Uniform distribution of primes having a prescribed primitive root

by

PIETER MOREE (Bonn and Amsterdam)

1. Introduction. If S is any set of prime numbers, denote by S(x) the number of primes in S not exceeding x. For given integers a and d, denote by S(x; a, d) the number of primes in S not exceeding x that are congruent to a modulo d. We say that S is weakly uniformly distributed mod d if S is infinite and for every a coprime to d,

$$S(x; a, d) \sim \frac{S(x)}{\varphi(d)}$$

where $\varphi(d)$ denotes Euler's totient function. In case S is infinite the progressions a (mod d) such that the latter asymptotic equivalence holds are said to get their fair share of primes from S. Thus S is weakly uniformly distributed mod d if and only if all the progressions mod d get their fair share of primes from S. W. Narkiewicz [7] has written a nice survey on the state of knowledge regarding the (weak) uniform distribution of many important arithmetical sequences.

In this paper the weak uniform distribution of a class of sequences, apparently not considered in this light before, will be investigated. Let G be the set of non-zero rational numbers g such that $g \neq -1$ and g is not a square of a rational number. Let \mathcal{P}_g denote the set of primes p such that g is a primitive root modulo p. Clearly a necessary condition for \mathcal{P}_g to be infinite is that $g \in G$. That this is also a sufficient condition was conjectured by Emil Artin in 1927 and is called Artin's primitive root conjecture. There is no value of g for which \mathcal{P}_g is known to be infinite. Presently the best unconditional result on Artin's conjecture is due to R. Heath-Brown [1]. Heath-Brown's result implies that there are at most two primes q for which \mathcal{P}_q is finite. Assuming GRH, C. Hooley [2] proved in 1967 a quantitative version of Artin's conjecture (Theorem 4 below with f = 1 and $g \in G \cap \mathbb{Z}$). In this note we will make use of the following straightforward generalization

¹⁹⁹¹ Mathematics Subject Classification: 11R45, 11A07, 11N69.

^[9]

of Hooley's result. As usual, μ and ζ_n denote the Möbius function and a primitive root of unity of order n, respectively.

THEOREM 1 [4]. Let M be Galois and $g \in G$. Suppose the Riemann Hypothesis holds for the fields $M(\zeta_k, g^{1/k})$ for every squarefree k. Then $N_M(g; x)$, the number of primes p not exceeding x that split completely in M and such that g is a primitive root mod p, satisfies

(1)
$$N_M(g;x) = \left(\sum_{k=1}^{\infty} \frac{\mu(k)}{[M(\zeta_k, g^{1/k}) : \mathbb{Q}]}\right) \frac{x}{\log x} + O\left(\frac{x \log \log x}{\log^2 x}\right)$$

For $g \neq -1, 0, 1$ define

$$\delta(M,g) := \sum_{k=1}^{\infty} \frac{\mu(k)}{[M(\zeta_k, g^{1/k}) : \mathbb{Q}]}$$

(Since $[M(\zeta_k, g^{1/k}) : \mathbb{Q}] \gg k\varphi(k)$, the series is seen to converge, even absolutely, and hence $\delta(M, g)$ is well defined.) Hooley computed $\delta(\mathbb{Q}, g)$ for $g \in G \cap \mathbb{Z}$. It turns out that $\delta(\mathbb{Q}, g) \neq 0$ for such g and thus Artin's conjecture holds true, on GRH. In particular $\delta(\mathbb{Q}, g)$ is a rational number times

$$A = \prod_{p} \left(1 - \frac{1}{p(p-1)} \right) \quad (\approx .3739558),$$

the so-called Artin constant. For example, taking f = 1, g = 2 and $M = \mathbb{Q}$ in Theorem 4 yields $\mathcal{P}_2(x) \sim Ax/\log x$. In this paper $\delta(M, g)$ will be computed for M cyclotomic (Theorem 4). This result is then used to compute, on GRH, the set D_g of natural numbers $d \geq 1$ such that \mathcal{P}_g is weakly uniformly distributed mod d. In Theorem 2 simple sets S_g are indicated such that $D_g = S_g$. Theorem 4 allows one to prove that $D_g \subseteq S_g$. The work of H. Lenstra [4] is used to prove that $D_g \supseteq S_g$.

In [9] F. Rodier, in connection with a coding-theoretical result involving Dickson polynomials, made the conjecture that

(2)
$$\mathcal{P}_2(x;3,28) + \mathcal{P}_2(x;19,28) + \mathcal{P}_2(x;27,28) \sim \frac{A}{4} \cdot \frac{x}{\log x}.$$

Note that weak uniform distribution mod 28 of \mathcal{P}_2 would imply Rodier's conjecture. In [6] it was shown that, on GRH, $D_2 = \{1, 2, 4\}$, and thus \mathcal{P}_2 is not weakly uniformly distributed mod 28. Moreover, it was shown, on GRH, that the true constant in (2) is 21A/82. Another coding-theoretical application of primitive roots in arithmetic progressions occurs in the theory of perfect arithmetic codes [5].

In Theorem 2, D_g is computed for $g \in G$. Notice that we can uniquely write $g = g_1 g_2^2$, with g_1 a squarefree integer and $g_2 \in \mathbb{Q}_{>0}$. Let h be the largest integer such that g is an hth power. Notice that $g \in G$ implies that h must be odd. THEOREM 2 (GRH). Let $g \in G$, and let h be the largest integer such that g is an hth power. Assume that either $g_1 \neq 21$ or $(h, 21) \neq 7$. Then D_g , the set of natural numbers d such that the set of primes p such that g is a primitive root mod p is weakly uniformly distributed mod d, equals

- (i) $\{2^n : n \ge 0\}$ if $g_1 \equiv 1 \pmod{4}$;
- (ii) $\{1, 2, 4\}$ if $g_1 \equiv 2 \pmod{4}$;
- (iii) $\{1,2\}$ if $g_1 \equiv 3 \pmod{4}$.

In the remaining case $g_1 = 21$ and (h, 21) = 7, we have $D_g = \{2^n 3^m : n, m \ge 0\}$.

