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1. Introduction. If S is any set of prime numbers, denote by S(x) the
number of primes in S not exceeding x. For given integers a and d, denote
by S(x; a, d) the number of primes in S not exceeding x that are congruent
to a modulo d. We say that S is weakly uniformly distributed mod d if S is
infinite and for every a coprime to d,

S(x; a, d) ∼ S(x)
ϕ(d)

,

where ϕ(d) denotes Euler’s totient function. In case S is infinite the progres-
sions a (mod d) such that the latter asymptotic equivalence holds are said
to get their fair share of primes from S. Thus S is weakly uniformly dis-
tributed mod d if and only if all the progressions mod d get their fair share
of primes from S. W. Narkiewicz [7] has written a nice survey on the state
of knowledge regarding the (weak) uniform distribution of many important
arithmetical sequences.

In this paper the weak uniform distribution of a class of sequences, ap-
parently not considered in this light before, will be investigated. Let G be
the set of non-zero rational numbers g such that g 6= −1 and g is not a
square of a rational number. Let Pg denote the set of primes p such that
g is a primitive root modulo p. Clearly a necessary condition for Pg to be
infinite is that g ∈ G. That this is also a sufficient condition was conjectured
by Emil Artin in 1927 and is called Artin’s primitive root conjecture. There
is no value of g for which Pg is known to be infinite. Presently the best
unconditional result on Artin’s conjecture is due to R. Heath-Brown [1].
Heath-Brown’s result implies that there are at most two primes q for which
Pq is finite. Assuming GRH, C. Hooley [2] proved in 1967 a quantitative
version of Artin’s conjecture (Theorem 4 below with f = 1 and g ∈ G ∩ Z).
In this note we will make use of the following straightforward generalization
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10 P. Moree

of Hooley’s result. As usual, µ and ζn denote the Möbius function and a
primitive root of unity of order n, respectively.

Theorem 1 [4]. Let M be Galois and g ∈ G. Suppose the Riemann
Hypothesis holds for the fields M(ζk, g1/k) for every squarefree k. Then
NM (g;x), the number of primes p not exceeding x that split completely in
M and such that g is a primitive root mod p, satisfies

(1) NM (g;x) =
( ∞∑

k=1

µ(k)
[M(ζk, g1/k) : Q]

)
x

log x
+O

(
x log log x

log2 x

)
.

For g 6= −1, 0, 1 define

δ(M, g) :=
∞∑

k=1

µ(k)
[M(ζk, g1/k) : Q]

.

(Since [M(ζk, g1/k) : Q] � kϕ(k), the series is seen to converge, even ab-
solutely, and hence δ(M, g) is well defined.) Hooley computed δ(Q, g) for
g ∈ G ∩ Z. It turns out that δ(Q, g) 6= 0 for such g and thus Artin’s conjec-
ture holds true, on GRH. In particular δ(Q, g) is a rational number times

A =
∏
p

(
1− 1

p(p− 1)

)
(≈ .3739558),

the so-called Artin constant . For example, taking f = 1, g = 2 and M = Q in
Theorem 4 yields P2(x) ∼ Ax/log x. In this paper δ(M, g) will be computed
forM cyclotomic (Theorem 4). This result is then used to compute, on GRH,
the set Dg of natural numbers d ≥ 1 such that Pg is weakly uniformly
distributed mod d. In Theorem 2 simple sets Sg are indicated such that
Dg = Sg. Theorem 4 allows one to prove that Dg ⊆ Sg. The work of H.
Lenstra [4] is used to prove that Dg ⊇ Sg.

In [9] F. Rodier, in connection with a coding-theoretical result involving
Dickson polynomials, made the conjecture that

(2) P2(x; 3, 28) + P2(x; 19, 28) + P2(x; 27, 28) ∼ A

4
· x

log x
.

Note that weak uniform distribution mod 28 of P2 would imply Rodier’s
conjecture. In [6] it was shown that, on GRH, D2 = {1, 2, 4}, and thus P2

is not weakly uniformly distributed mod 28. Moreover, it was shown, on
GRH, that the true constant in (2) is 21A/82. Another coding-theoretical
application of primitive roots in arithmetic progressions occurs in the theory
of perfect arithmetic codes [5].

