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Linear relations between roots of polynomials
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Kurt Girstmair (Innsbruck)

Introduction. Let K be a field of characteristic 0 and f = Zn +
c1Z

n−1 + . . . + cn an irreducible polynomial with roots x1, . . . , xn in some
splitting field L = K(x1, . . . , xn) of f . This article deals with additive rela-
tions

(1) a1x1 + . . .+ anxn = 0, aj ∈ K,
between these roots and multiplicative ones

(2) xa1
1 xa2

2 . . . xann = 1, aj ∈ Z.
Both types are comprised under the name of “linear relations”.

One of our objectives consists in convincing the reader that the represen-
tation theory of finite groups, applied to the Galois group G = Gal(L/K)
of f , is the appropriate framework for questions of this kind. More than 15
years ago we already pointed out this role of representation theory in our
paper [11]—it seems, however, that the proper value of this tool has not
been recognized by several later researchers (cf. [19], [9], [10], [1], [17]). As
an effect, some minor observations of [11] appear as main results in later
articles (cf., e.g., [11], Proposition 4, Assertion 3 and [9], Theorem 3). An
exception to this tendency is the recent paper [7]. But although it uses rep-
resentation theory, its viewpoint differs from that of our previous work: The
results of [7] are mainly necessary conditions saying that a given relation
(such as x1 = x2 + x3) can occur for a certain class of polynomials only.
Our paper [11], in contrast, contains a criterion that allows one to decide
whether a given relation (1) is possible or not in a specific case (cf. Theorem
1 below). This criterion yields a classification of all possible relations (1) for
polynomials f over K = Q of degree n ≤ 15 with G acting primitively on
its roots ([11], Theorem 1, and Section 2, ibid.). For example, the relation
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4x1 + x2 + x3 + x4 + x5 − 2(x6 + x7 + x8 + x9) = 0

actually occurs for n = 9 and a certain primitive group G of order |G| = 72.
In Section 1 we give a unified approach to both the additive and the

multiplicative case. In particular, we show that both cases lead to the same
basic concept: the concept of a K-admissible set . Roughly speaking, a K-
admissible set consists of relations (1) that may occur for some specific
polynomial f ; multiplicative relations (2) are covered by the case K = Q.
The property of being K-admissible does not, however, depend on f or its
splitting field L, but only on the Galois group G and the stabilizer

(3) H = Gx = {s ∈ G : s(x) = x}
of a root x ∈ {x1, . . . , xn} (clearly the groups H are conjugate for different
choices of x). Hence it is quite natural to define the fundamental notions
(such as “relation”, “K-admissibility”) in a completely abstract way in terms
of pairs of groups (G,H), H ⊆ G. To each pair (G,H) we attach a canonical
module K[G/H] (over the group ring K[G] of G). “Relations” are elements
of this K[G]-module and “K-admissible sets” are subsets of K[G/H] that
can be characterized in terms of certain submodules (Theorem 1). In [11],
the theory was developed more or less thus far but without regard to the
multiplicative case.

It suffices, in fact, to consider only those K-admissible sets that are
K[G]-modules themselves, so-called K-admissible modules. In Section 2 we
work out the role which character theory plays in the description of these
modules. The main result is a complete description (not of all but) of all
isotypically closed K-admissible modules in terms of certain sets of charac-
ters (Theorem 2). As an illustration, we give an example that goes beyond
hand-calculations, namely, nontrivial relations for a polynomial f of de-
gree 55 whose Galois group is isomorphic to PSL(2, 11) and acts primitively
on x1, . . . , x55 (Example 6). Moreover, the main result says that all K-admis-
sible modules (and, thus, essentially all K-admissible sets) are under control
if the canonical module K[G/H] is multiplicity-free as a K[G]-module. In
this case we say that the pair (G,H) is K-multiplicity-free. Pairs of this
kind are quite important, as Examples 1–5 show.

Section 3 is devoted to polynomials f with abelian Galois groups, or,
in our terminology, pairs (G, 1) with G abelian. Here the module K[G/H]
is the group ring K[G] itself. Since (G, 1) is K-multiplicity-free, the fore-
going results yield a nice criterion for K-admissibility: A subset of K[G] is
K-admissible if, and only if, it is annihilated by a set of generators of the
character group of G (Theorem 3). As an application, we compute the great-
est possible dimension of a Q-admissible module (Proposition 11). Further-
more, we treat an interesting type of relations that was investigated in [10]
and [7]: The authors of these papers asked under which conditions a root of
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f may be the sum or product of two other roots, say

(4) x1 = x2 + x3 or x1 = x2x3.

Whereas [10] gives the complete answer in the abelian case, [7] yields a
necessary condition in a more general situation. We show that the main
result of [10] is a rather immediate consequence of Theorem 3 (cf. proof
of Proposition 9). Moreover, we extend the positive answer that holds for
abelian pairs (G, 1), |G| divisible by 6, to a class of “metabelian” pairs
(G,H). This extension is a consequence of Proposition 10, which says that
Q-admissible sets belonging to a “cyclic” pair (F, 1) remain Q-admissible
for pairs (FH,H), where FH is a certain type of semidirect product.

Section 4 deals with another class of K-multiplicity-free pairs, so-called
K-trivial pairs. They correspond to polynomials f which admit no (additive)
relations except

c(x1 + . . .+ xn) = 0, c ∈ K r {0}.
In [11] we observed that f has this property only if G acts primitively on
x1, . . . , xn, whereas double transitivity is sufficient for K-triviality. Conse-
quently, the really interesting K-trivial pairs are those corresponding to the
primitive but not doubly transitive case. We display two types of examples
of this kind: Proposition 13 concerns polynomials f of prime power degree
q whose Galois group G is an affine group AGL(1, q). This type generalizes
the class of all irreducible solvable polynomials f of prime degree, whose
“triviality” has been known for a long time. The second type comprises
certain groups G = PSL(2, 2p) (p a prime number; Proposition 14). Both
types can be extended to automorphism groups of the groups G in question
(Proposition 15).

If the pair (G,H) is K-multiplicity-free, the mere use of group characters
leads to a satisfactory theory of K-admissible sets (or modules). In the main,
this statement remains true for the class of K-tame pairs, which contains
all K-multiplicity-free pairs. It is no longer true, however, for the remaining
pairs (G,H), which we call K-wild . The wild case is at least as important as
the tame one, since it is likely to occur even more frequently. For instance,
the symmetric group S3 (of order 6) appears in the wild pair (S3, 1) (which
corresponds to an irreducible polynomial f of degree n = 6 with Galois
group S3). Therefore, finding a simple criterion for wildness appears as a
matter of priority. Although we cannot present a completely satisfactory
solution of this task, the main result of Section 5 (Theorem 4) is not far
from it. In particular, it yields some quite simple sufficient conditions for
wildness (cf. Corollary 1 to Proposition 17 and Proposition 18).

At this point we should say that not all K-admissible modules deserve
the same interest: Only the maximal ones are really important. A complete
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description of all maximal K-admissible modules seems to be possible for the
class of K-wild pairs which we study in Section 6. This description is based
on Theorem 5, which gives, roughly speaking, a bijective parametrization
of a certain infinite series of modules by points of a projective space. The
main application of this theorem concerns the wild pairs (D2p, 1), where
D2p means the dihedral group of order 2p, p a prime number (Example
8). However, the desired survey of all maximal K-admissible modules can
be made completely explicit only if one knows the relevant representation
of G, not only its character. We attain this degree of explicitness in the case
of the pairs (D2p, 1), p = 3, 5. As a by-product, we show that the above-
mentioned relations (4) are possible for p = 3 but impossible for p = 5. This
fact deserves some interest with regard to Theorem 5 of [7], which gives
restrictions for pairs (G,H) permitting relations (4): The pairs (D6, 1) and
(D10, 1) are among the simplest covered by this theorem.

In order to make the present paper reasonably self-contained, we have
to repeat some concepts and results of [11]—so there is a small overlap
between our papers. We need quite a number of definitions that are specific
to the topic. The most important ones have been highlighted and numbered
consecutively, in order to facilitate recovering them where necessary. In these
definitions we use the simple conjunction “if” instead of unwieldy “if, and
only if”. Our notation of finite groups is fairly standard (cf. [5]).

The basic structure of the theory of linear relations can be understood
without reading each line of this rather long paper. We hope, for example,
that the sense of our hierarchy of notions becomes clear from Sections 1, 2,
and 5. The remaining sections concern (important) special cases which il-
lustrate this hierarchy.

1. A common framework for both kinds of relations. Throughout
this section we need not assume char(K) = 0. We rephrase our main prob-
lem in a slightly different way. Let L be a finite Galois extension of K with
Galois group G = Gal(L/K) and F an intermediate field whose pointwise
stabilizer is H = Gal(L/F ). Let f run through all irreducible polynomi-
als having a root (say xf ) that generates F over K (so F = K(xf )). The
question to be considered is what kind of linear (i.e., additive or multiplica-
tive) relations can exist between the roots of such an f . In general, some
of these polynomials f may have nontrivial linear relations between their
roots whilst others do not. For this reason it seems desirable to work with a
concept of “possible relations” that does not depend on the choice of f . We
shall describe this concept now.

We start with the group ring R[G] of the Galois group G over some
commutative ring R (usually one of Z, Q, or K). Since (s : s ∈ G) is an
R-basis of R[G], the elements of R[G] take the shape
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(5) λ =
∑

s∈G
lss, ls ∈ R.

The additive group of L is a left K[G]-module in the usual way, whereas the
multiplicative group L× = L r {0} is a left Z[G]-module. In both cases a
group element s ∈ G acts on y ∈ L (or L×, respectively), by sy = s(y). We
consider the additive case first.

Let G/H = {s : s ∈ G} be the set of left cosets s = {st : t ∈ H} = sH
of the subgroup H in G. By K[G/H] we denote a K-vector space whose
“canonical” basis is the system (s : s ∈ G/H) of cosets—so the construction
of K[G/H] is quite similar to that of the group ring. Therefore, the elements
of K[G/H] can be written

(6) α =
∑

s∈G/H
as s, as ∈ K,

in a unique way. Further, K[G/H] becomes a left K[G]-module by virtue of
the scalar multiplication

λt =
∑

s∈G
lsst,

where λ is as in (5) and t ∈ G/H.
The K[G]-module K[G/H] is a familiar object in the theory of permuta-

tion groups: If one considers G as a permutation group on G/H (acting via
st = st), one usually attaches K[G/H] to this permutation representation
of G (cf. [12], p. 597).

Let x be an element of L whose stabilizer Gx = {s ∈ G : sx = x}
equals H (thus, x generates the intermediate field F over K, or, in other
words, x = xf for one of the polynomials f in question). Consider the
K[G]-module generated by x, i.e., K[G]x = {λx : λ ∈ K[G]}. Since Gx = H,
the K[G]-linear map

(7) K[G/H]→ K[G]x : α 7→ αx =
∑

s∈G/H
as sx

(α as in (6), sx = s(x)) is well defined and surjective. We say that an element
α ∈ K[G/H] is an additive relation of x if, and only if, αx = 0.

It is obvious that this concept of additive relations is consistent with that
of (1): If x = xf , then (sx : s ∈ G/H) is a certain arrangement of the roots
of f and αx = 0 means that the respective linear equation (with coefficients
in K) holds between these roots.

Definition 1. Let L be a finite Galois extension of K with Galois group
G and H a subgroup of G. A subset M of K[G/H] is called admissible (in
the additive sense, to be precise) if there is an element x ∈ L with Gx = H
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such that all α ∈M are additive relations of x. An element α of K[G/H] is
called admissible in this sense if the set {α} is admissible.

Remarks. 1. Let x ∈ L be as above. In general, the Galois extension L of
K that contains F = K(x) is not uniquely determined. However, it is natural
(and sufficient for most purposes) to choose the smallest possible L, namely,
the normal closure of F . This is equivalent to saying that G = Gal(L/K)
acts faithfully on G/H.

2. A set M is admissible if, and only if, the K[G]-module K[G]〈M〉 gen-
erated by M is admissible. Suppose, for the moment, that the group ring
K[G] is semisimple (in other words, char(K) does not divide the order |G|
of the group G). Then all K[G]-submodules of K[G/H] are cyclic, i.e., of
the shape K[G]α for some α ∈ K[G/H]. Consequently, the theoretical be-
haviour of admissible sets is not different from the behaviour of admissible
elements: One can always replace the set M by a single generator α of the
module K[G]〈M〉. In practice, however, it may be toilsome to find such a
generator. For this reason it is sometimes advisable to work with admissible
sets, not only elements.

Note that the concept of additive admissibility depends on the field L
so far. The next proposition shows that it can be enounced in terms of
the group ring K[G] and the K[G]-module K[G/H] only. We consider an
element µ ∈ K[G] whose stabilizer Gµ = {s ∈ G : sµ = µ} equals H. If µ
has this property, the definition sµ = sµ makes sense for each coset s = sH.
This is even true if only Gµ ⊇ H. Hence we obtain an obvious analogue of
the mapping (7), namely, a K[G]-linear map

K[G/H]→ K[G]µ : α 7→ αµ =
∑

s∈G/H
assµ

(α as in (6)). For a subset M of K[G/H] and µ as above, let Mµ denote
the set {αµ : α ∈ M}. Instead of Mµ ⊆ {0} we simply write Mµ = 0 (so
we disregard the case M = ∅). The notations Mx and Mx = 0 have the
analogous meaning for an element x ∈ L with Gx ⊇ H.

Proposition 1. Let G be the Galois group of a finite Galois extension L
of K and H a subgroup of G. A subset M of K[G/H] is admissible in the
additive sense if , and only if , there is an element µ ∈ K[G] with Gµ = H
such that Mµ = 0.