For simplicity we call g exceptional if $g_1 = 21$ and (h, 21) = 7 and ordinary otherwise. The following variant of Theorem 2 sheds some light on (i), (ii) and (iii) of Theorem 2:

THEOREM 3 (GRH). Let g and h be as in Theorem 2 and assume that g is ordinary. Then \mathcal{P}_g is weakly uniformly distributed modulo d if and only if for every squarefree $k \geq 1$, $\mathbb{Q}(\zeta_k, g^{1/k}) \cap \mathbb{Q}(\zeta_d) = \mathbb{Q}$.

Let g be exceptional and d be of the form $2^{\alpha}3^{\beta}$ with $\beta \geq 1$. It turns out, on GRH, that \mathcal{P}_g is weakly uniformly distributed mod d. On the other hand, there exist k such that $\mathbb{Q}(\zeta_k, g^{1/k}) \cap \mathbb{Q}(\zeta_d) = \mathbb{Q}(\sqrt{-3})$ (cf. the remark following Lemma 7). Thus the requirement "g is ordinary" in Theorem 3 cannot be dropped.

2. The density of primes $p \equiv 1 \pmod{f}$ having a prescribed primitive root. In this section Theorem 4 will be proved. This result gives, on GRH, for arbitrary $f \geq 1$ the density of primes p such that $p \equiv 1 \pmod{f}$ and moreover a prescribed integer g is a primitive root mod p. Theorem 1 relates this density to the degrees of the fields $M(\zeta_k, g^{1/k})$ with M cyclotomic (namely $M = \mathbb{Q}(\zeta_f)$). These degrees are computed in Lemma 2, making use of the following well known fact from cyclotomy (see e.g. [10, p. 163]).

LEMMA 1. Let $0 \neq a \in \mathbb{Q}$. Write $a = a_1 a_2^2$, with a_1 a squarefree integer and $a_2 \in \mathbb{Q}$. Then the smallest cyclotomic field containing $\mathbb{Q}(\sqrt{a})$ is $\mathbb{Q}(\zeta_{|a_1|})$ if $a_1 \equiv 1 \pmod{4}$ and $\mathbb{Q}(\zeta_{4|a_1|})$ otherwise.

Lemma 1 can also be phrased as: the smallest cyclotomic field containing $\mathbb{Q}(\sqrt{a})$ is $\mathbb{Q}(\zeta_{|\Delta_a|})$, with Δ_a the discriminant of $\mathbb{Q}(\sqrt{a})$.

The next result can be proved by a trivial generalization of an argument given by Hooley [2, pp. 213–214].

LEMMA 2. Let $g \in G$, and let h be the largest positive integer such that g is an hth power. Let Δ denote the discriminant of $\mathbb{Q}(\sqrt{g})$. Suppose that $k \mid r$ and k is squarefree. Put $k_1 = k/(k,h)$ and $n(k,r) = [\mathbb{Q}(\zeta_r, g^{1/k}) : \mathbb{Q}]$. Then

- (i) for k odd, $n(k,r) = k_1 \varphi(r)$;
- (ii) for k even and $\Delta \nmid r$, $n(k,r) = k_1 \varphi(r)$;

(iii) for k even and $\Delta | r, n(k,r) = k_1 \varphi(r)/2$.

PROPOSITION 1. Let $f, h \geq 1$ be integers. Then the function $w : \mathbb{N} \to \mathbb{N}$ defined by

$$w(k) = \frac{k\varphi(\operatorname{lcm}(k, f))}{(k, h)\varphi(f)}$$

is multiplicative.

Proof. For every multiplicative function g and arbitrary integers $a, b \ge 1$, we obviously have $g(a)g(b) = g(\gcd(a, b))g(\operatorname{lcm}(a, b))$. Hence, to finish the proof it is enough to show that $\varphi((k, f))$ is a multiplicative function of k, which is obvious.

THEOREM 4. Let $g \in G$, and let h be the largest integer such that g is an hth power. Let $f \geq 1$ be an arbitrary integer. Let Δ denote the discriminant of $\mathbb{Q}(\sqrt{g})$. Put $b = \Delta/(\Delta, f)$. Let w(k) be as in Proposition 1. Put

$$A(f,h) = \prod_{\substack{p \nmid f \\ p \mid h}} \left(1 - \frac{1}{p-1} \right) \prod_{\substack{p \mid f \\ p \nmid h}} \left(1 - \frac{1}{p} \right) \prod_{\substack{p \nmid f \\ p \nmid h}} \left(1 - \frac{1}{p(p-1)} \right).$$

Let $N_{\mathbb{Q}(\zeta_f)}(g; x)$ denote the number of primes p not exceeding x that split completely in $\mathbb{Q}(\zeta_f)$ and such that g is a primitive root mod p. If (f, h) > 1, then $\delta(\mathbb{Q}(\zeta_f), g) = 0$ and $N_{\mathbb{Q}(\zeta_f)}(g; x)$ is bounded above.

Next assume that (f,h) = 1. Then

(3)
$$\delta(\mathbb{Q}(\zeta_f), g) = \frac{1}{\varphi(f)} \left(1 - \frac{\mu(|b|)}{\prod_{p|b} (w(p) - 1)} \right) \prod_p \left(1 - \frac{1}{w(p)} \right) \\ = \frac{A(f, h)}{\varphi(f)} \left(1 - \frac{\mu(|b|)}{\prod_{p|b, \ p|h} (p - 2) \prod_{p|b, \ p\nmid h} (p^2 - p - 1)} \right)$$

if either $g_1 \equiv 1 \pmod{4}$, or $g_1 \equiv 2 \pmod{4}$ and $8 \mid f$, or $g_1 \equiv 3 \pmod{4}$ and $4 \mid f$. Otherwise

(4)
$$\delta(\mathbb{Q}(\zeta_f),g) = \frac{1}{\varphi(f)} \prod_p \left(1 - \frac{1}{w(p)}\right) = \frac{A(f,h)}{\varphi(f)}.$$