In Theorem 2, Dg is computed for g ∈ G. Notice that we can uniquely
write g = g1g

2
2 , with g1 a squarefree integer and g2 ∈ Q>0. Let h be the

largest integer such that g is an hth power. Notice that g ∈ G implies that
h must be odd.
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Theorem 2 (GRH). Let g ∈ G, and let h be the largest integer such that
g is an hth power. Assume that either g1 6= 21 or (h, 21) 6= 7. Then Dg,
the set of natural numbers d such that the set of primes p such that g is a
primitive root mod p is weakly uniformly distributed mod d, equals

(i) {2n : n ≥ 0} if g1 ≡ 1 (mod 4);
(ii) {1, 2, 4} if g1 ≡ 2 (mod 4);

(iii) {1, 2} if g1 ≡ 3 (mod 4).

In the remaining case g1 = 21 and (h, 21) = 7, we have Dg = {2n3m :
n,m ≥ 0}.

For simplicity we call g exceptional if g1 = 21 and (h, 21) = 7 and
ordinary otherwise. The following variant of Theorem 2 sheds some light
on (i), (ii) and (iii) of Theorem 2:

Theorem 3 (GRH). Let g and h be as in Theorem 2 and assume that
g is ordinary. Then Pg is weakly uniformly distributed modulo d if and only
if for every squarefree k ≥ 1, Q(ζk, g1/k) ∩Q(ζd) = Q.

Let g be exceptional and d be of the form 2α3β with β ≥ 1. It turns
out, on GRH, that Pg is weakly uniformly distributed mod d. On the other
hand, there exist k such that Q(ζk, g1/k)∩Q(ζd) = Q(

√−3) (cf. the remark
following Lemma 7). Thus the requirement “g is ordinary” in Theorem 3
cannot be dropped.

2. The density of primes p ≡ 1 (mod f) having a prescribed
primitive root. In this section Theorem 4 will be proved. This result gives,
on GRH, for arbitrary f ≥ 1 the density of primes p such that p ≡ 1 (mod f)
and moreover a prescribed integer g is a primitive root mod p. Theorem 1
relates this density to the degrees of the fieldsM(ζk, g1/k) withM cyclotomic
(namely M = Q(ζf )). These degrees are computed in Lemma 2, making use
of the following well known fact from cyclotomy (see e.g. [10, p. 163]).

Lemma 1. Let 0 6= a ∈ Q. Write a = a1a
2
2, with a1 a squarefree integer

and a2 ∈ Q. Then the smallest cyclotomic field containing Q(
√
a) is Q(ζ|a1|)

if a1 ≡ 1 (mod 4) and Q(ζ4|a1|) otherwise.

Lemma 1 can also be phrased as: the smallest cyclotomic field containing
Q(
√
a) is Q(ζ|∆a|), with ∆a the discriminant of Q(

√
a).

The next result can be proved by a trivial generalization of an argument
given by Hooley [2, pp. 213–214].

Lemma 2. Let g ∈ G, and let h be the largest positive integer such that
g is an hth power. Let ∆ denote the discriminant of Q(

√
g). Suppose that

k | r and k is squarefree. Put k1 = k/(k, h) and n(k, r) = [Q(ζr, g1/k) : Q].
Then



12 P. Moree

(i) for k odd , n(k, r) = k1ϕ(r);
(ii) for k even and ∆ - r, n(k, r) = k1ϕ(r);

(iii) for k even and ∆ | r, n(k, r) = k1ϕ(r)/2.

Proposition 1. Let f, h ≥ 1 be integers. Then the function w : N→ N
defined by

w(k) =
kϕ(lcm(k, f))

(k, h)ϕ(f)

is multiplicative.

P r o o f. For every multiplicative function g and arbitrary integers
a, b ≥ 1, we obviously have g(a)g(b) = g(gcd(a, b))g(lcm(a, b)). Hence, to
finish the proof it is enough to show that ϕ((k, f)) is a multiplicative func-
tion of k, which is obvious.

Theorem 4. Let g ∈ G, and let h be the largest integer such that g is an
hth power. Let f ≥ 1 be an arbitrary integer. Let ∆ denote the discriminant
of Q(

√
g). Put b = ∆/(∆, f). Let w(k) be as in Proposition 1. Put

A(f, h) =
∏

p-f
p|h

(
1− 1

p− 1

)∏

p|f
p-h

(
1− 1

p

)∏

p-f
p-h

(
1− 1

p(p− 1)

)
.