P r o o f. Let x ∈ L be such that Gx = H and Mx = 0. Since K[G] is
a semisimple ring and K[G]x a cyclic K[G]-module, there is a left ideal a
in K[G] that is K[G]-isomorphic to K[G]x. Consider a K[G]-linear isomor-
phism a→ K[G]x and take the element µ ∈ a that is mapped onto x. Then
Gµ = H and Mµ = 0. Conversely, let µ ∈ K[G] be such that Gµ = H
and Mµ = 0. By the normal basis theorem, there exists an element y ∈ L
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such that the K[G]-linear map K[G]→ K[G]y : λ 7→ λy is an isomorphism
(in view of the requirements of the multiplicative case, we note that we make
no use of the fact that K[G]y = L). Put x = µy. Then x has the desired
property.

The proof of Proposition 1 becomes a bit simpler if one uses the normal
basis theorem to show both directions. The advantage of the above version
consists in the fact that it can be adapted to the multiplicative situation,
where we have only a weak form of the normal basis theorem at hand. The
proposition shows that the concept of additive admissibility is of a purely
group-theoretical nature and, thus, can be rephrased in terms of pairs of
abstract groups (G,H), H being a subgroup of G. Our next aim is a similar
result for the multiplicative case.

For this purpose we write the multiplicative group L× additively . In order
to free ourselves from torsion elements, we go over to the tensor product
L× ⊗Z Q, for which we simply write L× ⊗ Q. This kind of tensoring is
quite common in the Galois module theory of unit groups (cf. also [7]). The
“typical” elements of L× ⊗ Q have the shape x ⊗ c, x ∈ L×, c ∈ Q. We
consider L× as a left Z[G]-module in the usual way and obtain a canonical
Z[G]-linear map

L× → L× ⊗Q : x 7→ x⊗ 1.

The kernel of this map is the torsion group of L×, i.e., the group of roots
of unity in L. Obviously, L× ⊗ Q is a Q[G]-module now. For any element
u ∈ L× ⊗Q with Gu = H, the analogue of (7), i.e., the Q[G]-linear map

Q[G/H]→ Q[G]u : α 7→ αu

is well defined.

Definition 2. In the above setting, a subset M of Q[G/H] is said to
be admissible in the multiplicative sense if there is an element u ∈ L× ⊗Q
with Gu = H such that Mu = 0.

Of course, the reader may ask whether this definition is suitable for the
multiplicative case. We answer this question by the following proposition,
where we use, for the last time in this paper, the multiplicative notation
for L×.

Proposition 2. Suppose that K contains only finitely many roots of
unity. A subset M of Z[G/H] is admissible in the multiplicative sense if ,
and only if , there exists an element x ∈ L× with the following properties:

(a) Gx = H.
(b) Each element of M is a multiplicative relation between the conjugates
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of x; more precisely , if

α =
∑

s∈G/H
as s, as ∈ Z,

is in M , then ∏

s∈G/H
s(x)as = 1.

(c) If sx/x is a root of unity for some s ∈ G, then sx = x.

P r o o f. We return to the additive notation of L×. First suppose there
is an element x ∈ L× with properties (a)–(c). Put u = x ⊗ 1. Let s ∈ G
be such that su = u. This means that (s − 1)x is a torsion element of L×,
hence sx = x, by (c), and s ∈ H, by (a). On the other hand, each s ∈ H
fixes x and thus u. Moreover, (b) yields Mu = 0.

Conversely, let u ∈ L× ⊗ Q be such that Gu = H and αu = 0 for all
α ∈M . The element u is a finite sum of “typical” elements xk⊗rk, xk ∈ L×,
rk ∈ Q. Take an integer m > 0 such that mrk is in Z for all indices k. Since
L is a finite extension of K, it contains only finitely many roots of unity, so
there is an integer n > 0 such that nw = 0 for each torsion element w of L×.
Put y =

∑
(mrk)xk ∈ L× and x = ny. Then y ⊗ 1 = mu and x⊗ 1 = nmu.

If s ∈ G stabilizes x, it stabilizes nmu and hence u itself, because L× ⊗ Q
is torsion-free. On the other hand, each s ∈ H stabilizes u, hence mu, so
(s − 1)y is a torsion element of L×; this implies 0 = n(s − 1)y = (s − 1)x
and s ∈ Gx. The remaining properties can be checked in a similar way: for
instance, αy is a torsion element for each α ∈M , and so nαy = αx = 0.

Proposition 2 shows that the concept of multiplicative admissibility com-
prises almost all possible multiplicative relations—the only exceptions are
those occurring, exclusively, between conjugates that differ by a mere root
of unity (such as n(s− 1), s ∈ GrGx, n ∈ Z, n 6= 0). This type of relations
has been investigated in [7] (e.g., Lemma 3, ibid.). In the remainder of this
section we prove a multiplicative analogue of Proposition 1 under certain
assumptions about K and L. We start with

Proposition 3. Let L be a finite Galois extension of the field K with
Galois group G, H a subgroup of G, and M a subset of Q[G/H]. If M is
admissible in the multiplicative sense, then there is an element µ ∈ Q[G]
with stabilizer Gµ = H such that Mµ = 0.

P r o o f. One imitates the first part of the proof of Proposition 1: each
element u ∈ L× ⊗ Q with Gu = H and Mu = 0 produces an appropriate
element µ ∈ Q[G] via a Q[G]-linear isomorphism a → Q[G]u of a left ideal
a of Q[G] onto Q[G]u.
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The next proposition is a sort of converse of Proposition 3. It is based on
the validity of a weak multiplicative analogue of the normal basis theorem,
which guarantees the existence of a Q[G]-submodule of L× ⊗ Q that is
isomorphic to Q[G]. Note, however, that L×⊗Q itself cannot be isomorphic
to Q[G] in general; for instance, if L is an algebraic number field, then L×⊗Q
is not even finite-dimensional as a Q-vector space.

Proposition 4. In the situation of Proposition 3, suppose there is an
element v ∈ L× ⊗Q such that

Q[G]→ Q[G]v : λ 7→ λv

is a Q[G]-linear isomorphism. Let M be a subset of Q[G/H] and µ ∈ Q[G]
be such that Gµ = H and Mµ = 0. Then M is admissible in the multiplica-
tive sense.

P r o o f. Put u = µv. Then Gu = Gµ = H and Mu = 0.

In [10] it was shown that an element v with the above property exists
in the case of the ground field K = Q. We think that the existence of
such elements is known for much more general fields but have no suitable
reference at hand. Therefore, we include the following proposition.

Proposition 5. Let L be a finite Galois extension of the field K with
Galois group G. Suppose there is a place p of K that splits completely in L.
Then there is an element x ∈ L× such that v = x⊗ 1 defines a Q[G]-linear
isomorphism

Q[G]→ Q[G]v : λ 7→ λv.

P r o o f. Let p be a place of K that splits completely in L. For any
place P of L lying above p let vP denote the corresponding valuation of
L×. Now choose one particular P of this kind. Since p splits completely, all
places s(P), s ∈ G, are different. By the approximation theorem, there is
an element x ∈ L× such that vP(x) 6= 0, whereas vs(P)(x) = 0 for all s ∈ G,
s 6= 1. Thus x has the desired property: Let λ =

∑
s lss be in Z[G] and t ∈ G

arbitrary. Then

vt(P)(λx) =
∑

s∈G
lsvt(P)(s(x)) =

∑
s

lsvs−1t(P)(x) = ltvP(x).

Hence λx is a root of unity only if lt = 0 for all t ∈ G.

The existence of a place p with the above property is known, e.g., for
global fields K, in particular, for algebraic number fields (by the Chebotarev
density theorem, cf. [4], p. 165). Of course, global fields contain only finitely
many roots of unity (as was required in Proposition 2). Accordingly, we
may say that multiplicative admissibility is, for these ground fields K, an
adequate characterization of sets of multiplicative relations. Furthermore,
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the concepts of additive and of multiplicative admissibility are very similar.
The only difference lies in the scalars: Whereas an admissible set in the
multiplicative sense belongs to Q[G/H], the additive analogue is in K[G/H].
Their formal properties, however, are the same and do not depend on the
specific Galois extension L of K but only on the respective module structure
of Q[G/H] and K[G/H]. On adopting the necessary notations for arbitrary
pairs (G,H) of finite groups G and subgroups H, we arrive at

Definition 3. Let G be a finite group, H a subgroup of G, and K a
field. A subset M of K[G/H] is said to be K-admissible if there is an element
µ ∈ K[G] with Gµ = H such that Mµ = 0. An element α of K[G/H] is
said to be K-admissible if {α} is K-admissible.

Remark. Some authors use the notion relation in a slightly more general
sense, inasmuch as they only require that the right sides of (1), (2) are in K
(not necessarily = 0, e.g., [1], [7]). One may say that this type of relations
is covered by the concept of K-admissibility, too. Indeed, let char(K) be
prime to |G| and M a subset of K[G/H]. Suppose that µ ∈ K[G] is such
that Gµ = H and that the elements αµ, α ∈ M , remain fixed under all
s ∈ G. Put ε = |G|−1∑

s∈G s and µ′ = µ − εµ. Then Gµ′ = H and, since
εαµ = αµ = αεµ, we have αµ′ = 0 for all α ∈M .

2. The role of character theory. For the sake of simplicity we as-
sume char(K) = 0 in what follows, though several results remain valid
if only the group ring K[G] is semisimple (i.e., char(K) is prime to |G|).
Our main concern will be the study of K-admissible subsets of K[G/H].
We have seen above that it suffices to consider K-admissible modules, i.e.,
K[G]-submodules of K[G/H] that are themselves K-admissible subsets of
K[G/H] (cf. Remark 2 on Definition 1). In what follows “module” or “sub-
module” means “K[G]-module” or “K[G]-submodule”, respectively. The no-
tation K[G]〈. . .〉 denotes the K[G]-module generated by the bracketed en-
tries.

Throughout this section we fix a pair of groups (G,H), H being a sub-
group of G (instead, one might say that we fix a certain transitive permu-
tation representation of the group G, cf. [8], p. 17). Such a pair is called
faithful , primitive, imprimitive, doubly transitive, etc., when the permuta-
tion representation of G on G/H has the respective property. We write
H ′ > H or H < H ′ if H ′ is a subgroup of G, H ′ ⊇ H, and H ′ 6= H. Note
that one need not distinguish permutation isomorphic pairs: Any group iso-
morphism G → G̃ that carries the subgroup H to H̃ transports the whole
theory from (G,H) to (G̃, H̃).

We start with a fundamental type of module (introduced in [11] already).
Let H ′ be a subgroup of G containing H. Consider the canonical K[G]-linear
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surjection

(8) % : K[G/H]→ K[G/H ′] : s 7→ s,

and in particular, its kernel

U(H ′) = {α ∈ K[G/H] : %(α) = 0}.
It is not hard to see that

(9) U(H ′) = K[G]〈s− 1 : s ∈ H ′〉.
The following theorem is the cornerstone of our further investigation. In

the main it is identical with Proposition 1 of [11]. We think, however, that
the proof given in [11] is too short, so we include a full-length version of this
proof here.

Theorem 1. A K[G]-submodule V of K[G/H] is K-admissible if , and
only if , V does not contain U(H ′) for any group H ′ > H.

Remark. The right-hand condition of Theorem 1 can also be enounced
in the following way: For every s ∈ GrH, s−1 is not in V . In order to see the
equivalence of these conditions, one shows that s− 1 ∈ V implies s′− 1 ∈ V
for all s′ ∈ 〈{s}∪H〉; the proof of the last mentioned fact is based on relations
like sk−1 = λ(s−1), k ≥ 1, λ ∈ K[G], and sjtsk−1 = sjt(sk−1)+(sj−1),
t ∈ H. Although the condition of the theorem looks more complicated, it
fits better to the character-theoretical approach we are going to describe.

P r o o f (of Theorem 1). Let µ ∈ K[G] be such that Gµ = H and
V µ = 0. Let H ′ be a subgroup of G with H ′ > H and U(H ′) ⊆ V . Take an
element s ∈ H ′, s 6∈ H. Then s− 1 is in U(H ′). Since U(H ′) ⊆ V , we have
(s− 1)µ = 0, which contradicts Gµ = H.

Conversely, suppose that, for all H ′ > H, U(H ′) is not contained in V .
The canonical map % : K[G] → K[G/H] : s 7→ s is of the type considered
in (8). Let a = %−1(V ) be the inverse image of V . By semisimplicity, the
left ideal a is generated by an idempotent element ε. Put µ = 1 − ε. If s is
in H, then s − 1 is in the kernel of % and hence in a = K[G]ε. Therefore,
s−1 = (s−1)ε and (s−1)µ = 0. This shows H ⊆ Gµ. Next take an arbitrary
element s ∈ Gµ. Then (s − 1)µ = 0, i.e., s − 1 = (s − 1)ε and s − 1 ∈ a.
In particular, V contains K[G]〈s − 1 : s ∈ Gµ〉 = U(Gµ). It follows that
Gµ = H. Finally, for an element α ∈ V , let λ ∈ a be such that %(λ) = α.
Then αµ = λµ = 0.

A subgroup H ′ of G with H ′ > H is called minimal with this property
if there is no relation like H ′ > H ′′ > H. Of course, there are only finitely
many distinct minimal subgroups H ′ > H, which we denote by H1, . . . ,Hm

in the remainder of this section (observe that “distinct” means “distinct in
the set-theoretical sense” but possibly isomorphic or even conjugate). For
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instance, if (G,H) is primitive, then m = 1 and H1 = G. On observing that
U(H ′) is contained in U(H ′′) whenever H ′ ⊆ H ′′, we obtain the important

Corollary. A submodule V of K[G/H] is K-admissible if , and only
if , V contains none of the modules U(H1), . . . , U(Hm).

Theorem 1 also yields the less trivial direction of the following propo-
sition. Consider an extension field K ′ of K, so K[G] ⊆ K ′[G], K[G/H] ⊆
K ′[G/H].

Proposition 6. A subset M of K[G/H] is K ′-admissible if , and only
if , it is K-admissible.