Suppose the Riemann Hypothesis holds for the field $\mathbb{Q}(\zeta_f, \zeta_k, g^{1/k})$ for every squarefree k. Then

$$N_{\mathbb{Q}(\zeta_f)}(g;x) = \delta(\mathbb{Q}(\zeta_f),g)\frac{x}{\log x} + O\left(\frac{x\log\log x}{\log^2 x}\right).$$

Proof. We have to evaluate

$$\delta(\mathbb{Q}(\zeta_f),g) = \sum_{k=1}^{\infty} \frac{\mu(k)}{[\mathbb{Q}(\zeta_{\operatorname{lcm}(k,f)},g^{1/k}):\mathbb{Q}]}$$

From Lemma 2 it follows that

$$\begin{split} \varphi(f)\delta(\mathbb{Q}(\zeta_f),g) &= \sum_{\substack{k=1\\2\nmid k}}^{\infty} \frac{\mu(k)}{w(k)} + \sum_{\substack{k=1\\\Delta\nmid \text{lcm}(2k,f)}}^{\infty} \frac{\mu(2k)}{w(2k)} + 2\sum_{\substack{k=1\\\Delta\mid \text{lcm}(2k,f)}}^{\infty} \frac{\mu(2k)}{w(2k)} \\ &= \sum_{k=1}^{\infty} \frac{\mu(k)}{w(k)} + \sum_{\substack{k=1\\\Delta\mid \text{lcm}(2k,f)}}^{\infty} \frac{\mu(2k)}{w(2k)} = I_1 + I_2. \end{split}$$

I claim that

(5)
$$I_1 = \prod_p \left(1 - \frac{1}{w(p)}\right) \text{ and } I_2 = \frac{\mu(2|b|)}{w(|b|)} \prod_{p \nmid b} \left(1 - \frac{1}{w(p)}\right).$$

Indeed, the arithmetic function w is multiplicative by Proposition 1 and thus, by Euler's identity, $I_1 = \prod_p (1 - 1/w(p))$. Further, if b is even, then $I_2 = \mu(2|b|) = 0$. Next assume that b is odd. Now $\Delta |\operatorname{lcm}(2k, f)$ is equivalent to b | 2k/(2k, f). Since (b, (2k, f)) = 1 and b is odd, b | 2k/(2k, f) is equivalent to b | k. Thus

(6)
$$I_2 = \sum_{\substack{k=1\\b|k}}^{\infty} \frac{\mu(2k)}{w(2k)} = \frac{\mu(2|b|)}{w(2|b|)} \sum_{\substack{k=1\\(k,2b)=1}}^{\infty} \frac{\mu(k)}{w(k)} = \frac{\mu(2|b|)}{w(2|b|)} \prod_{p \nmid 2b} \left(1 - \frac{1}{w(p)}\right).$$

Using the fact that b is odd and w(2) = 2 completes the proof of (5).

Using (5) the proof is now easily completed. We distinguish two subcases: (f, h) > 1 and (f, h) = 1.

(i) (f,h) > 1. Since $g \in G$, h is odd. Since (b, f) | 2 and h is odd, there is an odd prime p_1 such that $p_1 | h, p_1 | f$ and $p_1 \nmid b$. Since $w(p_1) = 1$, it follows that $I_1 = I_2 = 0$ and thus $\delta(\mathbb{Q}(\zeta_f), g) = 0$. Let p be a prime with $p \equiv 1 \pmod{f}$ and $p \nmid g$. Then the order of $g \mod p$ is bounded above by $(p-1)/q_1$, where q_1 is the smallest prime dividing (f,h). Hence $N_{\mathbb{Q}(\zeta_f)}(g;x)$ is bounded above.

(ii) (f,h) = 1. Then w(p) > 1 for every prime p. Adding the product expansions in (5) results, on using the fact that w(p) > 1, in

(7)
$$\delta(\mathbb{Q}(\zeta_f),g) = \frac{1}{\varphi(f)} \left(1 + \frac{\mu(2|b|)}{\prod_{p \mid b} (w(p) - 1)}\right) \prod_p \left(1 - \frac{1}{w(p)}\right).$$

Notice that $\prod_p (1 - 1/w(p)) = A(f, h)$ and that

$$\prod_{p|b} (w(p) - 1) = \prod_{p|b, p|f} (p-1) \prod_{p|b, p\nmid f, p|h} (p-2) \prod_{p|b, p\nmid f, p\nmid h} (p^2 - p - 1).$$

Since (b, f) | 2, the latter identity simplifies to

$$\prod_{p|b} (w(p) - 1) = \prod_{p|b, p|h} (p - 2) \prod_{p|b, p\nmid h} (p^2 - p - 1).$$

Inserting this in (7) we find

$$\delta(\mathbb{Q}(\zeta_f),g) = \frac{A(f,h)}{\varphi(f)} \bigg(1 + \frac{\mu(2|b|)}{\prod_{p|b,\,p|h} (p-2) \prod_{p|b,\,p\nmid h} (p^2-p-1)} \bigg).$$

On invoking Theorem 1, the proof is easily completed. \blacksquare

Let $g \in G$. From [4, Theorem 8.3] it follows that, under GRH, $\delta(\mathbb{Q}(\zeta_f), g) = 0$ if and only if either (f, h) > 1 or $\Delta \mid f$. Notice that this is an easy consequence of Theorem 4. Assume GRH and, moreover, (f, h) = 1. Then the above fact can be reformulated, with the help of Lemma 1, as $\delta(\mathbb{Q}(\zeta_f), g) = 0$ if and only if $\sqrt{g} \in \mathbb{Q}(\zeta_f)$. This is a particular case of the following result:

THEOREM 5 (GRH). Let $g \in G$, and let h be the largest integer such that g is an hth power. Let M be an abelian number field of conductor f. Let $N_M(g)$ denote the set of primes $p \in \mathcal{P}_g$ such that p splits completely in M. Suppose that (f, h) = 1. Then $\delta(M, g) = 0$ if and only if $\sqrt{g} \in M$. Moreover, if $N_M(g)$ is infinite, then $\delta(M, g) > 0$.