Let NQ(ζf )(g;x) denote the number of primes p not exceeding x that split
completely in Q(ζf ) and such that g is a primitive root mod p. If (f, h) > 1,
then δ(Q(ζf ), g) = 0 and NQ(ζf )(g;x) is bounded above.

Next assume that (f, h) = 1. Then

δ(Q(ζf ), g) =
1

ϕ(f)

(
1− µ(|b|)∏

p|b(w(p)− 1)

)∏
p

(
1− 1

w(p)

)
(3)

=
A(f, h)
ϕ(f)

(
1− µ(|b|)∏

p|b, p|h(p− 2)
∏
p|b, p-h(p2 − p− 1)

)

if either g1 ≡ 1 (mod 4), or g1 ≡ 2 (mod 4) and 8 | f , or g1 ≡ 3 (mod 4)
and 4 | f . Otherwise

(4) δ(Q(ζf ), g) =
1

ϕ(f)

∏
p

(
1− 1

w(p)

)
=
A(f, h)
ϕ(f)

.

Suppose the Riemann Hypothesis holds for the field Q(ζf , ζk, g1/k) for every
squarefree k. Then

NQ(ζf )(g;x) = δ(Q(ζf ), g)
x

log x
+O

(
x log log x

log2 x

)
.
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P r o o f. We have to evaluate

δ(Q(ζf ), g) =
∞∑

k=1

µ(k)
[Q(ζlcm(k,f), g1/k) : Q]

.

From Lemma 2 it follows that

ϕ(f)δ(Q(ζf ), g) =
∞∑

k=1
2-k

µ(k)
w(k)

+
∞∑

k=1
∆-lcm(2k,f)

µ(2k)
w(2k)

+ 2
∞∑

k=1
∆|lcm(2k,f)

µ(2k)
w(2k)

=
∞∑

k=1

µ(k)
w(k)

+
∞∑

k=1
∆|lcm(2k,f)

µ(2k)
w(2k)

= I1 + I2.

I claim that

(5) I1 =
∏
p

(
1− 1

w(p)

)
and I2 =

µ(2|b|)
w(|b|)

∏

p-b

(
1− 1

w(p)

)
.

Indeed, the arithmetic function w is multiplicative by Proposition 1 and
thus, by Euler’s identity, I1 =

∏
p(1 − 1/w(p)). Further, if b is even, then

I2 = µ(2|b|) = 0. Next assume that b is odd. Now ∆ | lcm(2k, f) is equivalent
to b | 2k/(2k, f). Since (b, (2k, f)) = 1 and b is odd, b | 2k/(2k, f) is equivalent
to b | k. Thus

(6) I2 =
∞∑

k=1
b|k

µ(2k)
w(2k)

=
µ(2|b|)
w(2|b|)

∞∑

k=1
(k,2b)=1

µ(k)
w(k)

=
µ(2|b|)
w(2|b|)

∏

p-2b

(
1− 1

w(p)

)
.

Using the fact that b is odd and w(2) = 2 completes the proof of (5).
Using (5) the proof is now easily completed. We distinguish two subcases:

(f, h) > 1 and (f, h) = 1.

(i) (f, h) > 1. Since g ∈ G, h is odd. Since (b, f) | 2 and h is odd, there
is an odd prime p1 such that p1 |h, p1 | f and p1 - b. Since w(p1) = 1, it
follows that I1 = I2 = 0 and thus δ(Q(ζf ), g) = 0. Let p be a prime with
p ≡ 1 (mod f) and p - g. Then the order of g mod p is bounded above by
(p−1)/q1, where q1 is the smallest prime dividing (f, h). Hence NQ(ζf )(g;x)
is bounded above.

(ii) (f, h) = 1. Then w(p) > 1 for every prime p. Adding the product
expansions in (5) results, on using the fact that w(p) > 1, in

(7) δ(Q(ζf ), g) =
1

ϕ(f)

(
1 +

µ(2|b|)∏
p | b(w(p)− 1)

)∏
p

(
1− 1

w(p)

)
.
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Notice that
∏
p(1− 1/w(p)) = A(f, h) and that

∏

p|b
(w(p)− 1) =

∏

p|b, p|f
(p− 1)

∏

p|b, p-f, p|h
(p− 2)

∏

p|b, p-f, p-h
(p2 − p− 1).