P r o o f. If M is K-admissible, there is an element µ ∈ K[G] with Gµ = H
and Mµ = 0. Since µ also lies in K ′[G], M is K ′-admissible. Conversely, if
M is not K-admissible, then there is an s ∈ G r H such that s − 1 is in
K[G]〈M〉 (cf. (9) and the above remark). But then s−1 is also in K′[G]〈M〉.

We start using characters now, in particular, absolutely irreducible (i.e.,
irreducible complex) characters of G. They are known for many finite groups
(cf., e.g., [5]). Let K be a character-theoretic splitting field of G over K, for
instance, K = K(ζ), ζ a primitive root of unity of order |G|. We consider
each absolutely irreducible character χ as a character over K. There is a
uniquely determined central idempotent of the group ring K[G] connected
with χ, namely,

εχ = χ(1)|G|−1
∑

s∈G
χ(s−1)s.

Moreover, there is exactly one K-irreducible character χ̂ containing χ, which
is obtained as follows (cf. [12], p. 546): Let χ1 = χ, χ2, . . . , χc be the dis-
tinct K-conjugate characters of χ (so these characters form the set {σ ◦ χ :
σ ∈ Gal(K/K)}). Then

(10) χ̂ = κ(χ1 + . . .+ χc),

the natural number κ being the Schur index of χ. Whereas the computation
of κ is, in general, not a trivial task, one easily finds the central idempotent
εχ̂ ∈ K[G] belonging to χ̂: Simply put χ̃ = χ1 + . . . + χc. Then χ̃ is a
character with values in K (however, not a character defined over K unless
κ = 1) and

εχ̂ = χ(1)|G|−1
∑

s∈G
χ̃(s−1)s.

This is the same as saying εχ̂ = εχ1 +. . .+εχc (cf. [6], p. 734, Theorem 74.4).
For the time being, we write ψ = χ̂, in particular, εψ = εχ̂. Consider

(11) Iψ = εψK[G/H] = {εψα : α ∈ K[G/H]}.
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Since εψ is central, Iψ is a K[G]-module, namely, the cyclic module

(12) Iψ = K[G]〈εψ1〉 = K[G]εψ1.

In fact, Iψ is the isotypical component of ψ, i.e., the sum of all (necessarily
simple) submodules of K[G/H] whose character is ψ. We obtain

(13) K[G/H] =
⊕

ψ

Iψ,

with ψ running through all K-irreducible characters of G.

Definition 4. A submodule V of K[G/H] is called isotypically closed
(or simply closed) if it contains the whole isotypical component Iψ as soon
as V ∩ Iψ 6= 0.

We shall show that the above data suffices to describe all isotypically
closed K-admissible modules. To this end we consider the character of the
K[G]-module K[G/H]. This character is induced on G by the trivial char-
acter 1 of the subgroup H and, consequently, denoted by 1GH . We need the
absolutely irreducible characters χ occurring in 1GH , namely, the set

X = {χ : 〈χ, 1GH〉 6= 0},
where 〈 , 〉 means the usual scalar product of characters. It is fairly easy to
check whether some χ belongs to X . In fact, by Frobenius reciprocity,

(14) 〈χ, 1GH〉 = |H|−1
∑

s∈H
χ(s);

and so 〈χ, 1GH〉 = 0 if, and only if,
∑
s∈H χ(s) = 0. The knowledge of X is

equivalent to the knowledge of the nonzero components Iψ occurring in the
decomposition (13) of K[G/H]. More precisely, if χ̂ is attached to χ in the
sense of (10), its component Iχ̂ is nonzero if, and only if, χ ∈ X .

If χ is in X , all of its K-conjugate characters χ1 = χ, . . . , χc also belong
to X . For this reason we go over to a reduced set XK , which contains exactly
one member of each class of K-conjugate characters contained in X . Then

K[G/H] =
⊕

χ∈XK
Iχ̂.

In this direct sum all summands are nonzero, i.e., they contain at least one
simple K[G]-module. For a subset Y of XK we define

εY =
∑

χ∈Y
εχ̂ and IY =

⊕

χ∈Y
Iχ̂.

Then IY is isotypically closed and

IY = εYK[G/H] = K[G]εY1
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(this is the exact analogue of (11) and (12)). In this way we obtain all closed
submodules of K[G/H]:

Proposition 7. The map Y 7→ IY defines a bijection

{Y : Y ⊆ XK} → {V : V a closed submodule of K[G/H]}.
This bijection preserves the inclusion, i.e., Y ⊆ Z is equivalent to IY ⊆ IZ .

In the sequel it will sometimes be advantageous to consider the comple-
mentary module JY = IXKrY of IY instead of IY itself. On the one hand,
we have JY = K[G]βY , where

(15) βY = εXKrY1

arises from 1 ∈ K[G/H] by application of the “complementary” idempotent
of εY . On the other hand,

(16) JY = {α ∈ K[G/H] : εYα = 0}.
This means that one can test whether a given element α belongs to JY by
checking whether εYα = 0.

Next we look at the character of the module U(H ′) for a subgroup H ′

of G, H ′ > H. Since U(H ′) is the kernel of the surjection (8), its character
must be 1GH − 1GH′ . An absolutely irreducible character χ occurs in 1GH − 1GH′
if, and only if,

(17) 〈χ, 1GH′〉 < 〈χ, 1GH〉.
Combined with (14), this criterion works well in practice. Put

XK(H ′) = {χ ∈ XK : χ satisfies (17)}.
Let χ be in XK . Then Iχ̂ ∩ U(H ′) 6= 0 if, and only if, χ ∈ XK(H ′). In
other words, the module IXK(H′) is the smallest closed module that contains
U(H ′).

Definition 5. As above, let H1, . . . , Hm be the minimal groups > H.
A subset Z of XK is called generic if

Z ∩ XK(Hj) 6= ∅
for all j = 1, . . . ,m. If Z is minimal with this property, we call Z a selection
of XK (more precisely, of XK(H1), . . . ,XK(Hm)).

The name “generic” comes from the special case of an abelian group G
(cf. Proposition 8). The importance of generic sets becomes clear from the
next theorem; the meaning of “selections” will be discussed later.

Theorem 2. The map Z 7→ JZ defines a bijection between the set of
generic subsets Z of XK and the set of isotypically closed K-admissible
submodules V = JZ of K[G/H]. This bijection inverts the inclusion.
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P r o o f. In view of Proposition 7 we have to show that the closed K-
admissible submodules V of K[G/H] are exactly those of the shape JZ , Z
generic. Let V = IY , Y ⊆ XK , be closed. Put Z = XK r Y, so V = JZ .
Let χ be in Z ∩ XK(Hj) for some j ∈ {1, . . . ,m}. Then Iχ̂ ∩ U(Hj) 6= 0.
On the other hand, Iχ̂ ∩ IY = Iχ̂ ∩ V = 0, since χ 6∈ Y. So U(Hj) ⊆ V is
impossible. Accordingly, V is K-admissible if only Z is generic. Conversely,
if Z ∩ XK(Hj) = ∅ for some j, then XK(Hj) ⊆ Y and

U(Hj) ⊆ IXK(Hj) ⊆ IY = V,

so V is not K-admissible.

The character-theoretic equivalent of the decomposition (13) can be writ-
ten

(18) 1GH =
∑

ψ

nψψ.

Here ψ runs through all K-irreducible characters of G. Further, nψ ≥ 1 if
ψ = χ̂ for some χ ∈ XK and nψ = 0, otherwise. For the trivial character ψ =
1 we always have nψ = 1. The following definition fits into the commonly
used terminology:

Definition 6. The pair (G,H) is called K-multiplicity-free if the num-
bers nψ of (18) take the values 0 or 1 only.

In other words, (G,H) is K-multiplicity-free if each of the nonzero iso-
typical components Iψ of K[G/H] is simple as a K[G]-module. In this case
all submodules V of K[G/H] are isotypically closed, so Theorem 2 gives
a complete survey of all possible K-admissible modules. The following list
of examples may convince the reader of the import of the multiplicity-free
case. If no other specification is given, K may be an arbitrary field with
char(K) = 0. Note that “K ′-multiplicity-free”, holding for an extension
field K ′ of K, implies “K-multiplicity-free”, but not conversely. Since faith-
ful pairs are the most interesting ones (cf. Remark 1 on Definition 1), we
eventually say some words about the faithfulness of the respective pair.

Example 1. Let G be an abelian group. Then each possible pair (G,H)
is K-multiplicity-free. This can be seen as follows: The set of absolutely
irreducible characters of G is just the character group

Ĝ = {χ : G→ K× : χ a group homomorphism}
of G; moreover, X = {χ ∈ Ĝ : kerχ ⊇ H} and 1GH =

∑
χ∈X χ. Note,

however, that (G,H) is faithful only if H = 1.

Example 2. Let G be a solvable group and (G,H) primitive. Then G
is K-multiplicity-free. This is an easy consequence of the fact that G has a
transitive abelian subgroup (cf. [11], Proposition 3).
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Example 3. If G is a simple group, then (G,H) is faithful for every
subgroup H. There is a good chance that (G,H) is K-multiplicity-free as
long as the index [G : H] is not too large. The following list of—mainly
primitive—examples has been taken from [5] and [2].

(a) Alternating groups An. Almost all primitive pairs are K-multiplici-
ty-free for n ≤ 13. Possible exceptions occur only for n = 9, [G : H] = 840,
n = 10, [G : H] = 2520, n = 12, [G : H] ≥ 5775, n = 13, [G : H] ≥ 1716. For
n = 13 there exists a pair of index 1716 that is not Q-multiplicity-free. For
n = 11 there is a K-multiplicity-free pair of index 2520 such that |XK | = 5.
Thus, 1GH consists of five characters ψ (whose degrees may be as large as
1100) in this case.

(b) Classical groups. All possible primitive pairs (G,H) are K-multipli-
city-free if G is one of the following groups: PSL(2, 7), PSL(2, 8), PSL(2, 16),
PSL(2, 32), PSL(3, 4), PSU(3, 3), PSU(4, 2), PSp(6, 2). For instance, the
group G = PSp(6, 2) (of order 1451520) admits, up to permutation iso-
morphy, 8 primitive pairs (G,H); the largest index [G : H] equals 960, and
1GH consists of six characters ψ of degrees up to 420.

(c) Sporadic groups. The paper [2] contains the complete (and rather
long) list of all K-multiplicity-free pairs (G,H), where G is a sporadic simple
group. We just pick out two cases: For G = M12 (the Mathieu group) there
are, up to isomorphy, seven primitive K-multiplicity-free pairs with indices
≤ 220. For the sporadic Fischer group G = Fi23 there are four primitive and
two imprimitive K-multiplicity-free pairs. The largest index of a primitive
pair is 195747435; here K[G/H] consists of 16 simple modules.

Example 4. Let G be the symmetric group S6 and H < G a transitive
subgroup. There are, up to permutation isomorphy, 13 faithful pairs (G,H)
of this kind (only H = A6 does not yield a faithful pair); of these, eight pairs
are K-multiplicity-free (among them four primitive ones) but the remaining
five not.

Example 5. Let G be the quaternion group of order 8 and H = 1. Then
(G,H) is Q-multiplicity-free. This pair, however, is not K-multiplicity-free
if there are elements a, b in K such that a2 + b2 = −1 (as in K = Q(

√−d),
d = 1, 2, 3, 5).

We continue the discussion of Theorem 2. This theorem provides a com-
plete survey of all closed K-admissible submodules of K[G/H] in terms
of generic subsets of XK . In general, the number of these subsets is close
to 2|XK |, so it is often very large. In this case working with all closed K-
admissible modules becomes an unmanageable task. Fortunately, however,
not all of these modules are equally interesting. The notion of a selection
Z has been introduced with special regard to this fact (cf. Definition 5):
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By Theorem 2, the modules JZ which belong to selections Z are maximal
among all closed K-admissible submodules of K[G/H]. For most purposes it
suffices to control these maximal modules. Suppose, for instance, we would
like to know whether some finite set M ⊆ K[G/H] is K-admissible. If we
know that K[G]〈M〉 is closed (as is the case whenever (G,H) is K-multipli-
city-free), then there is a simple test: One looks for a selection Z of XK such
that M ⊆ JZ ; by (16), this is true if, and only if,

(19) εZα = 0

holds for all α ∈ M . If such a selection exists, then M is K-admissible,
otherwise it is not. Conversely, for any selection Z, the relevant generating
element of the “large” module JZ is given by (15), namely,

(20) βZ = εXKrZ1 ∈ K[G/H].

As a rule, it is easy to read εZ from a character table and, thereby, to obtain
βZ . But the shape (20) of the “relation” βZ is usually not what one desires.
Rather one would like to know the coefficients bs ∈ K occurring in

βZ =
∑

s∈G/H
bs s,

since this is, in view of Section 1, the canonical form of a K-admissible
element (i.e., of a relation, cf. (6)). The actual computation of the coeffi-
cients bs, however, soon goes beyond human computing capacities—as in
the following example, which is based on computer calculations.

Example 6. Let K = Q and G = PSL(2, 11), which we consider (in the
most natural way) as a subgroup of S12 (cf. [5], p. 7). This simple group has a
primitive permutation representation of degree 55, defined by the subgroup
H = D12, a dihedral group of order 12. Moreover, let F = ASL(1, 11) be
the affine subgroup of order 55 in G (i.e., the stabilizer of a point under the
action of G on {1, . . . , 12}). The map

F → G/H : s 7→ s

is bijective; therefore,

(21) Q[G/H] =
⊕

s∈F
Qs.