We will deduce Theorem 5 from a result of Lenstra [4, Theorem 4.6], which in this context simplifies to:

THEOREM 6. Let $g \in G$ and $M : \mathbb{Q}$ be Galois. Let $\pi = \prod_{l|h, l \text{ prime}} l$, where h is the largest integer such that g is an hth power. Then if $N_M(g)$ is infinite, there exists $\sigma \in \text{Gal}(M(\zeta_{\pi})/\mathbb{Q})$ with $(\sigma|_M) = \text{id}_M$ and, for every prime l such that $\mathbb{Q}(\zeta_l, g^{1/l}) \subseteq M(\zeta_{\pi}), (\sigma|_{\mathbb{Q}(\zeta_l, g^{1/l})}) \neq \text{id}_{\mathbb{Q}(\zeta_l, g^{1/l})}.$ Conversely, if such a σ exists and GRH is true, then $N_M(g)$ is infinite and $\delta(M, g) > 0$.

In addition we will make use of:

LEMMA 3. Let $\mathbb{Q} \not\subseteq \mathbb{Q}(\sqrt{d}) \subseteq \mathbb{Q}(\zeta_n)$ be a quadratic field of discriminant Δ_d . Then there exists $\sigma \in \operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})$ such that $(\sigma|_{\mathbb{Q}(\zeta_l)}) \neq \operatorname{id}_{\mathbb{Q}(\zeta_l)}$ for every odd prime l dividing n and, moreover, $\sigma(\sqrt{d}) = -\sqrt{d}$.

Proof. Let $\sigma_a \in \operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})$ with $\sigma_a := \zeta_n^a$ and (a, n) = 1. It is well known that $\sigma(\sqrt{d}) = \sqrt{d}$ if and only if $(\Delta_d/a) = 1$, where (Δ_d/a) denotes the Kronecker symbol. Thus the problem reduces to showing that there exists $1 \le a \le n$, (a, n) = 1 with $a \ne 1 \pmod{l}$ for every odd prime l dividing n and $(\Delta_d/a) = -1$. To prove that such an a exists is left to the reader. (If $\Delta_d < 0$, then a = n - 1 is such an a.)

Proof of Theorem 5. We first prove the "if and only if" part of the assertion.

 \Leftarrow . If $\sqrt{g} \in M$, then there does not exist a σ such that $(\sigma|_M) = \mathrm{id}_M$ and $(\sigma|_{\mathbb{Q}(\zeta_2,\sqrt{g})}) \neq \mathrm{id}_{\mathbb{Q}(\zeta_2,\sqrt{g})}$, thus, by Theorem 6, $\delta(M,g) = 0$.

⇒. If $l \nmid h$ and l is odd, then $\mathbb{Q}(g^{1/l})$ is not normal and hence $\mathbb{Q}(\zeta_l, g^{1/l}) \not\subseteq M(\zeta_{\pi})$. If $l \mid h$, then $\mathbb{Q}(\zeta_l, g^{1/l}) = \mathbb{Q}(\zeta_l) \subseteq M(\zeta_{\pi})$. Thus the l such that $\mathbb{Q}(\zeta_l, g^{1/l}) \subseteq M(\zeta_{\pi})$ are precisely the prime divisors of π and possibly 2. The (easier) case where 2 does not occur is left to the reader, so we may assume that $\sqrt{g} \in M(\zeta_{\pi})$. Notice that we are done if we show that if $\sqrt{g} \notin M$, then there exists $\sigma \in \operatorname{Gal}(M(\zeta_{\pi})/\mathbb{Q})$ such that $\sigma(\sqrt{g}) = -\sqrt{g}$ and $(\sigma|_{\mathbb{Q}(\zeta_l)}) \neq \operatorname{id}_{\mathbb{Q}(\zeta_l)}$ for every prime divisor l of π .

Since by assumption $\sqrt{g} \in M(\zeta_{\pi})$ and $M \subseteq \mathbb{Q}(\zeta_{f}), \sqrt{g} \in \mathbb{Q}(\zeta_{f}, \zeta_{\pi})$. Put $(\pi, \Delta)^{*} = (-1)^{((\pi, \Delta) - 1)/2}(\pi, \Delta)$. As π is odd, we see that $\sqrt{(\pi, \Delta)^{*}} \in \mathbb{Q}(\zeta_{\pi})$ and, moreover, $\sqrt{(\pi, \Delta)^{*}\Delta} \in \mathbb{Q}(\zeta_{f})$. We distinguish two cases:

(i) $[\mathbb{Q}(\sqrt{(\pi, \Delta)^*}) : \mathbb{Q}] = 2$. Let $\sigma_1 = \mathrm{id} \in \mathrm{Gal}(\mathbb{Q}(\zeta_f)/\mathbb{Q})$. Let σ_2 be an automorphism whose existence is asserted in Lemma 3 (with $n = \pi$ and $d = (\pi, \Delta)^*$). Since by assumption (f, h) = 1, $\mathbb{Q}(\zeta_f)$ and $\mathbb{Q}(\zeta_\pi)$ are linearly disjoint and hence the automorphisms σ_1 and σ_2 can be lifted to an automorphism of $\mathbb{Q}(\zeta_f, \zeta_\pi)$. Take its restriction to $M(\zeta_\pi)$. This automorphism has all the required properties.

(ii) $[\mathbb{Q}(\sqrt{(\pi, \Delta)^*}) : \mathbb{Q}] = 1$. In this case $\sqrt{g} \in \mathbb{Q}(\zeta_f)$. Let $\sigma_1 \neq \text{id}$ be the automorphism of $M(\sqrt{g})$ such that $(\sigma_1|_M) = \text{id}|_M$. Since by assumption $\sqrt{g} \notin M, \sigma_1$ exists. Let $\sigma_2 \in \text{Gal}(\mathbb{Q}(\zeta_\pi)/\mathbb{Q})$ be defined by $\sigma_2(\zeta_\pi) = \zeta_\pi^{-1}$. Since $M(\sqrt{g})$ and $\mathbb{Q}(\zeta_\pi)$ are linearly disjoint, σ_1 and σ_2 can be lifted to an automorphism of $\text{Gal}(M(\zeta_\pi)/\mathbb{Q})$. Notice that this automorphism has all the required properties.