Since (b, f) | 2, the latter identity simplifies to
∏

p|b
(w(p)− 1) =

∏

p|b, p|h
(p− 2)

∏

p|b, p-h
(p2 − p− 1).

Inserting this in (7) we find

δ(Q(ζf ), g) =
A(f, h)
ϕ(f)

(
1 +

µ(2|b|)∏
p|b, p|h(p− 2)

∏
p|b, p-h(p2 − p− 1)

)
.

On invoking Theorem 1, the proof is easily completed.

Let g ∈ G. From [4, Theorem 8.3] it follows that, under GRH, δ(Q(ζf ), g)
= 0 if and only if either (f, h) > 1 or ∆ | f . Notice that this is an easy con-
sequence of Theorem 4. Assume GRH and, moreover, (f, h) = 1. Then the
above fact can be reformulated, with the help of Lemma 1, as δ(Q(ζf ), g) = 0
if and only if

√
g ∈ Q(ζf ). This is a particular case of the following result:

Theorem 5 (GRH). Let g ∈ G, and let h be the largest integer such
that g is an hth power. Let M be an abelian number field of conductor f .
Let NM (g) denote the set of primes p ∈ Pg such that p splits completely
in M . Suppose that (f, h) = 1. Then δ(M, g) = 0 if and only if

√
g ∈ M .

Moreover , if NM (g) is infinite, then δ(M, g) > 0.

We will deduce Theorem 5 from a result of Lenstra [4, Theorem 4.6],
which in this context simplifies to:

Theorem 6. Let g ∈ G and M : Q be Galois. Let π =
∏
l|h, l prime l,

where h is the largest integer such that g is an hth power. Then if NM (g)
is infinite, there exists σ ∈ Gal(M(ζπ)/Q) with (σ|M ) = idM and , for
every prime l such that Q(ζl, g1/l) ⊆ M(ζπ), (σ|Q(ζl,g1/l)) 6= idQ(ζl,g1/l).
Conversely , if such a σ exists and GRH is true, then NM (g) is infinite and
δ(M, g) > 0.

In addition we will make use of:

Lemma 3. Let Q 6⊆ Q(
√
d) ⊆ Q(ζn) be a quadratic field of discrimi-

nant ∆d. Then there exists σ ∈ Gal(Q(ζn)/Q) such that (σ|Q(ζl)) 6= idQ(ζl)

for every odd prime l dividing n and , moreover , σ(
√
d) = −

√
d.

P r o o f. Let σa ∈ Gal(Q(ζn)/Q) with σa := ζan and (a, n) = 1. It is
well known that σ(

√
d) =

√
d if and only if (∆d/a) = 1, where (∆d/a)

denotes the Kronecker symbol. Thus the problem reduces to showing that
there exists 1 ≤ a ≤ n, (a, n) = 1 with a 6≡ 1 (mod l) for every odd prime l
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dividing n and (∆d/a) = −1. To prove that such an a exists is left to the
reader. (If ∆d < 0, then a = n− 1 is such an a.)

Proof of Theorem 5. We first prove the “if and only if” part of the
assertion.
⇐. If

√
g ∈M , then there does not exist a σ such that (σ|M ) = idM and

(σ|Q(ζ2,
√
g)) 6= idQ(ζ2,

√
g), thus, by Theorem 6, δ(M, g) = 0.

⇒. If l - h and l is odd, then Q(g1/l) is not normal and hence Q(ζl, g1/l) 6⊆
M(ζπ). If l |h, then Q(ζl, g1/l) = Q(ζl) ⊆ M(ζπ). Thus the l such that
Q(ζl, g1/l) ⊆ M(ζπ) are precisely the prime divisors of π and possibly 2.
The (easier) case where 2 does not occur is left to the reader, so we may
assume that

√
g ∈M(ζπ). Notice that we are done if we show that if

√
g 6∈

M , then there exists σ ∈ Gal(M(ζπ)/Q) such that σ(
√
g) = −√g and

(σ|Q(ζl)) 6= idQ(ζl) for every prime divisor l of π.
Since by assumption

√
g ∈M(ζπ) and M ⊆ Q(ζf ),

√
g ∈ Q(ζf , ζπ). Put

(π,∆)∗ = (−1)((π,∆)−1)/2(π,∆). As π is odd, we see that
√

(π,∆)∗ ∈ Q(ζπ)
and, moreover,

√
(π,∆)∗∆ ∈ Q(ζf ). We distinguish two cases:

(i) [Q(
√

(π,∆)∗) : Q] = 2. Let σ1 = id ∈ Gal(Q(ζf )/Q). Let σ2 be an
automorphism whose existence is asserted in Lemma 3 (with n = π and
d = (π,∆)∗). Since by assumption (f, h) = 1, Q(ζf ) and Q(ζπ) are linearly
disjoint and hence the automorphisms σ1 and σ2 can be lifted to an auto-
morphism of Q(ζf , ζπ). Take its restriction to M(ζπ). This automorphism
has all the required properties.