The groups F = 〈s1, s2〉 and H = 〈s3, s4〉 are generated by permutations
s1, . . . , s4 ∈ S12, whose decompositions into disjoint cycles look as follows:

s1 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11),

s2 = (1, 4, 5, 9, 3)(2, 8, 10, 7, 6),

s3 = (1, 8, 9, 2, 3, 10)(4, 12, 7, 6, 11, 5),

s4 = (1, 6)(2, 4)(3, 5)(7, 8)(9, 12)(10, 11).
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The absolutely irreducible characters occurring in 1GH can be found in [5].
We obtain

X = {1, χ1, χ
′
1, χ2, χ3, χ

′
3},

where χj , χ′j , j ∈ {1, 3}, are pairs of Q-conjugate characters, and χ1(1) = 5,
χ2(1) = 10, χ3(1) = 12. Thus,

XQ = {1, χ1, χ2, χ3}
is a possible choice. As (G,H) is primitive, H1 = G is the only group > H;
so it is minimal, of course, and

XQ(H1) = {χ1, χ2, χ3}.
Hence there are exactly three selections of XQ(H1), namely, Z = {χj},
j = 1, 2, 3. For reasons of comfort we have multiplied the corresponding
generator βZ of JZ , as defined in (20), by the group order |G| = 660. In
view of (21) we may write

660βZ =
11∑

k=1

5∑

l=1

blksk1s
l
2,

where the coefficients blk are the entries of the following 5×11-matrices: For
Z = {χ1},

(22)




3 −2 −2 −1 2 2 −1 −2 −2 3 0
0 0 −2 2 −1 −1 2 −2 0 0 2
−1 0 2 0 −2 −2 0 2 0 −1 2
−1 −2 3 2 −2 −2 2 3 −2 −1 0

0 3 2 −1 −1 −1 −1 2 3 0 27




for Z = {χ2},



0 −1 −1 4 −2 −2 4 −1 −1 0 0
0 0 −1 −2 4 4 −2 −1 0 0 −2
4 0 −2 0 −1 −1 0 −2 0 4 −2
4 −1 0 −2 −1 −1 −2 0 −1 4 0
0 0 −2 4 4 4 4 −2 0 0 21


 ,

and for Z = {χ3},



−4 6 6 −4 1 1 −4 6 6 −4 1
1 1 6 1 −4 −4 1 6 1 1 1
−4 1 1 1 6 6 1 1 1 −4 1
−4 6 −4 1 6 6 1 −4 6 −4 1

1 −4 1 −4 −4 −4 −4 1 −4 1 31


 .

Observe the symmetry blk = bl,11−k, which holds for all l, k ∈ {1, . . . , 5}. The
Q-dimensions of the “large” Q-admissible modules JZ are 45, 35, and 31,
respectively. Since G occurs as a Galois group over Q (cf. [16]), we obtain:
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There is an irreducible polynomial f ∈ Q[Z] of degree 55 with Galois
group PSL(2, 11) such that the entries of the matrix (22) are the coefficients
of a relation (like (1) or (2)) between its roots. The same holds for the other
two of the above matrices.

The forementioned three relations exclude each other, i.e., they cannot
occur with the same polynomial. This is due to the maximality of the closed
modules they generate. We note, furthermore, that the pair (G,H) in ques-
tion is not Q-multiplicity-free, because of χ̂2 = χ2 and 〈χ2, 1GH〉 = 2. There-
fore, the isotypical component Iχ2 is the direct sum of two simple modules
with character χ2; and it contains infinitely many simple submodules W
of this kind. For this reason the closed module J{χ2} can be extended to a
larger Q-admissible module W ⊕ J{χ2} by choosing W ⊆ Iχ2 in infinitely
many ways (cf. Example 7, Section 6). Each of these infinitely many larger
modules is a maximal submodule of Q[G/H] in the usual sense. Therefore,
it is impossible to check the Q-admissibility of an element by a finite number
of tests like (19). Here we are confronted, for the first time, with the phe-
nomenon of “wildness”, which will be discussed in Sections 5 and 6. On the
other hand, the closed Q-admissible submodules J{χ1}, J{χ3} are maximal
submodules of Q[G/H] themselves.

3. Abelian pairs. Let K be a field with char(K) = 0, as above. For
the time being, G denotes a finite abelian group. Then (G,H) is K-mul-
tiplicity-free for any subgroup H, but it is faithful if, and only if, H = 1
(cf. Example 1). We restrict ourselves to this case, so K[G/H] = K[G] and
the property of being K-admissible or not refers to subsets of K[G] now.
Moreover, X = Ĝ. As above, let XK be a complete set of representatives of
all classes of K-conjugate characters in X . The next proposition is a partial
justification of the notion of “generic” introduced in Definition 5.

Proposition 8. Let G be abelian and H = 1. A subset Z of XK is
generic if , and only if , Z generates the character group X = Ĝ.

P r o o f. Let H ′ be a subgroup of G, H ′ > 1. From Example 1 we see
that

(23) XK(H ′) = {χ ∈ XK : kerχ 6⊇ H ′}.
Let Z ⊆ XK . We consider the kernel

kerZ = {s ∈ G : χ(s) = 1 for all χ ∈ Z}.
Then 〈Z〉 = Ĝ if, and only if, kerZ = 1. If 〈Z〉 6= Ĝ, there is an s ∈ kerZ
whose order ord(s) is a prime p. So H ′ = 〈s〉 is a minimal group > 1. Because
of kerχ ⊇ H ′ for all χ ∈ Z, (23) implies XK(H ′)∩Z = ∅, so Z is not generic.
Conversely, if kerZ = 1, a group H ′ of the aforesaid kind is never contained
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in kerZ, hence there is a character χ ∈ Z such that kerχ 6⊇ H ′; so (23)
yields Z ∩ XK(H ′) 6= ∅.

In the above setting, Proposition 8 appears as a simple criterion for
genericity. Our next aim is a description of the module JY ⊆ K[G] (Y ⊆ XK
not necessarily generic) that is sometimes more suitable than that of (16).
To this end we consider, once more, a character-theoretic splitting field K
of G over K. We may assume that K is a finite abelian extension of K
with Galois group Γ . Then the K-conjugates χ = χ1, . . . , χc of a character
χ ∈ X = Ĝ form an orbit under the canonical action of Γ , i.e.,

(24) {χ1, . . . , χc} = {τ ◦ χ : τ ∈ Γ}.
Fix an element α =

∑
s∈G ass ∈ K[G]. Since G is abelian, the central

idempotent εχ ∈ K[G] applies to α in the following simple way:

(25) εχα = χ(α)εχ ∈ K[G],

where χ(α) has the usual meaning

(26) χ(α) =
∑

s∈G
asχ(s).

Let χ̂ = χ1 + . . . + χc be the K-irreducible character attached to χ and
εχ̂ = εχ1 + . . .+ εχc its central idempotent (observe that the Schur index κ
equals 1 here). By (25),

εχ̂ α =
c∑

j=1

χj(α)εχj .

Thus, εχ̂ α vanishes if, and only if, all values χj(α) vanish. But (24) and (26)
show that these values are K-conjugate elements of K. Hence we conclude
that εχ̂ α = 0 if, and only if, χ(α) = 0. Accordingly, every set JY ⊆ K[G],
Y ⊆ XK , is given by

(27) JY = {α ∈ K[G] : χ(α) = 0 for all χ ∈ Y}.
Further, we observe that two K-conjugate characters χ, χ′ generate the
same group of characters. This is due to the following fact: For each τ ∈ Γ
there is an integer k, prime to the order ord(χ), such that

τ ◦ χ = χk.

With this in mind, we are in a position to prove

Theorem 3. Let (G, 1) be an abelian pair. A subset M ⊆ K[G] is
K-admissible if , and only if , there is a set Z ⊆ Ĝ of characters such that
〈Z〉 = Ĝ and χ(α) = 0 for all χ ∈ Z and α ∈M .

P r o o f. If M is K-admissible, there is a generic set Z ⊆ XK such that
M ⊆ JZ . By Proposition 8 and (27), Z has the property required in the
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theorem. Conversely, suppose Z ⊆ Ĝ has this property. For each χ ∈ Z,
XK contains a uniquely determined character χ′ that is K-conjugate to χ.
Put Z ′ = {χ′ : χ ∈ Z}. Because of 〈χ〉 = 〈χ′〉, Z and Z ′ generate the same
group of characters, namely, the group Ĝ. Moreover, χ′(α) = χ(α) = 0 for
all α ∈M , hence M ⊆ JZ′ is K-admissible.

Next we apply Theorem 3 to the following problem: Several people have
asked whether relations like (4), i.e., x1 = x2 +x3 or x1 = x2x3, are possible
between the roots of an irreducible polynomial f as in the Introduction. In
our terminology this problem reads as follows: Characterize those faithful
pairs of groups (G,H) for which there exists a K-admissible element of the
shape

(28) 1− s− t ∈ K[G/H],

where 1, s, t are three distinct cosets in G/H. The solution of this problem in
the abelian case is one of the main results of [10]. Here we obtain this result
as an almost immediate consequence of our theorem (strictly speaking, [10]
enounces the following proposition only for K = Q ; by Proposition 6, how-
ever, this statement remains true for an arbitrary field of characteristic 0).

Proposition 9. Let (G, 1) be an abelian pair. The group ring K[G]
contains a K-admissible element of the shape 1 − s − t, 1 6= s 6= t 6= 1, if ,
and only if , the order |G| of G is divisible by 6.

P r o o f. If α = 1− s− t is K-admissible, there is a character χ ∈ Ĝ such
that χ(α) = 0, so χ(s)+χ(t) = 1. Hence χ(s) and χ(t) are complex-conjugate
roots of unity, χ(s) = ζ and χ(t) = ζ−1, say. The equation ζ+ζ−1 = 1 shows
that ord(ζ) = 6, which divides |G|. If, conversely, |G| is divisible by 6, there
is a character χ ∈ Ĝ of order 6 (since there are characters of orders 2 and 3).
Choose s ∈ G such that ζ = χ(s) is a primitive sixth root of unity (s exists
since Ĝ/kerχ is a cyclic group of order 6). Let Y ⊆ Ĝ be a set of characters
that generates kerχ. Then

Z = {χ′χ : χ′ ∈ Y} ∪ {χ}
generates Ĝ, and each character in Z vanishes on α = 1 − s− s−1. So α is
K-admissible.

Only little is known, in general, about K-admissible elements (28). The
following case has been studied in [7]: G is a product FH = {st : s ∈ F,
t ∈ H}, where F is an abelian group, which thus acts transitively on G/H.
For this reason (G,H) is K-multiplicity-free by the argument used in Exam-
ple 2. The cited paper [7] gives a necessary condition for the K-admissibility
of (28): The order |F | must be divisible by 6. According to Proposition 9,
this condition is sufficient if H = 1, i.e., in the abelian case. We shall now
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prove the sufficiency of this condition in the following situation: F is a
cyclic normal subgroup of G and F ∩H = 1 (so G is a semidirect product).
This result is an immediate consequence of the next proposition, which is
of independent interest: It is a sort of “lifting theorem” for the Q[F ]-linear
bijection

Q[F ]→ Q[G/H] : α =
∑

s∈F
ass 7→ α =

∑

s∈F
ass.

Proposition 10. Let (G,H) be a faithful pair of the following kind :
There is a cyclic normal subgroup F of G such that G = FH and F ∩H=1.
Let M ⊆ Q[F ] be Q-admissible for (F, 1) and M = {α : α ∈ M}
(⊆ Q[G/H]). Then M is K-admissible for every field K of characteris-
tic 0 (which contains Q, of course).

We give some explanations before we start the proof. The faithfulness
condition excludes that G is abelian unless H = 1. Moreover, the groups
G = FH in question can be classified completely: H acts on F by auto-
morphisms and this action is faithful, too. So we may assume that H is a
subgroup of the automorphism group of F . In other words, if F is isomorphic
to Z/kZ, then H is a subgroup of the multiplicative group (Z/kZ)×, and
G a subgroup of the usual semidirect product of these groups, which goes
by the name of the “holomorph” of Z/kZ. For example, the dihedral group
D2k (with F = Z/kZ and H = {±1}, k ≥ 3) is of this type. Note that the
assumption “F cyclic” cannot easily be dispensed with. A counterexample
is G = A4, F = 〈s, t〉 being the (noncyclic) normal subgroup of order 4, and
H a cyclic subgroup of order 3; here the Q-admissible element 1 + s ∈ Q[F ]
produces the element 1+s ∈ Q[G/H], which is not Q-admissible. Further, it
seems necessary to assume that the coefficients of α ∈M are rational num-
bers. Indeed, consider G = S3, F = A3 = 〈s〉, H of order 2, and K = Q(ζ), ζ
a primitive third root of unity; then s−ζ ·1 ∈ K[F ] is K-admissible, whereas
s− ζ · 1 ∈ K[G/H] is not K-admissible. On applying Proposition 10 to the
situation of Proposition 9, we obtain

Corollary. Let G = FH be as in Proposition 10. Then K[G/H] con-
tains a K-admissible element of the shape (28) if the order of the cyclic
normal subgroup F is divisible by 6. (This condition is necessary by Theo-
rem 5 of [7].)

P r o o f (of Proposition 10). First some basic observations. Let F = 〈s〉,
ord(s) = k, and χ ∈ F̂ be a character of F . Then χ is a group homomorphism
F → 〈ζ〉, ζ being a primitive kth root of unity. Because F is normal in G,
each t ∈ G defines a character t ∗ χ ∈ F̂ by t ∗ χ(u) = χ(t−1ut). Since F
is cyclic, t ∗ χ coincides with a character χkt for an integer kt prime to k
(observe that t−1st has order k, so this element equals skt for such a number
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kt). On the other hand, ζ 7→ ζkt defines an element σt of the Galois group
Gal(Q(ζ)/Q), so we may write t ∗ χ = σt ◦ χ. In particular, χ and t ∗ χ are
Q-conjugate characters.

By Proposition 6, it suffices to show that M is Q-admissible. Let X
be, as usual, the set of absolutely irreducible characters χ′ of G satisfying
〈χ′, 1GH〉 6= 0. Let XQ be the above-chosen system of representatives of X
with respect to Q-conjugation. We start with a set Z of generators of F̂
such that χ(α) = 0 for all χ ∈ Z and α in M . In part (a) we construct a
subset Z̃ of XQ; in (b) we show that this set is generic; and (c) contains the
proof of M ⊆ JZ̃ .