The assertion regarding $N_M(g)$ is now easily deduced on using the latter part of Theorem 6.

We demonstrate Theorem 5 by determining the set \mathcal{L} of odd primes lsuch that there are infinitely many primes p satisfying $p \equiv \pm 1 \pmod{l}$ with l a primitive root mod p. Then we have to put $M = \mathbb{Q}(\zeta_l + \zeta_l^{-1})$ and g = lin Theorem 5. Since $\sqrt{l} \in \mathbb{R}$ and M is the maximal real subfield of $\mathbb{Q}(\zeta_l)$, we find that $\sqrt{l} \in M$ if and only if $\sqrt{l} \in \mathbb{Q}(\zeta_l)$. Thus, using Lemma 1, we see that on GRH, $\mathcal{L} = \{l : l \equiv 3 \pmod{4}\}$. Unconditionally it can be shown [8, Theorem 3.2] that \mathcal{L} equals $\{l : l \equiv 3 \pmod{4}\}$ with at most two primes excluded. The fact that \mathcal{L} is non-empty is used in A. Reznikov's [8] proof of a weaker version of a conjecture of Lubotzky and Shalev on three-manifolds. P. Moree

3. Proof of the main result. In this section Theorem 2 will be proved. First we carry out some preparations.

The next two lemmas are well known (cf. [3]).

LEMMA 4. Let M be a number field, $\kappa \in M$ and let $n \geq 1$ be an odd integer. If $[M(\zeta_n, \kappa^{1/n}) : M] = n\varphi(n)$, then $M(\zeta_n) : M$ is the maximal abelian subextension of $M(\zeta_n, \kappa^{1/n}) : M$.

Proof. Let

$$\mathcal{M}_n = \left\{ \begin{pmatrix} 1 & 0 \\ r & s \end{pmatrix} : r \in \mathbb{Z}/n\mathbb{Z}, \ s \in (\mathbb{Z}/n\mathbb{Z})^* \right\}.$$

One easily sees that commutators of \mathcal{M}_n are of the form $\begin{pmatrix} 1 & 0 \\ \star & 1 \end{pmatrix}$. On noting that the commutator of $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ equals $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, it is seen that \mathcal{M}'_n , the commutator subgroup of \mathcal{M}_n , equals $\{\begin{pmatrix} 1 & 0 \\ r & 1 \end{pmatrix} : r \in \mathbb{Z}/n\mathbb{Z}\}$. It is enough to show that if the condition of the lemma is satisfied, then $\operatorname{Gal}(M(\zeta_n, \kappa^{1/n}) :$ $M) \cong \mathcal{M}_n$. For then the Galois group of the maximal abelian subextension of $M(\zeta_n, \kappa^{1/n}) : M$ is isomorphic to $\mathcal{M}_n/\mathcal{M}'_n \cong (\mathbb{Z}/n\mathbb{Z})^*$. Since the maximal abelian subextension of $M(\zeta_n, \kappa^{1/n}) : M$ contains $M(\zeta_n) : M$ and the condition of the lemma implies that the latter has Galois group $(\mathbb{Z}/n\mathbb{Z})^*$, we are done.

Let α be a root of $x^n - \kappa$. For any $\sigma \in \operatorname{Gal}(M(\zeta_n, \kappa^{1/n}) : M)$, there exist $l(\sigma) \in (\mathbb{Z}/n\mathbb{Z})$ and $m(\sigma) \in (\mathbb{Z}/n\mathbb{Z})^*$, such that $\sigma(\alpha) = \zeta_n^{l(\sigma)} \alpha$ and $\sigma(\zeta_n) = \zeta_n^{m(\sigma)}$. Now define a map $\psi \mapsto \begin{pmatrix} 1 & 0 \\ l(\sigma) & m(\sigma) \end{pmatrix}$. One checks that it is a monomorphism of $\operatorname{Gal}(M(\zeta_n, \kappa^{1/n}) : M)$ into \mathcal{M}_n . Since $|\mathcal{M}_n| = n\varphi(n)$ and, by assumption, $|\operatorname{Gal}(M(\zeta_n, \kappa^{1/n}) : M)| = n\varphi(n)$, ψ is actually an isomorphism.

LEMMA 5. Let $g \in G$ and k be squarefree. Then the maximal abelian subextension of $\mathbb{Q}(\zeta_k, g^{1/k})$ is $\mathbb{Q}(\zeta_k)$ if k is odd and $\mathbb{Q}(\zeta_k, \sqrt{g})$ otherwise.

Proof. Write $g = \gamma_1^h, \ \gamma_1 \in \mathbb{Q}$.

(i) k is odd. By Lemmas 2 and 4, $\mathbb{Q}(\zeta_k)$ is the maximal abelian subextension of $\mathbb{Q}(\zeta_k, \gamma_1^{1/k})$. Since $\mathbb{Q}(\zeta_k) \subseteq \mathbb{Q}(\zeta_k, g^{1/k}) \subseteq \mathbb{Q}(\zeta_k, \gamma_1^{1/k})$, we are done in this case.

(ii) k is even and $\sqrt{\gamma_1} \notin \mathbb{Q}(\zeta_k)$. Taking $M = \mathbb{Q}(\sqrt{\gamma_1})$, $\kappa = \sqrt{\gamma_1}$ and n = k/2 in Lemma 4, we find, on using Lemma 2, that the maximal abelian subextension of $\mathbb{Q}(\zeta_n, \kappa^{1/n}) : \mathbb{Q}(\sqrt{\gamma_1})$ equals $\mathbb{Q}(\zeta_n, \sqrt{\gamma_1}) = \mathbb{Q}(\zeta_k, \sqrt{g})$. Since $\mathbb{Q}(\zeta_k, \sqrt{g}) : \mathbb{Q}$ is abelian and

$$\mathbb{Q}(\zeta_k, \sqrt{g}) \subseteq \mathbb{Q}(\zeta_k, g^{1/k}) \subseteq \mathbb{Q}(\zeta_k, \gamma_1^{1/k}) = \mathbb{Q}(\zeta_n, \kappa^{1/n}),$$

we are done.