(ii) [Q(
√

(π,∆)∗) : Q] = 1. In this case
√
g ∈ Q(ζf ). Let σ1 6= id be

the automorphism of M(
√
g) such that (σ1|M ) = id|M . Since by assumption√

g 6∈ M , σ1 exists. Let σ2 ∈ Gal(Q(ζπ)/Q) be defined by σ2(ζπ) = ζ−1
π .

Since M(
√
g) and Q(ζπ) are linearly disjoint, σ1 and σ2 can be lifted to an

automorphism of Gal(M(ζπ)/Q). Notice that this automorphism has all the
required properties.

The assertion regarding NM (g) is now easily deduced on using the latter
part of Theorem 6.

We demonstrate Theorem 5 by determining the set L of odd primes l
such that there are infinitely many primes p satisfying p ≡ ±1 (mod l) with
l a primitive root mod p. Then we have to put M = Q(ζl + ζ−1

l ) and g = l

in Theorem 5. Since
√
l ∈ R and M is the maximal real subfield of Q(ζl),

we find that
√
l ∈ M if and only if

√
l ∈ Q(ζl). Thus, using Lemma 1, we

see that on GRH, L = {l : l ≡ 3 (mod 4)}. Unconditionally it can be shown
[8, Theorem 3.2] that L equals {l : l ≡ 3 (mod 4)} with at most two primes
excluded. The fact that L is non-empty is used in A. Reznikov’s [8] proof of
a weaker version of a conjecture of Lubotzky and Shalev on three-manifolds.
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3. Proof of the main result. In this section Theorem 2 will be proved.
First we carry out some preparations.

The next two lemmas are well known (cf. [3]).

Lemma 4. Let M be a number field , κ ∈ M and let n ≥ 1 be an odd
integer. If [M(ζn, κ1/n) : M ] = nϕ(n), then M(ζn) : M is the maximal
abelian subextension of M(ζn, κ1/n) : M .

P r o o f. Let

Mn =
{(

1 0
r s

)
: r ∈ Z/nZ, s ∈ (Z/nZ)∗

}
.

One easily sees that commutators of Mn are of the form
( 1
?

0
1

)
. On noting

that the commutator of
( 1

0
0
2

)
and

( 1
1

0
1

)
equals

( 1
1

0
1

)
, it is seen that M′n,

the commutator subgroup ofMn, equals
{( 1

r
0
1

)
: r ∈ Z/nZ}. It is enough to

show that if the condition of the lemma is satisfied, then Gal(M(ζn, κ1/n) :
M) ∼=Mn. For then the Galois group of the maximal abelian subextension
of M(ζn, κ1/n) : M is isomorphic to Mn/M′n ∼= (Z/nZ)∗. Since the maxi-
mal abelian subextension of M(ζn, κ1/n) : M contains M(ζn) : M and the
condition of the lemma implies that the latter has Galois group (Z/nZ)∗,
we are done.

Let α be a root of xn − κ. For any σ ∈ Gal(M(ζn, κ1/n) : M), there
exist l(σ) ∈ (Z/nZ) and m(σ) ∈ (Z/nZ)∗, such that σ(α) = ζ

l(σ)
n α and

σ(ζn) = ζ
m(σ)
n . Now define a map ψ 7→ ( 1

l(σ)
0

m(σ)

)
. One checks that it is

a monomorphism of Gal(M(ζn, κ1/n) : M) into Mn. Since |Mn| = nϕ(n)
and, by assumption, |Gal(M(ζn, κ1/n) : M)| = nϕ(n), ψ is actually an
isomorphism.

Lemma 5. Let g ∈ G and k be squarefree. Then the maximal abelian
subextension of Q(ζk, g1/k) is Q(ζk) if k is odd and Q(ζk,

√
g) otherwise.