(a) For a character χ in Z, let χGF be the character induced by χ on G.
Since F is a normal subgroup of G,

(29) χGF (u) =
{

0 if u 6∈ F ,∑
t∈H t ∗ χ(u) otherwise.

Accordingly, ∑

u∈H
χGF (u) =

∑

u∈H∩F

∑

t∈H
t ∗ χ(u) = |H|,

because H ∩ F = 1. This means 〈χGF , 1GH〉 = 1 (cf. (14)), so there is a
uniquely determined absolutely irreducible character χ′ of G which occurs
both in χGF and 1GH . Since χ′ is in X , there is a unique character χ̃ ∈ XQ
that is Q-conjugate to χ′. We put

Z̃ = {χ̃ : χ ∈ Z}.
(b) If H ′ is a subgroup > H, then H ′ ∩ F is a nontrivial subgroup of F .

For this reason there is a character χ ∈ Z with kerχ 6⊇ H ′∩F , which means

(30)
∑

u∈H′∩F
χ(u) = 0.

By the above, each character t ∗ χ = σt ◦ χ, t ∈ H, has the same kernel, so
(30) also holds for t∗χ instead of χ. But then (29) gives 〈χGF , 1GH′〉 = 0. Con-
sequently, 〈χ′, 1GH′〉 = 〈χ̃, 1GH′〉 = 0 for the characters χ′ and χ̃ introduced
in (a) (recall that 1GH is a Q-character, so it contains Q-conjugates with the
same multiplicity). This implies χ̃ ∈ Z̃ ∩ XQ(H ′), so Z̃ is generic.

(c) Consider, for a character χ ∈ Z, the central idempotent ε = εχGF ∈
Q(ζ)[G] that belongs to χGF . From (29) one sees that

ε =
∑

t∈H
εt∗χ ∈ Q(ζ)[F ] ⊆ Q(ζ)[G].

Then (25) yields

εα =
∑

t∈H
t ∗ χ(α)εt∗χ = 0
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for any element α ∈ M—this is due to χ(α) = 0, on the one hand, and the
Q-conjugacy of the characters t ∗ χ, on the other hand. Because χ′ occurs
in χGF , we get εχ′α = 0. But α has coefficients in Q, so this identity also
holds for all Q-conjugate characters of χ′ (such as χ̃). Thus, εZ̃α = 0 and,
obviously, εZ̃α = 0.

As a further application of Theorem 2, we compute the maximal dimen-
sion of a Q-admissible module in Q[G] for an abelian pair (G, 1). Let Z
denote a minimal subset of X = Ĝ that generates Ĝ. Since Q-conjugate
characters generate the same group, Z does not contain any two different
but Q-conjugate characters. Hence we may assume Z ⊆ XQ (Z is a selection
of XQ, indeed). Let ϕ denote Euler’s function. Then ϕ(ord(χ)) is the number
of Q-conjugates of a character χ ∈ Z. Therefore,

dimQ JZ = |G| −
∑

χ∈Z
ϕ(ord(χ)).

This fact and the isomorphy of G and Ĝ show that maximizing the Q-
dimension of a Q-admissible module is the same as computing the minimum
of

ϕ(U) =
∑

s∈U
ϕ(ord(s))

when U runs through all minimal sets of generators of G. We need the
following notations: For a natural number d and a prime p let d(p) denote
the p-part of d, i.e., the greatest power of p that divides d (which is 1 if
p - d). We put

Φ(d) =
∑

p|d
p>2

ϕ(d(p)) +
{
ϕ(d(2)) if d(2) > 2 or d = 2,
0 otherwise.

We denote by C(d) a (multiplicative) cyclic group of order d.

Proposition 11. Let G be a finite abelian group whose elementary
divisors are d1, . . . , dk (so G is isomorphic to C(d1) × . . . × C(dk) with
d1 | d2 | . . . | dk). The greatest possible Q-dimension of a Q-admissible mod-
ule in Q[G] equals

|G| −
k∑

j=1

Φ(dj).

We restrict ourselves to a sketch of the proof. Let U be a set of generators
of G such that ϕ(U) is minimal . One may assume, without loss of generality,
that the order of each s ∈ U is either pe or 2pe for a prime p. If not, the
element s ∈ U can be replaced by two elements t, u for which 〈t, u〉 = 〈s〉,

ϕ(ord(t)) + ϕ(ord(u)) ≤ ϕ(ord(s)),
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and whose orders are divisible by fewer primes than |{p : p | ord(s)}|. Be-
cause of this special shape of the elements of U , it is possible to reduce the
proof to the case of a direct product

G = C(2)r0 × C(pe1)r1 × . . .× C(peh)rh ,

with p ≥ 3, 1 ≤ e1 < . . . < eh, r0 ≥ 0, and rj ≥ 1 for all j ≥ 1. Put
U2 = {s ∈ U : ord(s) = 2} and Up = {s ∈ U : p | ord(s) | 2pe}. First one
shows

(31) ϕ(Up) ≥
h∑

j=1

rjϕ(pej ).

For this purpose consider

lj = |{s ∈ Up : pej | ord(s)}|, j = 1, . . . , h.

The invariance of the p-rank requires lj ≥ rj + rj+1 + . . . + rh for all
j = 1, . . . , h; and this gives, after some calculations, the inequality (31).
Moreover, it is easy to write down a set Up generating the p-part of G such
that equality holds in (31). Put r = r1 + . . .+ rh. Because of l1 ≥ r, we have
|Up| ≥ r + l for some l ≥ 0. If r ≥ r0, a suitable exchange of elements in Up
shows that U2 must be empty. If r0 > r, one could diminish U2 by choosing
l ≥ 1, but this would increase ϕ(U), since ϕ(p) > ϕ(2) = 1. So l = 0 is the
optimal choice, but then |U2| ≥ r0 − r. Altogether, we see that

(32) ϕ(U2) ≥ max{r0 − r, 0}
is necessary. On the other hand, one can choose U2 and Up such that ϕ(U)
equals the sum of the right sides of (31) and (32), so we have computed the
desired minimum.

4. “Trivial” pairs. We study a further class of K-multiplicity-free pairs
(G,H). Let H ′ be a subgroup of G that contains H. Consider the element

ηH′ =
∑

s∈H′/H
s ∈ K[G/H]

attached to H ′ and the module

V (H ′) = K[G]〈ηH′〉
generated by this element. The canonical surjection % of (8) induces a K[G]-
linear isomorphism V (H ′) → K[G/H ′]. In this way we obtain the decom-
position

(33) K[G/H] = U(H ′)⊕ V (H ′),

which we note here for later use. It is not hard to see that ηH′ (and,
thus, V (H ′)) is K-admissible: The elements of V (H ′) are exactly those
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α =
∑
s∈G/H as s ∈ K[G/H] for which as = at whenever t−1s ∈ H ′. Since

this type of identity is impossible for any element s−1, s ∈ GrH, Theorem 1
says that V (H ′) is K-admissible. In particular, the element

(34) ηG =
∑

s∈G/H
s

and the one-dimensional module V (G) = KηG are always K-admissible.

Definition 7. The pair (G,H) of groups is called K-trivial if 0 and
V (G) are the only K-admissible modules in K[G/H].

We look at an imprimitive pair (G,H) first. Imprimitivity means that
there exists a group H ′ with G > H ′ > H. Since V (H ′) is isomorphic
to K[G/H ′], its K-dimension is the group index [G : H ′] ≥ 2, so the K-
admissible module V (H ′) is certainly different from 0 and V (G). Conse-
quently, (G,H) is not K-trivial. Suppose now that (G,H) is primitive, i.e.,
H1 = G is the only minimal group > H. Then the pair (G,H) is K-trivial if,
and only if, U(G) is simple as a K[G]-module. Indeed, if U(G) is not simple,
then there is a submodule V of U(G) different from 0 and U(G). But V is
K-admissible, by Theorem 1, and not contained in V (G), hence (G,H) is
not K-trivial. Conversely, if U(G) is simple, then K[G/H] is the direct sum
of two simple isotypical components, namely, V (G) and U(G) (cf. (33)). So
it has only four submodules: 0, V (G), U(G), and K[G/H]; of these, only 0
and V (G) are K-admissible.

For the time being, let ψ = 1GH − 1 denote the character belonging
to U(G). Our considerations result in the following proposition (which is
essentially contained in Proposition 4 of [11]):

Proposition 12. An imprimitive pair (G,H) is never K-trivial. A prim-
itive pair (G,H) is K-trivial if , and only if , the character ψ = 1GH − 1 is
K-irreducible.

It is well known that ψ is absolutely irreducible if, and only if, (G,H) is
doubly transitive (cf. [12], p. 597, Satz 20.2). In this case (G,H) is clearly
K-trivial for an arbitrary fieldK with char(K) = 0. This was observed in [11]
(for the additive case, to be precise) and by later authors (cf. [1], Theorem 3,
[7], Theorem 1). Since there exists a complete classification of all doubly
transitive pairs (cf., e.g., [3]), they are not of interest here. In the remainder
of this section we study faithful pairs (G,H) for which ψ is Q-irreducible
but not absolutely irreducible. To our knowledge only the most obvious class
of pairs (G,H) of this kind has been considered so far: pairs whose index
[G : H] is a prime number p—so they belong to polynomials f ∈ Q[Z] of
prime degree (cf. [14], [11], and [9]). The assumptions “[G : H] = p” and
“(G,H) not doubly transitive” imply that the group G is solvable. But then
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(G,H) is of a well known type: G is a proper subgroup of the affine group
AGL(1, p) and H is the stabilizer of an element under the usual action of G
on Z/pZ. We are going to generalize this class of Q-trivial pairs now.

To this end let q = pe be a prime power, e ≥ 1, and Fq the finite field
with q elements. For any a ∈ F×q and b ∈ Fq, let

aX + b : Fq → Fq
be the affine mapping defined by x 7→ ax+ b. The group

AGL(1, q) = {aX + b : a ∈ F×q , b ∈ Fq}
acts as a permutation group on Fq. The stabilizer of 0 ∈ Fq under this action
is F = {aX : a ∈ F×q }, which is obviously isomorphic to F×q . The group
AGL(1, q) is a semidirect product AGL(1, q) = TF , where T = {X + b :
b ∈ Fq} is a normal subgroup of AGL(1, q). More precisely, AGL(1, q) is a
Frobenius group of order |T | · |F | = q(q − 1) with Frobenius kernel T and
complement F . Let G be a transitive subgroup of AGL(1, q) of index d.
Then T is the p-Sylow group of G; and G has the shape G = TH, H being
a subgroup of F of the same index [F : H] = d. The pair (G,H) defines the
usual permutation representation of G on the set Fq.

We show

Proposition 13. As above, let q = pe be a prime power and G = TH
a transitive subgroup of AGL(1, q) of index d = [AGL(1, q) : G]. The pair
(G,H) is Q-trivial if , and only if , the index d divides p−1 and is relatively
prime to the exponent e.

P r o o f. Let T ∗ = T̂ r {1} be the set of nontrivial, absolutely irreducible
characters of the elementary abelian p-group T . The group F acts on T ∗ by
conjugation since T is a normal subgroup of G. This action looks as follows:
For an element aX ∈ F and a character χ ∈ T ∗, the character aX ∗ χ is
defined by

aX ∗ χ (X + b) = χ(X + ab).

Moreover, this action is regular , which means, first, that aX ∗ χ = χ holds
only if a = 1 and, second, that it is transitive (observe |T ∗| = |F |). Each
χ ∈ T ∗ is a (surjective) group homomorphism χ : T → 〈ζ〉 onto the mul-
tiplicative group generated by a primitive pth root of unity ζ. The Galois
group Γ = Gal(Q(ζ)/Q) is isomorphic to F×p = (Z/pZ)×; it is embedded in
F by

σ 7→ kσX,

where kσ ∈ Z is such that σ(ζ) = ζkσ and kσ is the residue class of kσ
mod p. The (Q-conjugate) character σ ◦ χ coincides with kσX ∗ χ because

σ ◦ χ (X + b) = (χ(X + b))kσ = χ(X + kσb) = kσX ∗ χ (X + b).
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In the remainder of the proof we identify σ ∈ Γ with kσX ∈ F , so we
consider Γ as a subgroup of F and, consistently, denote its action on T ∗

by “∗” instead of “◦”. It turns out that the decomposition of ψ = 1GH − 1
into Q-irreducible components can be completely described in terms of the
actions of the subgroups Γ,H ⊆ F on T ∗. Indeed, the induced characters
χGT , χ ∈ T ∗, are absolutely irreducible characters of G; further, if H\T ∗ =
{H ∗χ : χ ∈ T ∗} denotes the set of H-orbits on T ∗, then there is a bijection

(35) H\T ∗ → {χGT : χ ∈ T ∗},
defined by H ∗ χ 7→ χGT (cf. [12], p. 561, Satz 16.13). By the forementioned
regularity, |H ∗ χ| = |H| and, thus, |H\T ∗| = (q − 1)/|H| = d (recall that
[F : H] = d). So (35) says that there are exactly d distinct characters of G
of the shape χGT , χ ∈ T ∗. We denote them by χ1, . . . , χd. The computation
of 〈1GH , χj〉 now follows the same pattern as an analogous computation in
the proof of Proposition 10 (cf. (29), (14); observe H ∩T = 1). It shows that∑d
j=1 χj is contained in the character ψ. On comparing the degrees of both

characters, one obtains

(36) ψ =
d∑

j=1

χj .