(iii) k is even and $\sqrt{\gamma_1} \in \mathbb{Q}(\zeta_k)$. From Lemma 2 it follows that $\mathbb{Q}(\zeta_k, g^{1/k}) = \mathbb{Q}(\zeta_{k/2}, g^{2/k})$. Since by assumption $4 \nmid k$, we are thus reduced to case (i).

LEMMA 6. Let $g \in G$. If $g_1 \equiv 1 \pmod{4}$ and k is squarefree then, for $n \geq 0$, $\mathbb{Q}(\zeta_k, g^{1/k}) \cap \mathbb{Q}(\zeta_{2^n}) = \mathbb{Q}$.

Proof. The intersection of the two fields under consideration must be abelian and is contained in $\mathbb{Q}(\zeta_k, \sqrt{g})$ by Lemma 5. Let d_K denote the discriminant over \mathbb{Q} of the number field K. Since the prime divisors of $d_{L_1 \cdot L_2}$ all divide $d_{L_1} d_{L_2}$, we see that $d_{\mathbb{Q}(\zeta_k, \sqrt{g})}$ is odd, on noting that $d_{\mathbb{Q}(\sqrt{g})} = g_1$, $d_{\mathbb{Q}(\zeta_k)} = d_{\mathbb{Q}(\zeta_{k/2})}$ for $k \equiv 2 \pmod{4}$ and that $d_{\mathbb{Q}(\zeta_k)}$ is not divisible by primes not dividing k. Thus 2 is not ramified at $\mathbb{Q}(\zeta_k, \sqrt{g})$. On the other hand, every subfield of degree > 1 of $\mathbb{Q}(\zeta_{2^n})$ is ramified at 2.

An integer is called *y*-smooth if all its prime divisors are $\leq y$.

LEMMA 7. Let d be 3-smooth, but not 2-smooth. Let $g \in G$ be such that $g_1 = 21$ and (h, 21) = 7. Let $k \geq 1$ be squarefree. Then $\mathbb{Q}(\zeta_k, g^{1/k}) \cap \mathbb{Q}(\zeta_d) \subseteq \mathbb{Q}(\sqrt{-3})$.

Proof. Using Lemma 5 it is seen that $\mathbb{Q}(\zeta_k, g^{1/k}) \cap \mathbb{Q}(\zeta_d) \subseteq \mathbb{Q}(\zeta_k, \sqrt{21})$ $\cap \mathbb{Q}(\zeta_d)$. Let $3^{\alpha} || d$. Notice that $\mathbb{Q}(\zeta_k, \sqrt{g})$ is not ramified at 2 (cf. the proof of the previous lemma). Thus $\mathbb{Q}(\zeta_k, \sqrt{21}) \cap \mathbb{Q}(\zeta_d) \subseteq \mathbb{Q}(\zeta_k, \sqrt{21}) \cap \mathbb{Q}(\zeta_{3^{\alpha}})$. Now

$$\mathbb{Q}(\zeta_k, \sqrt{21}) \cap \mathbb{Q}(\zeta_{3^{\alpha}}) \subseteq \mathbb{Q}(\zeta_{\operatorname{lcm}(k, 21)}) \cap \mathbb{Q}(\zeta_{3^{\alpha}}) = \mathbb{Q}(\zeta_3),$$

where the latter equality follows on noticing that $(\operatorname{lcm}(k, 21), 3^{\alpha}) = 3$.

REMARK. Actually under the conditions of Lemma 7, we have $\mathbb{Q}(\zeta_k, g^{1/k})$ $\cap \mathbb{Q}(\zeta_d) = \mathbb{Q}(\sqrt{-3})$ if $3 \mid k$ or $14 \mid k$ and \mathbb{Q} otherwise, but this will not be needed in the sequel.

LEMMA 8. Let $g \in G$ and l be an odd prime. Then $\delta(\mathbb{Q}(\zeta_l), g) = \delta(\mathbb{Q}, g)/\varphi(l)$ if and only if g is exceptional and l = 3.

COROLLARY 1 (GRH). Let $g \in G$ and l be an odd prime. Then \mathcal{P}_g is weakly uniformly distributed mod l if and only if g is exceptional and l = 3.

Proof (of Lemma 8). Put $P(\alpha, \beta) = \prod_{p \mid \alpha, p \mid \beta} (p-2) \prod_{p \mid \alpha, p \nmid \beta} (p^2 - p - 1)$. ⇐. By Theorem 4.

⇒. Notice that $l \nmid h$, for otherwise, by Theorem 4, $\delta(\mathbb{Q}(\zeta_l), g) = 0$, whereas $\delta(\mathbb{Q}, g) > 0$. Notice also that $g_1 \equiv 1 \pmod{4}$, for otherwise $\delta(\mathbb{Q}(\zeta_l), g)$ = $\delta(\mathbb{Q}, g)/\varphi(l)$ implies, by Theorem 4, that A(l, h) = A(1, h) and hence $1 - (l-2)/(l^2 - l - 1) = 1$, which is impossible. Then, since $g_1 \equiv 1 \pmod{4}$, $l \nmid h$ and $\Delta = g_1$, the equality $\delta(\mathbb{Q}(\zeta_l), g) = \delta(\mathbb{Q}, g)/\varphi(l)$ implies, by Theorem 4,

(8)
$$\left(1 - \frac{\mu(|g_1|)}{P(g_1,h)}\right) = \left(1 - \frac{l-2}{l^2 - l - 1}\right) \left(1 - \frac{\mu(|b|)}{P(b,h)}\right).$$

Now *l* must divide g_1 , for otherwise $b = g_1$ and hence $1 - (l-2)/(l^2 - l - 1) = 1$, which is impossible. Hence $b = g_1/l$ and thus (8) becomes

$$\left(1 - \frac{\mu(|g_1|)}{P(g_1,h)}\right) = \left(1 - \frac{l-2}{l^2 - l - 1}\right) \left(1 + \frac{\mu(|g_1|)(l^2 - l - 1)}{P(g_1,h)}\right)$$

Notice that $\mu(|g_1|) = 1$. We find $P(g_1, h) = (l^2 - l - 1)(l^2 - 2l + 2)/(l - 2)$. Since $((l^2 - l - 1)(l^2 - 2l + 2), l - 2)$ divides 2 and $P(g_1, h)$ must be an integer, it follows that l = 3 and hence $P(g_1, h) = 25$. Thus g is exceptional and l = 3.