P r o o f. Write g = γh1 , γ1 ∈ Q.

(i) k is odd. By Lemmas 2 and 4, Q(ζk) is the maximal abelian subex-
tension of Q(ζk, γ

1/k
1 ). Since Q(ζk) ⊆ Q(ζk, g1/k) ⊆ Q(ζk, γ

1/k
1 ), we are done

in this case.
(ii) k is even and

√
γ1 6∈ Q(ζk). Taking M = Q(

√
γ1), κ =

√
γ1 and

n = k/2 in Lemma 4, we find, on using Lemma 2, that the maximal abelian
subextension of Q(ζn, κ1/n) : Q(

√
γ1) equals Q(ζn,

√
γ1) = Q(ζk,

√
g). Since

Q(ζk,
√
g) : Q is abelian and

Q(ζk,
√
g) ⊆ Q(ζk, g1/k) ⊆ Q(ζk, γ

1/k
1 ) = Q(ζn, κ1/n),

we are done.
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(iii) k is even and
√
γ1 ∈ Q(ζk). From Lemma 2 it follows that Q(ζk, g1/k)

= Q(ζk/2, g2/k). Since by assumption 4 - k, we are thus reduced to case (i).

Lemma 6. Let g ∈ G. If g1 ≡ 1 (mod 4) and k is squarefree then, for
n ≥ 0, Q(ζk, g1/k) ∩Q(ζ2n) = Q.

P r o o f. The intersection of the two fields under consideration must be
abelian and is contained in Q(ζk,

√
g) by Lemma 5. Let dK denote the dis-

criminant over Q of the number field K. Since the prime divisors of dL1·L2

all divide dL1dL2 , we see that dQ(ζk,
√
g) is odd, on noting that dQ(

√
g) = g1,

dQ(ζk) = dQ(ζk/2) for k ≡ 2 (mod 4) and that dQ(ζk) is not divisible by primes
not dividing k. Thus 2 is not ramified at Q(ζk,

√
g). On the other hand, every

subfield of degree > 1 of Q(ζ2n) is ramified at 2.

An integer is called y-smooth if all its prime divisors are ≤ y.

Lemma 7. Let d be 3-smooth, but not 2-smooth. Let g ∈ G be such that
g1 = 21 and (h, 21) = 7. Let k ≥ 1 be squarefree. Then Q(ζk, g1/k)∩Q(ζd) ⊆
Q(
√−3).

P r o o f. Using Lemma 5 it is seen that Q(ζk, g1/k)∩Q(ζd) ⊆ Q(ζk,
√

21)
∩Q(ζd). Let 3α‖d. Notice that Q(ζk,

√
g) is not ramified at 2 (cf. the proof

of the previous lemma). Thus Q(ζk,
√

21) ∩ Q(ζd) ⊆ Q(ζk,
√

21) ∩ Q(ζ3α).
Now

Q(ζk,
√

21) ∩Q(ζ3α) ⊆ Q(ζlcm(k,21)) ∩Q(ζ3α) = Q(ζ3),
where the latter equality follows on noticing that (lcm(k, 21), 3α) = 3.

Remark. Actually under the conditions of Lemma 7, we haveQ(ζk, g1/k)
∩ Q(ζd) = Q(

√−3) if 3 | k or 14 | k and Q otherwise, but this will not be
needed in the sequel.

Lemma 8. Let g ∈ G and l be an odd prime. Then δ(Q(ζl), g) =
δ(Q, g)/ϕ(l) if and only if g is exceptional and l = 3.

Corollary 1 (GRH). Let g ∈ G and l be an odd prime. Then Pg is
weakly uniformly distributed mod l if and only if g is exceptional and l = 3.

P r o o f (of Lemma 8). Put P (α, β)=
∏
p|α, p|β(p−2)

∏
p|α, p-β(p2−p−1).