Clearly ψ is Q-irreducible if, and only if, all characters χj are Q-conjugate.
The field Q(ζ) is a splitting field of each character χj since all values of χj
lie in Q(ζ), on the one hand, and since (36) requires that the Schur index
of χj equals 1, on the other hand—for ψ is defined over Q. Moreover, the
action of Γ ⊆ F on T ∗ respects H-orbits, i.e., σ ∗ (H ∗ χ) = H ∗ (σ ∗ χ),
since F is abelian. Because

σ ◦ χGT = (σ ∗ χ)GT ,

we obtain: Two characters χj = χGT and χk = χ′GT are Q-conjugate if, and
only if, there exists an automorphism σ ∈ Γ such that σ ∗ (H ∗χ) = H ∗χ′.
In particular, all characters χ1, . . . , χd are Q-conjugate if, and only if, Γ
acts transitively on H\T ∗. But F acts regularly on T ∗, so this is the same
as saying ΓH = F . Hence the proof comes down to an exercise about two
subgroups of the cyclic group F , whose indices are [F : H] = d, [F : Γ ] =
(q−1)/(p−1). One finds: ΓH = F if, and only if, d | p−1 and d is prime to
(q−1)/(p−1). However, if d | p−1, then p ≡ 1 mod d and so (q−1)/(p−1) ≡ e
mod d. This concludes the proof.

Whenever the index d of Proposition 13 is > 1, the pair (G,H) is not
doubly transitive. If, in addition, d | p− 1 and the greatest common divisor
(d, e) equals 1, the pair (G,H) is of the desired type, i.e., Q-trivial but not
doubly transitive. This class of examples clearly covers the above-mentioned
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faithful pairs of prime index [G : H] = p. We go over to another class of
examples.

Let q = 2p > 4 be a power of 2 such that l = q − 1 is a prime.
This demands that p is a prime ≥ 3, so l is one of the Mersenne primes
7, 31, 127, 8191, . . . We consider the simple group G = PSL(2, q) as a permu-
tation group on Fq ∪ {∞} in the usual way. The group G contains a cyclic
subgroup of (odd) order q + 1, whose normalizer in G is a dihedral group
H = D2(q+1); its index [G : H] equals q(q − 1)/2.

Proposition 14. Let the above notations hold ; in particular , G =
PSL(2, q), H = D2(q+1), q = 2p, and 2p − 1 is a prime number ≥ 7. Then
(G,H) is Q-trivial but not doubly transitive.

P r o o f. Let G∞ = ASL(1, q) denote the stabilizer of ∞ under the said
action of G. Then G∞ = TF , where the normal subgroup T is elementary
abelian of order q = 2p and F a cyclic group of prime order q − 1 = l.
The nontrivial (absolutely irreducible) characters χ of F can be identified
with those characters of G∞ whose kernel contains T . According to [13],
p. 207, Lemma 5.3, these characters produce, by induction from G∞ to
G, (l − 1)/2 distinct absolutely irreducible characters χ1, . . . , χ(l−1)/2 of G.
These induced characters are Q-conjugate and have Q(ζ + ζ−1) as their
common field of values, where ζ is a primitive lth root of unity. One readily
checks that the characters ψ = 1GH −1 and χ1 + . . .+χ(l−1)/2 have the same
degree, namely, (q + 1)(q − 2)/2. Thus, these characters are equal provided
that 〈χj , 1GH〉 6= 0 for all j = 1, . . . , (l − 1)/2 (an argument which was also
used in the proof of Proposition 13). The quoted lemma, however, allows us
to verify this: For an element s ∈ H r {1} it gives

χj(s) =
{

0 if ord(s) | q + 1,
1 if ord(s) = 2,

whence
∑
s∈H χj(s) = 2(q + 1) = |H| and 〈χj , 1GH〉 = 1 follow.

Remark. If l = q−1 is not a prime, not all of the said characters χ 6= 1
of F are Q-conjugate, so they do not produce Q-conjugate characters of G.
For this reason the proposition is wrong in this case. The (excluded) case
l = 3 gives a doubly transitive pair (G,H) (in fact, G = A5 and H = D10).

The last two propositions can be extended to groups of automorphisms
of G: For the group AGL(1, q) of Proposition 13, the (full) automorphism
group consists of all semiaffine mappings

aλ+ b : Fq → Fq : x 7→ aλ(x) + b,

with λ ∈ Gal(Fq/Fp), a ∈ F×q , b ∈ Fq. Let Λ be a subgroup of Gal(Fq/Fp)
and G = TH as in Proposition 13. Then Λ normalizes the groups T and H
(in the latter case this is due to the fact that the elements a ∈ F×q and λ(a)
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have the same order), hence it also normalizes G. We put

G′ = GΛ = {aλ+ b : aX + b ∈ G,λ ∈ Λ}.
The stabilizer of 0 under the action of G′ on Fq is H ′= HΛ = {aλ : aX ∈ H,
λ ∈ Λ}. Now the restriction 1G

′
H′ |G equals 1GH : Indeed, 1G

′
H′(s) is the number

of fixed points in Fq of an element s ∈ G′; and this number equals 1GH(s)
whenever s ∈ G. Consequently, the character ψ′ = 1G

′
H′ − 1, when restricted

to G, coincides with ψ = 1GH − 1. If ψ is Q-irreducible (which is true under
the premisses of Proposition 13), then clearly so is ψ′. On the other hand,
the order |G′| divides q(q − 1)e/d since |Λ| divides e. Because (d, e) = 1, G′

cannot be doubly transitive unless d = 1.
A similar argument works for the groups PSL(2, q) of Proposition 14:

As p is a prime, the only nontrivial subgroup Λ of Gal(Fq/F2), q = 2p,
is the whole group, whose order equals p. However, it is not quite obvi-
ous that Λ normalizes the dihedral group D2(q+1). As a matter of fact,
this holds only for a suitably chosen dihedral group but not for an arbi-
trary conjugate of it. In order to obtain an appropriate group D2(q+1), we
start with a primitive (q + 1)th root of unity ξ in the field Fq2 (observe
that |F×q2 | is divisible by q + 1). The transformation x 7→ ξx of Fq2 can be
considered as an element of GL(2, q) and thus defines a fractional linear
transformation s ∈ PGL(2, q) = PSL(2, q) of order q + 1: More precisely,
let Z2 − aZ − b ∈ Fq[Z] be the minimal polynomial of ξ over Fq; then
s = b/(X + a) ∈ PSL(2, q). For any λ ∈ Λ,

λ ◦ b

X + a
◦ λ−1 =

λ(b)
X + λ(a)

.

But Z2 − λ(a)Z − λ(b) is the minimal polynomial of another element ξ′ of
order q+ 1; and since ξ′ ∈ 〈ξ〉 one obtains λ(b)/(X + λ(a)) ∈ 〈s〉. Therefore
Λ normalizes 〈s〉. The dihedral group D2(q+1) we are looking for is the nor-
malizer of 〈s〉 in G (cf. [12], p. 192, Satz 8.4). This group is also normalized
by Λ. The remainder runs along the above lines: Put H = D2(q+1), G′ = GΛ,
H ′ = HΛ. By means of the bijection G/H → G′/H ′ one shows, for the re-
spective characters, 1G

′
H′ |G = 1GH and ψ′ = ψ. Since ψ is Q-irreducible, this

is true for ψ′. It should be noted, however, that (G′,H ′) may be doubly
transitive. On comparing |G′| = |G|p with [G : H]([G : H] − 1), one sees
that this may happen only for p = 3, q = 8—where it actually happens
(cf. [12], p. 214, exercise 17). Altogether, we obtain:

Proposition 15. In the situation of Proposition 13 or Proposition 14,
let Λ be a subgroup of Gal(Fq/Fp) or Gal(Fq/F2), respectively , and suppose
that (G,H) is Q-trivial. Then (GΛ,HΛ) is Q-trivial and , up to the exception
just mentioned , not doubly transitive.
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Our final observations in this section result from

Proposition 16. Let (G,H) be Q-trivial. If [G : H] is even, then (G,H)
is K-multiplicity-free for every field K of characteristic 0.

P r o o f. As in (10) we have

ψ = 1GH − 1 = κ(χ1 + . . .+ χc),

where the χj ’s are Q-conjugate, absolutely irreducible characters of G and
the Schur index κ is a natural number. Since ψ(1) = κcχ1(1) is odd, the
numbers c and χ1(1) are also odd. Consequently, χ1 is a real-valued character
of odd degree. Now a theorem of Brauer and Speiser ([6], p. 750) says that
κ = 1.

In the case of the groups G = PSL(2, q), H = D2(q+1) of Proposition 14,
the index [G : H] is, in fact, even. This is not true for most pairs (G,H) of
Proposition 13. Nevertheless, these pairs are K-multiplicity-free for any K,
since G is solvable and (G,H) primitive (cf. Example 2).

Possibly the contemporary knowledge about permutation groups suffices
for a complete classification of all Q-trivial pairs that are not doubly tran-
sitive. All primitive pairs (G,H) of odd index are known (cf., e.g., [15]); so
one could try to figure out the relevant ones from the (long and involved)
list. On the other hand, if [G : H] is even, we know that (G,H) is K-mul-
tiplicity-free for any K. But this means that Theorem 30.2 of [20], p. 92,
can be applied: We find that, apart from the case |G| = 2, H = 1, the pair
(G,H) is 3/2-fold transitive. Therefore, the classification of all primitive,
3/2-fold transitive permutation groups of even degree would be the basis for
the same kind of search as in the odd case.

5. “Tame” and “wild” pairs. As above, let K be a field of characteris-
tic 0 and (G,H) a pair of groups with H ⊆ G. The notions of “module” and
“submodule” always refer to K[G]-modules. Furthermore, V ∼= V ′ means
that the K[G]-modules V and V ′ are isomorphic. In Section 2 we have seen
(cf. the discussion concentrated around (19)) that the complete list of all
K-admissible submodules of K[G/H] is, in general, too complicated to be
written down—even for K-multiplicity-free pairs. Consequently, we restrict
ourselves to the following important type of K-admissible modules:

Definition 8. Let V be a K-admissible submodule of K[G/H]. We
say V is a maximal K-admissible module (or simply: V is maximally K-
admissible) if no larger module V ′ ⊇ V , V ′ 6= V , is K-admissible.

The notion of maximal K-admissibility leads to the following general-
ization of the class of K-multiplicity-free pairs:
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Definition 9. The pair (G,H) is called K-tame if there are only
finitely many maximal K-admissible modules in K[G/H]. Otherwise, (G,H)
is called K-wild .

If (G,H) is K-multiplicity-free, then K[G/H] contains only a finite num-
ber of submodules, so (G,H) is clearly K-tame. We conjecture that the con-
verse (“K-tame” implies “K-multiplicity-free”) is also true, which means
that the class of K-tame pairs is not really larger than the class of K-multi-
plicity-free pairs. We cannot prove this, but our characterization of K-tame
pairs (Theorem 4) comes close to the property of being K-multiplicity-free.
For instance, it turns out that in the K-tame case the maximal K-admissible
modules are just those of the shape JZ , where Z is a selection of the set of
characters XK (cf. Proposition 20). In view of Section 2 (context of (19)) we
may say that K-tame pairs do not behave different from K-multiplicity-free
pairs with respect to maximal K-admissible modules. In particular, the sim-
ple test of K-admissibility described there also works for K-tame pairs. The
said characterization also yields some simple criteria for the K-wildness of
a pair (e.g., Propositions 18, 19).

A good case can be made out in favour of our forementioned conjec-
ture. However, in order to avoid a lengthy (and, in the end, not conclusive)
discussion, not all possible arguments are rendered here—we only draw the
reader’s attention to the corollaries to Proposition 17.

We adopt the notations of Section 2. Thus, XK denotes the reduced set
of absolutely irreducible characters attached to (G,H); and for any χ ∈
XK , Iχ̂ = K[G]εχ̂ is the corresponding isotypical component of K[G/H]
(cf. (11)). Recall that, for any subgroup H ′ ⊆ G containing H, XK(H ′) is
the set of all χ ∈ XK which occur in U(H ′), i.e., 〈χ, 1GH−1GH′〉 6= 0. Moreover,

(37) IXK(H′) =
⊕

χ∈XK(H′)

Iχ̂

is the smallest closed submodule of K[G/H] that contains U(H ′). Finally,
let H1, . . . ,Hm denote the (distinct) minimal subgroups of G which are > H.
The main result of this section shows that the property of being K-tame
requires U(Hj) = IXK(Hj) for all j = 1, . . . ,m; this is the same as

(38) 〈1GHj , 1GH − 1GHj 〉 = 0, j = 1, . . . ,m.

However, the validity of (38) is not sufficient for tameness:

Theorem 4. In the above setting , the following statements are equiva-
lent :

(a) The pair (G,H) is K-tame.
(b) Each module U(Hj), j = 1, . . . ,m, is closed and all of its isotypical

components Iχ̂, χ ∈ XK(Hj), are simple.
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We postpone the proof of Theorem 4 and note some of its implications
instead. Consider, first, the special case of a primitive pair (G,H), so m = 1
and H1 = G. Then K-tameness means that U(G) consists of simple iso-
typical components of K[G/H] only. Since every isotypical component of
K[G/H] except the trivial one, i.e. V (G) = KηG (cf. (33), (34)), occurs in
U(G), we obtain

Corollary. If the pair (G,H) is primitive but not K-multiplicity-free,
it is K-wild.

Next we need a simple but useful lemma. Here it seems appropriate to
recall that 〈S〉 denotes the subgroup generated by the set S.

Lemma 1. Let H ′ and H ′′ be subgroups of G that contain H.

(a) U(H ′) ⊆ U(H ′′) if , and only if , H ′ ⊆ H ′′.
(b) U(H ′) + U(H ′′) = U(〈H ′ ∪H ′′〉).
P r o o f. Assertion (a) is easy to check if one observes that U(H ′) =

K[G]〈s− 1 : s ∈ H ′〉 (cf. (9)) and that U(H ′′) is the kernel of the canonical
map % : K[G/H] → K[G/H ′′] (cf. (8)). From (a) it is clear that U(H ′) +
U(H ′′) ⊆ U(〈H ′ ∪H ′′〉). The converse inclusion follows from

st− 1 = (s− 1) + s(t− 1) ∈ U(H ′) + U(H ′′),

where s ∈ H ′ and t ∈ H ′′. This assertion can be extended to arbitrary
elements of the shape s1t1 . . . shth, sj ∈ H ′, tj ∈ H ′′.