Proof of Theorem 2. Assume that g satisfies the assumptions of Theorem 2 and, moreover, assume GRH. Then by Theorem 4 with f = 1 it follows that $\{1,2\} \subseteq D_g$. If $d \in D_g$ and δ divides d, then $\delta \in D_g$.

First consider the case where g is ordinary. Then this observation together with Corollary 1 shows that $D_g \subseteq \{2^n : n \ge 0\}$. Suppose that $g_1 \equiv 3 \pmod{4}$. Then Theorem 4 shows that \mathcal{P}_g is not weakly uniformly distributed mod 4. Thus in this case $D_g = \{1, 2\}$. If $g_1 \not\equiv 3 \pmod{4}$, then it is easy to see, by Theorem 4 again, that $4 \in D_g$. If $g_1 \equiv 2 \pmod{4}$ then Theorem 4 again yields that \mathcal{P}_g is not weakly uniformly distributed mod 8. Thus in this case $D_g = \{1, 2, 4\}$. Finally assume that $g_1 \equiv 1 \pmod{4}$. As we have seen, $D_g \subseteq \{2^n : n \ge 0\}$. Theorem 4 shows that $\delta(\mathbb{Q}(\zeta_{2^n}), g) = \delta(\mathbb{Q}, g)/\varphi(2^n)$. This is consistent with weak uniform distribution mod 2^n . In fact, using a result of Lenstra [4], we will show that \mathcal{P}_g is weakly uniformly distributed mod 2^n for every $n \ge 3$. This then completes the proof in the case where g is ordinary.

Let a and d be coprime. The set of primes p such that $p \equiv a \pmod{d}$, $p \nmid g$, and g is a primitive root mod p, equals $M = M(\mathbb{Q}, \mathbb{Q}(\zeta_d), \sigma_a, \langle g \rangle, 1)$, where we used Lenstra's notation. Here σ_a denotes the automorphism of $\operatorname{Gal}(\mathbb{Q}(\zeta_d)/\mathbb{Q})$ determined by $\sigma_a(\zeta_d) = \zeta_d^a$. Under GRH the natural density δ_a , of the set M is, by [4, (2.15)], equal to

(9)
$$\delta_a = \sum_{k=1}^{\infty} \frac{\mu(k)c_a(k)}{\left[\mathbb{Q}(\zeta_d, \zeta_k, g^{1/k}) : \mathbb{Q}\right]}$$

where $c_a(k) = 1$ if σ_a fixes $\mathbb{Q}(\zeta_k, g^{1/k}) \cap \mathbb{Q}(\zeta_d)$ pointwise and $c_a(k) = 0$ otherwise. In case $g_1 \equiv 1 \pmod{4}$ and $d = 2^n$, by Lemma 6 the latter intersection of fields equals \mathbb{Q} (at least when k is squarefree) and hence $c_a(k) = 1$ for every squarefree k. Thus $\delta_a = \delta_1$. This and $\delta_1 = \delta(\mathbb{Q}(\zeta_{2^n}), g) > 0$, which follows by Theorem 4 (or alternatively Theorem 5), yield that \mathcal{P}_g is weakly uniformly distributed mod 2^n .

It remains to deal with the case where g is exceptional. By Corollary 1, a necessary condition for \mathcal{P}_q to be weakly uniformly distributed mod d is that

d is 3-smooth. The proof of the theorem will be completed once we show that this condition is also sufficient. The analysis of the case $g_1 \equiv 1 \pmod{4}$ applies in the exceptional case as well and we find that for every 2-smooth integer *d*, \mathcal{P}_g is weakly uniformly distributed mod *d*. Next assume that *d* is 3-smooth, but not 2-smooth. Let *a* be an integer such that (a, 6) = 1. By Lemma 7 it follows that $\mathbb{Q}(\zeta_k, g^{1/k}) \cap \mathbb{Q}(\zeta_d) \subseteq \mathbb{Q}(\sqrt{-3})$ for squarefree *k*. Thus, by (9), there exist $\tilde{\delta}_1$ and $\tilde{\delta}_{-1}$ such that $\delta_a = \tilde{\delta}_1$ if σ_a fixes $\mathbb{Q}(\sqrt{-3})$ (that is, if $a \equiv 1 \pmod{3}$) and $\delta_a = \tilde{\delta}_{-1}$ otherwise. Since, by Corollary 1, \mathcal{P}_g is weakly uniformly distributed mod 3, we see that

$$\sum_{\substack{1 \le a \le d, (a,d)=1\\a \equiv 1 \pmod{3}}} \delta_a = \sum_{\substack{1 \le a \le d, (a,d)=1\\a \equiv -1 \pmod{3}}} \delta_a$$

that is, $\varphi(d)\delta_1/2 = \varphi(d)\delta_{-1}/2$. Since $\delta_1 > 0$ (by Theorem 5 for example), it follows that \mathcal{P}_g is weakly uniformly distributed mod d.

REMARK 1. In the exceptional case the only integers that can be shown to be in D_g by appealing to Theorem 4 only, are 1, 2, 3, 4, 6 and 12.