⇐. By Theorem 4.
⇒. Notice that l - h, for otherwise, by Theorem 4, δ(Q(ζl), g) = 0,

whereas δ(Q, g)>0. Notice also that g1 ≡ 1 (mod 4), for otherwise δ(Q(ζl), g)
= δ(Q, g)/ϕ(l) implies, by Theorem 4, that A(l, h) = A(1, h) and hence
1− (l−2)/(l2− l−1) = 1, which is impossible. Then, since g1 ≡ 1 (mod 4),
l - h and ∆ = g1, the equality δ(Q(ζl), g) = δ(Q, g)/ϕ(l) implies, by Theo-
rem 4,

(8)
(

1− µ(|g1|)
P (g1, h)

)
=
(

1− l − 2
l2 − l − 1

)(
1− µ(|b|)

P (b, h)

)
.
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Now l must divide g1, for otherwise b = g1 and hence 1−(l−2)/(l2−l−1) = 1,
which is impossible. Hence b = g1/l and thus (8) becomes

(
1− µ(|g1|)

P (g1, h)

)
=
(

1− l − 2
l2 − l − 1

)(
1 +

µ(|g1|)(l2 − l − 1)
P (g1, h)

)
.

Notice that µ(|g1|) = 1. We find P (g1, h) = (l2 − l − 1)(l2 − 2l + 2)/(l − 2).
Since ((l2 − l − 1)(l2 − 2l + 2), l − 2) divides 2 and P (g1, h) must be an
integer, it follows that l = 3 and hence P (g1, h) = 25. Thus g is exceptional
and l = 3.

Proof of Theorem 2. Assume that g satisfies the assumptions of The-
orem 2 and, moreover, assume GRH. Then by Theorem 4 with f = 1 it
follows that {1, 2} ⊆ Dg. If d ∈ Dg and δ divides d, then δ ∈ Dg.

First consider the case where g is ordinary. Then this observation to-
gether with Corollary 1 shows that Dg ⊆ {2n : n ≥ 0}. Suppose that g1 ≡ 3
(mod 4). Then Theorem 4 shows that Pg is not weakly uniformly distributed
mod 4. Thus in this case Dg = {1, 2}. If g1 6≡ 3 (mod 4), then it is easy to
see, by Theorem 4 again, that 4 ∈ Dg. If g1 ≡ 2 (mod 4) then Theorem 4
again yields that Pg is not weakly uniformly distributed mod 8. Thus in this
case Dg = {1, 2, 4}. Finally assume that g1 ≡ 1 (mod 4). As we have seen,
Dg ⊆ {2n : n ≥ 0}. Theorem 4 shows that δ(Q(ζ2n), g) = δ(Q, g)/ϕ(2n).
This is consistent with weak uniform distribution mod 2n. In fact, using a
result of Lenstra [4], we will show that Pg is weakly uniformly distributed
mod 2n for every n ≥ 3. This then completes the proof in the case where g
is ordinary.

Let a and d be coprime. The set of primes p such that p ≡ a (mod d),
p - g, and g is a primitive root mod p, equals M = M(Q,Q(ζd), σa, 〈g〉, 1),
where we used Lenstra’s notation. Here σa denotes the automorphism of
Gal(Q(ζd)/Q) determined by σa(ζd) = ζad . Under GRH the natural density
δa, of the set M is, by [4, (2.15)], equal to

(9) δa =
∞∑

k=1

µ(k)ca(k)
[Q(ζd, ζk, g1/k) : Q]

,

where ca(k) = 1 if σa fixes Q(ζk, g1/k) ∩ Q(ζd) pointwise and ca(k) = 0
otherwise. In case g1 ≡ 1 (mod 4) and d = 2n, by Lemma 6 the latter
intersection of fields equals Q (at least when k is squarefree) and hence
ca(k) = 1 for every squarefree k. Thus δa = δ1. This and δ1 = δ(Q(ζ2n), g) >
0, which follows by Theorem 4 (or alternatively Theorem 5), yield that Pg
is weakly uniformly distributed mod 2n.

It remains to deal with the case where g is exceptional. By Corollary 1, a
necessary condition for Pg to be weakly uniformly distributed mod d is that
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d is 3-smooth. The proof of the theorem will be completed once we show
that this condition is also sufficient. The analysis of the case g1 ≡ 1 (mod 4)
applies in the exceptional case as well and we find that for every 2-smooth
integer d, Pg is weakly uniformly distributed mod d. Next assume that d is
3-smooth, but not 2-smooth. Let a be an integer such that (a, 6) = 1. By
Lemma 7 it follows that Q(ζk, g1/k) ∩ Q(ζd) ⊆ Q(

√−3) for squarefree k.
Thus, by (9), there exist δ̃1 and δ̃−1 such that δa = δ̃1 if σa fixes Q(

√−3)
(that is, if a ≡ 1 (mod 3)) and δa = δ̃−1 otherwise. Since, by Corollary 1,
Pg is weakly uniformly distributed mod 3, we see that

∑

1≤a≤d, (a,d)=1
a≡1 (mod 3)

δa =
∑

1≤a≤d, (a,d)=1
a≡−1 (mod 3)

δa,

that is, ϕ(d)δ̃1/2 = ϕ(d)δ̃−1/2. Since δ1 > 0 (by Theorem 5 for example), it
follows that Pg is weakly uniformly distributed mod d.

