s

and t are given by Corollary 5.4. The continued fraction expansion of
√
D

is given by
[
AW+c0,

−→w1, 2AW/Qm+1 + cm+1,
−→w2,

1
2AW + cn+1,

−→w3, 2AW/Qp+1 + cp+1,

←−w3,
1
2AW + cn+1,

←−w2, 2AW/Qm+1 + cm+1,
←−w1, 2AW + 2c0

]
,

when 4|H| = Qm+1 6= 4. If 4|H| = Qm+1 = 4, it is given by
√
D =

[
AW + c0,

−→w1,
1
2AW + cm+1,

−→w2,
1
2AW + cn+1,

−→w3, 2AW + 2c0
]
.

P r o o f. The first part of the theorem follows from Lemma 3.4 and Corol-
lary 5.4. We note that

(
xs Cys
ys xs

)
=

2
Qm+1

(
xr Cyr
yr xr

)2

,

(
xt Cyt
yt xt

)
=

1
2

(
xs Cys
ys xs

)(
xr Cyr
yr xr

)
,

and
(

1 Pk+1

0 Qk+1

)
R2AW

(
0 Qk+1

1 −Pk+2

)−1

=
(

2AW/Qk+1 + ck+1 1
1 0

)
.
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For i+ 1 < j, define

Ti,j =
(
xi+1 xi
yi+1 yi

)−1(
xj xj−1

yj yj−1

)

=
(
ci+2 1

1 0

)(
ci+3 1

1 0

)
· · ·
(
cj 1
1 0

)
.

Then we have

Ti,j

(
1 Pj+1

0 Qj+1

)
=
(

0 Qi+1

1 −Pi+2

)(
xi Cyi
yi xi

)−1(
xj Cyj
yj xj

)
.

Thus,
(
u Dv
v u

)3

= RAW
(
xr xr−1

yr yr−1

)(
1 Pm+1

0 Qm+1

)

×R2AW
(
xr Cyr
yr xr

)
R2AW

(
xr Cyr
yr yr

)
RAW

= 2Qm+1R
AW

(
c0 1
1 0

)
T−1,r

(
2AW/Qm+1 + cm+1 1

1 0

)

× Tr,s
(
AW/2 + cn+1 1

1 0

)
Ts,t

(
1 Pp+1

0 Qp+1

)
RAW .

We set

K =
(
c0 1
1 0

)
T−1,r

(
2AW/Qm+1 + cm+1 1

1 0

)
Tr,s

×
(
AW/2 + cn+1 1

1 0

)
Ts,t,

and note that K
(1 Pp+1

0 Qp+1

)
is false symmetric. Hence,

1
Q3
m+1

(
u Dv
v u

)6

= K

(
2AW/Qp+1 + cp+1 1

1 0

)
K∗RAW ,

where K∗ = KtJ , with Kt the transpose of K and, as above, J =
(0 1

1 0

)
.

Then our claimed continued fraction expansion follows immediately from
Lemma 3.1 and our observations at the beginning of this section. Further, if
|H| = 1, then Qm+1 = Qn+1 = 4, cp+1 = 2c0, and we have the palindrome

−→w1, cm+1,
−→w2, cn+1,

−→w3 =←−w3, cn+1,
←−w2, cm+1,

←−w1.

This information yields the expansion of
√
D claimed for the case |H| = 1.

Thus, if G = 2, we get, for some k ≥ 0,

lp(
√
D ) =

{
(6k + 1) lp(

√
C ) if |H| > 1,

(6k + 1) lp(
√
C )/2 if |H| = 1.
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