REMARK 2. It is instructive to try to apply the argument that showed that \mathcal{P}_g is weakly uniformly distributed modulo 2-smooth numbers in case $g_1 \equiv 1 \pmod{4}$ to g satisfying $g_1 \not\equiv 1 \pmod{4}$. Then we already know that \mathcal{P}_g is not weakly uniformly distributed mod 2^n for n large enough. Thus $c_a(k) \neq 1$ for some a and squarefree k, that is, Lemma 6 must be false in this case. Indeed, if $g_1 \equiv 3 \pmod{4}$, then $\mathbb{Q}(\zeta_{2|g_1|}, g^{1/(2|g_1|)}) \cap \mathbb{Q}(\zeta_{2^n}) \supseteq \mathbb{Q}(i)$ for $n \geq 2$. If $g_1 \equiv 2 \pmod{4}$ then, for $n \geq 3$, $\mathbb{Q}(\zeta_{|g_1|}, g^{1/|g_1|}) \cap \mathbb{Q}(\zeta_{2^n})$ contains $\mathbb{Q}(\sqrt{2})$ (respectively $\mathbb{Q}(\sqrt{-2})$) if $g_1/2 \equiv 1 \pmod{4}$ (respectively $g_1/2 \equiv 3 \pmod{4}$).

The next lemma together with Theorem 2 immediately implies Theorem 3.

LEMMA 9. Let $d \ge 1$ and $g \in G$. We have $\mathbb{Q}(\zeta_k, g^{1/k}) \cap \mathbb{Q}(\zeta_d) = \mathbb{Q}$ for every squarefree k if and only if (i), (ii) or (iii) of Theorem 2 is satisfied.

Proof. ⇒. Suppose *d* contains an odd prime factor, *p*. Then $\mathbb{Q}(\zeta_p) \subseteq \mathbb{Q}(\zeta_p, g^{1/p}) \cap \mathbb{Q}(\zeta_d)$ and thus $d = 2^n$ for some $n \ge 0$. Suppose that $g_1 \equiv 2 \pmod{4}$. We have to show that $n \le 2$. So assume that $n \ge 3$. Then $\mathbb{Q}(\zeta_{|g_1|}, g^{1/|g_1|}) \cap \mathbb{Q}(\zeta_{2^n})$ contains $\mathbb{Q}(\sqrt{2})$ (respectively $\mathbb{Q}(\sqrt{-2})$) if $g_1/2 \equiv 1 \pmod{4}$ (respectively $g_1/2 \equiv 3 \pmod{4}$). Finally suppose that $g_1 \equiv 3 \pmod{4}$. We have to show that $n \le 1$. So assume that $n \ge 2$. Notice that then $\mathbb{Q}(i) \subseteq \mathbb{Q}(\zeta_{2|g_1|}, g^{1/2|g_1|}) \cap \mathbb{Q}(\zeta_{2^n})$.

⇐. If $g_1 \equiv 1 \pmod{4}$, then this follows by Lemma 6. The other cases, except $g_1 \equiv 2 \pmod{4}$ and d = 4, are trivial. It remains to show that $i \notin \mathbb{Q}(\zeta_k, g^{1/k})$ for k squarefree and $g_1 \equiv 2 \pmod{4}$. A way of showing that $i \notin \mathbb{Q}(\zeta_k, g^{1/k})$ is to show that $[\mathbb{Q}(\zeta_{\mathrm{lcm}(4,k)}, g^{1/k}) : \mathbb{Q}] = 2[\mathbb{Q}(\zeta_k, g^{1/k}) : \mathbb{Q}]$. This now follows by computing these degrees using Lemma 2. ■

4. Conclusion. Let $g \in G$ and assume GRH. We have seen that to a large extent the equidistribution of the primes of \mathcal{P}_g over the residue classes mod d can be understood already from knowing whether or not the progression 1 (mod d) gets its fair share of primes from \mathcal{P}_g . From Lemma 8 and Corollary 1, one sees that in case d is an odd prime it is even true that the progression 1 (mod d) gets its fair share if and only if all primitive progressions get their fair share. A question that thus naturally arises is whether this holds true for arbitrary d (if so this would be rather surprising). Despite a considerable computational effort (together with Karim Belabas), I was not able to find a d for which this is false. On the other hand, I obtained only partial non-existence results for such d.

The author thanks K. Belabas, T. Kleinjung, F. Lemmermeyer, A. Schinzel and P. Stevenhagen for helpful (e-mail) discussions and the referee for his comments (which led to a shortening of some of the proofs). This research was carried out at the Max-Planck-Institut in Bonn, the pleasant research atmosphere of which is gratefully acknowledged.

References

- R. Heath-Brown, A remark on Artin's conjecture, Quart. J. Math. Oxford Ser. (2) 37 (1986), 27–38.
- [2] C. Hooley, Artin's conjecture for primitive roots, J. Reine Angew. Math. 225 (1967), 209-220.
- [3] E. T. Jacobson and W. Y. Vélez, The Galois group of a radical extension of the rationals, Manuscripta Math. 67 (1990), 271–284.
- H. W. Lenstra, Jr., On Artin's conjecture and Euclid's algorithm in global fields, Invent. Math. 42 (1977), 201–224.
- [5] —, Perfect arithmetic codes, Sém. Delange–Pisot–Poitou, 19e année 1978/79, Théorie des nombres, Fasc. 1, Exp. 15, 14 pp.
- [6] P. Moree, On a conjecture of Rodier on primitive roots, Abh. Math. Sem. Univ. Hamburg 67 (1997), 165–171.
- [7] W. Narkiewicz, Uniform Distribution of Sequences of Integers in Residue Classes, Lecture Notes in Math. 1087, Springer, 1984.
- [8] A. Reznikov and P. Moree, Three-manifold subgroup growth, homology of coverings and simplicial volume, Asian J. Math. 1 (1997), 764-768.

- [9] F. Rodier, Estimation asymptotique de la distance minimale du dual des codes BCH et polynômes de Dickson, Discrete Math. 149 (1996), 205-221.
- [10] E. Weiss, Algebraic Number Theory, New York Univ. Press, New York, 1963.

Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 53225 Bonn, Germany E-mail: moree@mpim-bonn.mpg.de Present address: Faculteit WINS Universiteit van Amsterdam Plantage Muidergracht 24 1018 TV Amsterdam, The Netherlands E-mail: moree@wins.uva.nl

Received on 7.4.1997 and in revised form on 3.12.1998 (3160)