Remark 1. In the exceptional case the only integers that can be shown
to be in Dg by appealing to Theorem 4 only, are 1, 2, 3, 4, 6 and 12.

Remark 2. It is instructive to try to apply the argument that showed
that Pg is weakly uniformly distributed modulo 2-smooth numbers in case
g1 ≡ 1 (mod 4) to g satisfying g1 6≡ 1 (mod 4). Then we already know that
Pg is not weakly uniformly distributed mod 2n for n large enough. Thus
ca(k) 6= 1 for some a and squarefree k, that is, Lemma 6 must be false in this
case. Indeed, if g1 ≡ 3 (mod 4), then Q(ζ2|g1|, g

1/(2|g1|))∩Q(ζ2n) ⊇ Q(i) for
n ≥ 2. If g1 ≡ 2 (mod 4) then, for n ≥ 3, Q(ζ|g1|, g

1/|g1|) ∩Q(ζ2n) contains
Q(
√

2) (respectively Q(
√−2)) if g1/2 ≡ 1 (mod 4) (respectively g1/2 ≡ 3

(mod 4)).

The next lemma together with Theorem 2 immediately implies Theo-
rem 3.

Lemma 9. Let d ≥ 1 and g ∈ G. We have Q(ζk, g1/k) ∩ Q(ζd) = Q for
every squarefree k if and only if (i), (ii) or (iii) of Theorem 2 is satisfied.

P r o o f. ⇒. Suppose d contains an odd prime factor, p. Then Q(ζp) ⊆
Q(ζp, g1/p) ∩ Q(ζd) and thus d = 2n for some n ≥ 0. Suppose that
g1 ≡ 2 (mod 4). We have to show that n ≤ 2. So assume that n ≥ 3.
Then Q(ζ|g1|, g

1/|g1|) ∩ Q(ζ2n) contains Q(
√

2) (respectively Q(
√−2)) if

g1/2 ≡ 1 (mod 4) (respectively g1/2 ≡ 3 (mod 4)). Finally suppose that
g1 ≡ 3 (mod 4). We have to show that n ≤ 1. So assume that n ≥ 2. Notice
that then Q(i) ⊆ Q(ζ2|g1|, g

1/2|g1|) ∩Q(ζ2n).
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⇐. If g1 ≡ 1 (mod 4), then this follows by Lemma 6. The other cases,
except g1 ≡ 2 (mod 4) and d = 4, are trivial. It remains to show that
i 6∈ Q(ζk, g1/k) for k squarefree and g1 ≡ 2 (mod 4). A way of showing that
i 6∈ Q(ζk, g1/k) is to show that [Q(ζlcm(4,k), g

1/k) : Q] = 2[Q(ζk, g1/k) : Q].
This now follows by computing these degrees using Lemma 2.

4. Conclusion. Let g ∈ G and assume GRH. We have seen that to
a large extent the equidistribution of the primes of Pg over the residue
classes mod d can be understood already from knowing whether or not the
progression 1 (mod d) gets its fair share of primes from Pg. From Lemma 8
and Corollary 1, one sees that in case d is an odd prime it is even true
that the progression 1 (mod d) gets its fair share if and only if all primitive
progressions get their fair share. A question that thus naturally arises is
whether this holds true for arbitrary d (if so this would be rather surprising).
Despite a considerable computational effort (together with Karim Belabas),
I was not able to find a d for which this is false. On the other hand, I
obtained only partial non-existence results for such d.

The author thanks K. Belabas, T. Kleinjung, F. Lemmermeyer, A. Schin-
zel and P. Stevenhagen for helpful (e-mail) discussions and the referee for his
comments (which led to a shortening of some of the proofs). This research
was carried out at the Max-Planck-Institut in Bonn, the pleasant research
atmosphere of which is gratefully acknowledged.
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