By the lemma, U(H1) + . . . + U(Hm) = U(〈H1 ∪ . . . ∪ Hm〉). If each
U(Hj) consists of simple isotypical components of K[G/H] only, this is also
true for U(H1) + . . .+ U(Hm). Consequently, we obtain

Proposition 17. The pair (G,H) is K-tame if , and only if , U(〈H1 ∪
. . . ∪Hm〉) consists of simple isotypical components of K[G/H] exclusively.

We note, in addition, that any K[G]-linear complement of the module
U(〈H1∪ . . .∪Hm〉) (such as V (〈H1∪ . . .∪Hm〉)) is isomorphic to K[G/〈H1∪
. . . ∪Hm〉]. This observation yields

Corollary 1. Suppose that the pair (G, 〈H1∪ . . .∪Hm〉) is K-multipli-
city-free (this is true, for instance, if 〈H1 ∪ . . . ∪Hm〉 = G). Then (G,H)
is K-tame if , and only if , (G,H) is K-multiplicity-free.

Corollary 1 supports our opinion that, in reality, the notions of “K-mul-
tiplicity-free” and “K-tame” are equivalent. One can also read this corollary
in the following way: If (G,H) is K-tame but not K-multiplicity-free, then
there is a group H ′ > H such that (G,H ′) is not K-multiplicity-free. As
every tower of subgroups H < H ′ < H ′′ < . . . ends with the group G, and
(G,G) is K-multiplicity-free, we obtain another argument in favour of our
opinion:
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Corollary 2. Suppose that (G,H) is K-tame but not K-multiplici-
ty-free. Then there is a subgroup H ′ of G, H ′ > H, such that (G,H ′) is
K-wild.

Proposition 18. Suppose that there are minimal groups H1,H2 > H,
H1 6= H2, which are conjugate. Then (G,H) is K-wild.

P r o o f. Since H1 and H2 are conjugate groups, the characters 1GH1
and

1GH2
are identical. Accordingly, the character of U(H1), namely, 1GH − 1GH1

,
coincides with the character of U(H2). This means that U(H1) and U(H2)
are isomorphic modules. If (G,H) is K-tame, these modules are closed , so
they must be equal in the set-theoretic sense. By Lemma 1, H1 = H2.

Corollary. Let (G, 1) be K-tame. Then each subgroup of G of prime
order is normal in G.

The corollary shows that pairs (G, 1) are, as a rule, K-wild unless G is
abelian. An exception is the quaternion group G of order 8, for which (G, 1)
is Q-multiplicity-free.

Let H ′ and H ′′ be subgroups of G. Consider

H ′H ′′ = {st : s ∈ H ′, t ∈ H ′′}.
We say H ′ commutes with H ′′ whenever H ′H ′′ = H ′′H ′ (which is the same
as saying H ′H ′′ is a subgroup of G).

Proposition 19. Let (G,H) be K-tame and H1 a minimal subgroup
> H of G. Then H1 commutes with every group H ′ that contains H.

P r o o f. By Frobenius reciprocity,

〈1GH , 1GH1
〉 = |H|−1

∑

s∈H
1GH1

(s).

According to [12], p. 597, Satz 20.2, this is the number of orbits of the group
H acting on G/H1. On the other hand, (G,H) is K-tame, so (38) gives

〈1GH , 1GH1
〉 = 〈1GH1

, 1GH1
〉,

which is the number of orbits of H1 on the same set. Since H ⊆ H1, this
means that every H-orbit on G/H1 is an H1-orbit, and conversely. In other
words, H1t ⊆ HtH1 for each t ∈ G. In particular, if H ′ is a subgroup of G
with H ⊆ H ′, we obtain

H1H
′ ⊆ HH ′H1 = H ′H1.

But |H ′H1| = |H1H
′|, so H1 commutes with H ′.

Proof of Theorem 4 . Suppose, first, that (b) holds, so each U(Hj) is
closed and all of its isotypical components are simple. Let V ⊆ K[G/H]
be a K-admissible module. We show that there is a generic set Z ⊆ XK
such that V ⊆ JZ . Then each maximal K-admissible module has the shape
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JZ—there are, however, only finitely many modules of this shape, so (G,H)
is K-tame. In fact, since V is K-admissible, it does not contain any of the
modules

U(Hj) =
⊕

χ∈XK(Hj)

Iχ̂,

j = 1, . . . ,m (cf. (37)). Thus we can select, for each j, a character
χ ∈ XK(Hj) such that Iχ̂ is not contained in V . Since Iχ̂ is simple, this
means Iχ̂ ∩ V = 0. In view of

εχ̂V ⊆ εχ̂K[G/H] = Iχ̂

(cf. (11)), we obtain εχ̂V ⊆ V ∩ Iχ̂ = 0. If, therefore, Z denotes the set of
all selected characters, one has εZV = 0 and V ⊆ JZ .

Before we prove the considerably more complicated direction (a)⇒(b),
we note the following by-product of what we have shown so far:

Proposition 20. Suppose (G,H) satisfies condition (b) of Theorem
4 (which is true if (G,H) is K-tame, as we shall show). Then the map
Z 7→ JZ defines a bijection between the set of selections Z of XK and the
set of maximal K-admissible modules of K[G/H].

The remainder of the proof of Theorem 4 is based on the following

Lemma 2. Let V be a simple K[G]-module, I a module ∼= V r for some
r ≥ 2, and V1, . . . , Vk submodules of I that are all ∼= V . Then there are
infinitely many distinct submodules Wi of I, i = 1, 2, . . . , such that each Wi

is ∼= V r−1 and Wi 6⊇ Vj for all j = 1, . . . , k.

We postpone the proof of this lemma and start the (indirect) proof of
(a)⇒(b): Suppose U(H1) does not fulfil condition (b). Then there is an
isotypical component I of K[G/H] such that I∩U(H1) 6= 0, I nonsimple; so
I ∼= V r for some simple module V and some r ≥ 2. Without loss of generality
we may assume that I ∩ U(Hj) 6= 0 if j ∈ {1, . . . , k} and I ∩ U(Hj) = 0 if
j ∈ {k+1, . . . ,m}, for some k, 1 ≤ k ≤ m. For each j ≤ k let Vj be a simple
submodule of I∩U(Hj) (so Vj ∼= V ). By Lemma 2, there are infinitely many
distinct maximal submodules Wi, i = 1, 2, . . . , of I such that Wi 6⊇ Vj for
all j ≤ k. Let J denote the (uniquely determined) K[G]-linear complement
of I in K[G/H]. The definition of k requires U(Hj) ⊆ J for all j > k.
We put M = U(H1) ∩ J . Then M contains none of the modules U(Hj),
j > k; otherwise, U(Hj) ⊆ U(H1) would imply Hj ⊆ H1 (cf. Lemma 1),
which contradicts the minimality of the groups H1, . . . ,Hm. Suppose now
that M̃ is a submodule of J which is maximal with respect to the following
properties:

M̃ ⊇M and M̃ 6⊇ U(Hj) for all j > k.
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Such a module M̃ exists since M has these properties and J is finite-dimen-
sional. We put

Ui = Wi + M̃ = Wi ⊕ M̃, i = 1, 2, . . .

Because Wi ⊆ I and M̃ ⊆ J , these modules are all distinct. They are
K-admissible. Indeed, for all j ≤ k we know Vj 6⊆ Wi and hence
U(Hj)∩I 6⊆Wi. This implies U(Hj) 6⊆Wi⊕J and, in particular, U(Hj) 6⊆Ui.
For all j > k we have U(Hj) 6⊆ M̃ and, as U(Hj) ⊆ J , we have U(Hj) 6⊆
I ⊕ M̃ , which implies U(Hj) 6⊆ Ui. Finally, our modules Ui are maximally
K-admissible. Let the module U be strictly larger than some Ui. Since Wi

is a maximal submodule of I, U either contains I or U ∩ J contains M̃ as a
proper submodule. In the first case U contains I⊕M = I⊕ (U(H1)∩J) and
thus U(H1). In the second case there is a j > k such that U(Hj) ⊆ U ∩ J
(by the maximality property of M̃) and hence U(Hj) ⊆ U . Consequently,
U is not K-admissible. Altogether, we have constructed an infinite series Ui
of maximal K-admissible modules.

Proof of Lemma 2. The proof goes by induction on r ≥ 2. First let r = 2,
so I = U1 ⊕ U2 with U1

∼= U2
∼= V . Let λ : U1 → U2 be a K[G]-linear

isomorphism. For an element a ∈ K define

W (a) = {u+ aλ(u) : u ∈ U1}.
Then W (a) is a submodule of I, W (a) ∼= U1

∼= V , and W (a) ∩ W (b) = 0
whenever a 6= b ∈ K. Therefore, I contains infinitely many submodules
∼= V , as K is an infinite field. Among these, one can choose infinitely many
modules Wi, i = 1, 2, . . . , different from V1, . . . , Vk. Since both Wi and Vj
are simple, this means Wi ∩ Vj = 0 for all i, j.

Suppose the lemma holds for r ≥ 2. Let I ∼= V r+1 and V1, . . . , Vk ⊆ I be
∼= V . Of course, I also contains infinitely many submodules ∼= V . We choose
one of these, say V0, different from V1, . . . , Vk. Let I ′ be a K[G]-linear com-
plement of V0 and π : I = V0 ⊕ I ′ → I ′ the corresponding K[G]-linear
projection (whose kernel is V0). Then π(Vj) 6= 0 for all j = 1, . . . , k; other-
wise Vj ⊆ V0 and, since both modules are simple, Vj = V0. In particular,
π(Vj) ∼= Vj ∼= V for all j = 1, . . . , k. Because I ′ ∼= V r, there are infinitely
many distinct modules W ′i ⊆ I ′, i = 1, 2, . . . , none of which contains π(Vj),
j = 1, . . . , k. Put Wi = V0 ⊕ W ′i . The modules Wi are all distinct since
π(Wi) = W ′i . Further, Vj 6⊆ Wi, for otherwise π(Vj) ⊆ π(Wi) = W ′i—which
we have excluded.

6. Wild pairs with Schur index 1. Let V be a simple K[G]-module
and I ∼= V r its isotypical component in K[G/H]. In the sequel we assume
r ≥ 2 and that U1, . . . , Uk are nonzero submodules of I. The description of all
maximal K-admissible modules in K[G/H] often relies on the knowledge of
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all maximal submodules W of I with W 6⊇ Uj for j = 1, . . . , k. For instance,
suppose that U(Hj)∩I 6= 0 for all minimal groupsHj > H, j = 1, . . . ,m. Let
J be the (uniquely determined) K[G]-linear complement of I in K[G/H].
If W runs through all maximal submodules of I not containing U(Hj) ∩ I,
j = 1, . . . ,m, then each module W⊕J is a maximal K-admissible submodule
of K[G/H].

The purpose of this section is a one-to-one parametrization of the said
modules W under the additional assumption that the Schur index κ of V
equals 1. In this way we obtain a description of all maximal K-admissible
modules in the case of the wild pairs (D2p, 1), where D2p means the dihedral
group of order 2p, p a prime (our main example). Special attention will be
paid to the cases p = 3, 5.

For the time being we simply assume that I = V r. Let ε ∈ K[G] de-
note the central idempotent belonging to V , so ε = εχ̂ for some absolutely
irreducible character χ that occurs in the K-irreducible character χ̂ of V .
The field L = K(χ(s) : s ∈ G) plays an important role now. It is known
that this field is isomorphic to the center C(K[G]ε) = C(K[G])ε of the sim-
ple K-algebra K[G]ε (cf. [12], p. 544, Hilfssatz 14.7, b)). In other words, if
L′ = C(K[G])ε is considered as a K-algebra with unit element ε, then there
is an isomorphism

(39) λ : L→ L′ : 1 7→ ε

of K-algebras. By means of (39), any L′-vector space can be considered as
an L-vector space, and conversely. In particular, the L′-algebra K[G] is an
L-algebra. For this reason we shall feel free to identify elements a ∈ L′ with
their preimages λ−1(a) ∈ L.

We assume that L (or L′, respectively) is a splitting field of V , which is
the same as κ = 1. Under this assumption each K[G]-linear endomorphism
% of V has the shape

% = a · idV , a ∈ L;

conversely, since L′ lies in the center of K[G], it is clear that mappings of
this type are K[G]-linear.

In what follows we fix an arbitrary element v ∈ V , v 6= 0. Then we form
the element vi = (0, . . . , v, . . . , 0) ∈ V r whose ith entry is v whereas all
other entries are zero, i = 1, . . . , r. These elements form an L-basis of the
vector space

V rL = L〈v1, . . . , vr〉.
Every submodule U of V r is isomorphic to V q for some q ≤ r. This number
q is called the rank of U and denoted by rankU . We put

UL = U ∩ V rL .
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The following fundamental proposition is probably implicit in the litera-
ture but we do not know an appropriate quotation. So we include the proof
here.

Proposition 21. The map U 7→ UL defines an inclusion-preserving
bijection between the set of K[G]-submodules of V r and the set of L-sub-
spaces of V rL . Moreover , rankU equals the L-dimension dimUL, and U =
K[G]〈UL〉.

P r o o f. Let U be a submodule of V r and % : V q → U a K[G]-linear
isomorphism. We define the elements vj ∈ V q, j = 1, . . . , q, just in the same
way as the above elements vi ∈ V r: So the jth entry of vj equals v and
the others are zero. Note that the family (%(vj) : j = 1, . . . , q) is L-linearly
independent because

%(V q) =
q⊕

j=1

K[G]%(vj).

In the following parts (a) and (b) of the proof we show

UL = L〈%(vj) : j = 1, . . . , q〉.
This yields, in particular, rankU = dimUL; the other assertions will follow
quickly.

(a) First we show %(vj) ∈ UL for each j. To this end we consider the
K[G]-linear injection

θj : V → V q : v 7→ vj

and the K[G]-linear projection

πi : V r → V

that maps vi onto v and the remaining vl’s onto 0. Then πi ◦ % ◦ θj is
a K[G]-linear endomorphism of V . By our assumption, this endomorphism
can be written aij ·idV for some element aij ∈ L. Therefore, πi(%(vj)) = aijv
and, consequently,

(40) %(vj) =
r∑

i=1

aijvi ∈ V rL ∩ U = UL.

(b) Since the vectors %(vj) are L-linearly independent, the r × q matrix
A = (aij) has rank q. Thus, there is a q × r matrix B = (bji) such that BA
is the q × q unit matrix. Now suppose that w is in UL; this means, on the
one hand,

(41) w =
r∑

i=1

civi, ci ∈ L,
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on the other hand,

(42) w =
q∑

j=1

µj%(vj), µj ∈ K[G].

We show that there are elements mj ∈ L such that µjv = mjv for all
j = 1, . . . , q. Then the K[G]-linearity of % implies

w =
q∑

j=1

mj%(vj) ∈ L〈%(vj) : j = 1, . . . , q〉,

as desired. But (40)–(42) give
r∑

i=1

civi =
r∑

i=1

( q∑

j=1

aijµj

)
vi,

whence, because V r =
⊕r

i=1K[G]vi,

civi =
q∑

j=1

aijµjvi

follows for each i = 1, . . . , r. This equation remains valid if vi is replaced by
v on both sides. On applying the matrix B, we obtain

r∑

i=1

bjiciv = µjv

for all j = 1, . . . , q. So the left side of each of these equations yields an
appropriate element mj ∈ L.

(c) According to (a) and (b), UL = L〈%(vj) : j = 1, . . . , q〉. This implies
U = K[G]〈UL〉. Consequently, the map U 7→ UL is injective. It preserves
the inclusion, for U ⊆ U ′ implies U ∩ V rL ⊆ U ′ ∩ V rL . So there remains
only one fact to be shown, namely, that every L-subspace W of V rL has
the form UL. Let (w1, . . . , wq) be an L-basis of W . Since each wj can be
written wj =

∑r
i=1 aijvi, aij ∈ L, it is easy to see that vj 7→ wj defines a

K[G]-linear map %̃ : V q → V r. The module U = %̃(V q) has a rank ≤ q; so
we know already that dimUL ≤ q. On the other hand, w1, . . . , wq are in UL,
so dimUL = q and UL = W .

In reality, I ⊆ K[G/H] is not identical with V r but only isomorphic.
Hence we assume that

I =
r⊕

i=1

K[G]vi,

where K[G]vi is a submodule of I isomorphic to the simple module V . Then
Proposition 21 remains true word by word, provided that the elements vi
have been chosen in a symmetry-adapted manner: This means that for all
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i, j ∈ {1, . . . , r} there is a K[G]-linear isomorphism K[G]vi → K[G]vj map-
ping vi to vj . On putting IL = L〈v1, . . . , vr〉, we obtain the corresponding
bijection U 7→ UL = U∩IL between the submodules of I and the L-subspaces
of IL.

Let a = (a1, . . . , ar) ∈ Lr. For a vector w = b1v1 + . . .+ brvr ∈ IL, put

[a,w] = a1b1 + . . .+ arbr ∈ L.
If a is different from 0 ∈ Lr, the set {w ∈ IL : [a,w] = 0} forms an
(r−1)-dimensional subspace of IL, and all (r−1)-dimensional subspaces are
obtained in this way. By Proposition 21, the corresponding K[G]-modules

Wa = K[G]〈w ∈ IL : [a,w] = 0〉, a ∈ Lr r {0},
run through all maximal (i.e., rank r− 1) submodules of I. This fact allows
parametrizing the maximal submodules by the points of the projective space

Pr−1
L = {a · L× : a ∈ Lr r {0}}.

Indeed, it is now easy to see that

(43) Pr−1
L → {W : W a maximal submodule of I} : a · L× 7→Wa

defines a bijection. Further, we note the following system of K[G]-generators
of the module Wa: If a = (a1, . . . , ar) and ai 6= 0, say, then

Wa =
r⊕

j=1
j 6=i

K[G](aivj − ajvi).

This follows from the fact that these generators form an L-basis of {w ∈ IL :
[a,w] = 0}.

Let U be an arbitrary submodule of I of rank q (≤ r). Then UL has an
L-basis (w1, . . . , wq). Consequently, the system of linear equations ([a,wj ] =
0 : j = 1, . . . , q) has rank q. Therefore,

P(U) = {a · L× : [a,wj ] = 0, j = 1, . . . , q}
is an (r − 1 − q)-dimensional projective subspace of Pr−1

L . Proposition 21
shows that a · L× is in P(U) if, and only if, Wa contains U . Altogether, we
have

Theorem 5. In the above setting let U1, . . . , Uk be submodules of the
isotypical component I. Then the map (43) induces a bijection between

Pr−1
L r (P(U1) ∪ . . . ∪ P(Uk))

and the set of maximal submodules W of I that do not contain any of
U1, . . . , Uk.

Example 7. Let (G,H) be a primitive but not K-multiplicity-free pair,
so there is an isotypical component I ∼= V r of K[G/H] with r ≥ 2. Then
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G = H1 is the only minimal group > H and U(G) ∩ I = I. As we pointed
out at the beginning of this section, all modules of the shape W ⊕ J , where
J denotes the complement of I and W a maximal submodule of I, are
K-admissible. Whenever the Schur index of V equals 1, our theorem gives
a parametrization of this infinite series of maximal K-admissible modules:
The points a · L× of Pr−1

L correspond to the modules Wa ⊕ J . We inspect
the case of Example 6 (Section 2) more closely: So K = Q, G = PSL(2, 11),
H = D12. On adopting suitable notations we have the decomposition

Q[G/H] = I1 ⊕ Iχ̂1 ⊕ Iχ2 ⊕ Iχ̂3 ,

where I1, Iχ̂1 , Iχ̂3 are simple but I = Iχ2
∼= V 2 for some simple Q[G]-module

V of Q-dimension 10. Hence the projective line P1
Q parametrizes the family

Wa ⊕ J{χ2}, Wa
∼= V , a = (a1, a2) ∈ Q2 r {0}, of maximal Q-admissible

modules of Q-dimension 45. Apart from these, there are only two other
maximal Q-admissible modules, namely, the closed modules J{χ1} and J{χ3}
described in Section 2, of respective dimensions 45 and 31.

Example 8. Let p ≥ 3 be a prime number and G = D2p the dihedral
group of order 2p, generated by the elements s, t with ord(s) = p, ord(t) = 2,
ts = s−1t. We takeK = Q andH = 1, soK[G/H] = Q[G]. There are exactly
three Q-irreducible characters of G: the trivial character 1, the nontrivial
group homomorphism χ1 : G → {±1}, and a character ψ of degree ψ(1) =
p − 1. This character is given by ψ(u) = −1 for each u ∈ 〈s〉 r {1} and
ψ(u) = 0 for each u ∈ G r 〈s〉 (cf. also the proof of Proposition 13). The
corresponding central idempotent is

(44) ε = εψ = (p− 1)/p · 1− 1/p ·
p−1∑

j=1

sj .

Let ζ denote a primitive pth root of unity. Any absolutely irreducible char-
acter χ occurring in ψ has the field of values L = Q(ξ), with ξ = ζ + ζ−1.
The isomorphic field L′ = C(Q[G])ε is generated by ξ′ = (s + s−1)ε, and
an isomorphism λ as in (39) can be defined by ξ 7→ ξ′. The simple module
V belonging to Iψ = Q[G]ε has Q-dimension ψ(1) = p − 1 and, therefore,
L-dimension 2. Moreover, Iψ ∼= V 2 as Q[G]-modules. This implies, in par-
ticular, that the Schur index of V equals 1. Because of (43), the projective
line P1

L parametrizes a family of maximal submodules of Q[G/H] bijectively.
The members of this family can be written

Wa ⊕ I1 ⊕ Iχ1 , a = (a1, a2) ∈ L2 r {0},
with Wa ⊆ Iψ, Wa

∼= V . Which of these modules are Q-admissible? The
answer requires the knowledge of the minimal subgroups of G. There are
exactly p+1 groups of this kind: namely, the groups Hj = 〈sjt〉, j = 1, . . . , p,
of order 2, and Hp+1 = 〈s〉 of order p. It is easy to check that U(Hp+1) = Iψ.



94 K. Girstmair

However, for every j ∈ {1, . . . , p} there is a simple submodule W (j) of Iψ
such that U(Hj) = W (j)⊕Iχ1 . Suppose, therefore, that the projective points
a(j) ·L× of P1

L are such that W (j) = Wa(j) . Then the above parametrization
maps the set

P1
L r {a(j) · L× : j = 1, . . . , p}

onto an infinite series of maximal Q-admissible modules. The reader may
convince himself that the only maximal Q-admissible modules different from
these have the shape

Wa(j) ⊕ I1, j = 1, . . . , p.

It should be remarked that there is no closed maximal Q-admissible module.

The above examples suffer from one defect so far: It would be desirable
to explicitly know the symmetry-adapted generators v1, . . . , vr of the iso-
typical component I ∼= V r in question. This defect can be remedied if one
has the simple module V at hand. Taking this for granted, we extend the
isomorphism λ of (39) to a homomorphism of K-algebras

L[G]→ K[G]ε,

by mapping s ∈ G to sε. Thereby K[G]ε becomes a simple L-algebra (in fact,
a subalgebra of L[G]) and the K[G]ε-modules V and I = εK[G/H] become
L[G]-modules. Since V is a simple L[G]-module with splitting field L, one
can adapt the procedure described in [18], p. 23 ff., to the present context:
Let (x1, . . . , xd) be an L-basis of V . Suppose we know the coefficients clj ∈ L
occurring in the relations

sxj =
d∑

l=1

clj(s)xl, j = 1, . . . , d,

for all s ∈ G. Then we put

π =
∑

s∈G
c11(s−1)s ∈ L[G] and IL = πI.

In fact, IL also equals πK[G/H] = {πα : α ∈ K[G/H]}, and dim IL = r.
Now let (v1, . . . , vr) be an arbitrary L-basis of IL. Then

I =
r⊕

i=1

L[G]vi =
r⊕

i=1

K[G]vi,

and vi 7→ vj defines a K[G]-linear isomorphism between any two of the
summands. Finally, for any submodule U of K[G/H], UL = πU , so it is
easy to check relations like Wa ⊇ U .

Example 9. We consider K = Q and the above pair (G,H) = (D2p, 1)
in the special case p = 5. Put I = Iψ. Here ξ = ζ + ζ−1 equals (−1 +

√
5)/2
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for one of the two possible choices of
√

5. Recall that λ maps ξ onto ξ′ =
(s + s−1)ε with ε as in (44). We give an ad hoc description of the module
V : V = Lx1 ⊕ Lx2, and the generators s and t of D10 act on these basis
elements by

sx1 = −x1 + x2, sx2 = −(2 + ξ)x1 + (1 + ξ)x2,

tx1 = −(1 + ξ)x1 + x2, tx2 = −(1 + ξ)x1 + (1 + ξ)x2.

This data suffices to compute the element π ∈ L[G]. Then IL = πI has the
L-basis

v1 = 1− s4 − st+ s2t, v2 = v1t = −s+ s2 + t− s4t.

We obtain I = Q[G]v1⊕Q[G]v2, with the symmetry-adapted generators v1,
v2. The simple submodules Wa of I, a = (a1, a2) ∈ L2r{0}, have the shape
Q[G](a2v1 − a1v2). In particular,

U(Hj) = Wa(j) ⊕ Iχ1 , j = 1, . . . , 5,

with a(1) = (2 + ξ,−1), a(2) = (2ξ,−1), a(3) = (1 + ξ,−2), a(4) = (ξ − 1, 1),
a(5) = (1, 1).

We conclude this paper by returning to the relations (4) of the Intro-
duction. So far, the possibility of these relations has been studied in some
tame cases (cf. Corollary to Proposition 10). We look at our main examples
of wild pairs now. In other words: Is there a Q-admissible element of the
shape α = 1 − u − v, u 6= v ∈ G r {1}, in the case (G,H) = (D2p, 1)?
By Theorem 5 of [7], the answer can be affirmative only for p ∈ {3, 5}. As
above, put ε = εψ. In the case p = 5 one can check that the Q[G]-module
Q[G]εα always has Q-dimension 8, so Q[G]α contains I = Iψ = U(Hp+1).
Accordingly, the answer is negative. In the case p = 3 the group D6 = 〈s, t〉
is the symmetric group S3. We collect the relevant data in the sense of our
above results: L = Q and I = Iψ has the symmetry-adapted generators

v1 = 1− s2 − st+ s2t, v2 = v1t = −s+ s2 + t− s2t,

Wa = Q[G](a2v1 − a1v2) for a = (a1, a2) ∈ Q2, a 6= 0. Further, U(Hj) ∩
I = Wa(j) , j = 1, 2, 3, with a(1) = (1,−2), a(2) = (−2, 1), a(3) = (1, 1).
On the other hand, when α runs through 1 − t − st, 1 − t − s2t, and
1− st− s2t, the module Q[G]α equals Wb ⊕ I1 ⊕ Iχ1 , where b runs through
(0, 1), (1, 0), (1,−1), respectively. Therefore, each of these three elements α is
Q-admissible.

The above pairs (D2p, 1), p = 3, 5, belong to the simplest examples
covered by the cited theorem of [7]. The result in either case sheds some
light on the question to which extent this theorem describes the reality.
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