ACTA ARITHMETICA
LXXXIX.2 (1999)

Hankel determinants for the Fibonacci word
and Padé approximation

by

TETURO KAMAE (Osaka), JUN-1cHI TAMURA (Tokyo)
and ZHI-YING WEN (Beijing)

1. Introduction. The aim of this paper is to give a concrete and inter-
esting example of the Padé approximation theory as well as to develop the
general theory so as to find a quantitative relation between the Hankel de-
terminant and the Padé pair. Our example is the formal power series related
to the Fibonacci word.

The Fibonacci word £(a,b) on an alphabet {a,b} is the infinite sequence
(1) e(a,b) =€pé1...6n ...

:= abaababaabaab ... (&, € {a,b}),
which is the fixed point of the substitution
(2) c: a—ab, b—a.

The Hankel determinants for an infinite word (or sequence) ¢ = o1 .. .
(pn € K) over a field K are

(3)  Hpm(p) :=det(@ntitjlo<ij<m—1 (m=0,1,...; m=1,2,...).

It is known [2] that the Hankel determinants play an important role in
the theory of Padé approximation for the formal Laurent series

) olz) = 3 e
k=0

Let K((271)) be the set of formal Laurent series ¢ as above of z with coeffi-
cients in K and h € Z providing a nonarchimedean norm ||¢|| := exp(—ko+h)
with ko = inf{k : ¢ # 0}. Let ¢ be as above with h = —1. We say that a
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pair (P, Q) € K[z]? of polynomials of 2 over K is a Padé pair of order m for
p if
(5) |Qp — P|| <exp(-m), Q#0, degQ<m.
A Padé pair (P,Q) of order m for ¢ always exists and the rational func-
tion P/Q € K(z) is uniquely determined for each m = 0,1, ... The element
P/Q € K(z) with P,Q satisfying (5) is called the mth diagonal Padé ap-
prozimation for ¢. A number m is called a normal index if (5) implies
deg @ = m. Note that P/Q is irreducible if m is a normal index, although it
can be reducible for a general m. A normal Padé pair (P, Q), i.e., deg @ is a
normal index, is said to be normalized if the leading coefficient of @) is equal
to 1. It is a classical result that m is a normal index for ¢ if and only if the
Hankel determinant det(¢;;)o<i,j<m—1 is nonzero. Note that 0 is always
a normal index and the determinant for the empty matrix is considered to
be 1, so that the above statement remains valid for m = 0.

We succeed in obtaining a quantitative relation between the Hankel de-
terminant and the normalized Padé pair. Namely,

(6) det(pisj)o<ijem—1 = (=D ] P(2)
25 Q(2)=0

for any normal index m with the normalized Padé pair (P,Q), where
II 2 Q(2)=0 indicates a product taken over all zeros z of @Q with their multi-
plicity (Theorem 6).

We are specially interested in the Padé approximation theory applied to
the Fibonacci words € := ¢(1,0) and € := ¢(0,1), where 0, 1 are considered
as elements in the field Q, since we have the following remark.

REMARK 1. Let M be a matrixz of size mxm with entries consisting of two
independent variables a and b. Then det M = (a — b)™ Y(pa + (—1)™"1¢b),
where p and q are integers defined by

p=det M|4=1,p=0, ¢ =detM|,—0,p=1.

Proof. Subtracting the first column vector from all the other column
vectors of M, we see that det M is divisible by (a — b)™~! as a polynomial
in Z[a,b]. Hence, det M = (a — b)™ '(za + yb) for integers z,y. Setting
(a,b) = (1,0),(0,1), we get the assertion.

In Section 2, we study the structure of the Fibonacci word, in particular,
its repetition property. The notion of singular words introduced in Z.-X. Wen
and Z.-Y. Wen [5] plays an important role.

In Section 3, we give the value of the Hankel determinants H, ,,(¢) and
H,, ,,,(g) for the Fibonacci words in some closed forms. It is a rare case where
the Hankel determinants are determined completely. Another such case is
for the Thue-Morse sequence ¢ consisting of 0 and 1, where the Hankel
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determinants H,, ,,(¢) modulo 2 are obtained, and the function H,, ,(¢) of
(m,n) is proved to be 2-dimensionally automatic (see [1]).

In Section 4, we consider the self-similar property of the values H,, ,, ()
and H,, ,,(€) for the Fibonacci words. The quarter plane {(n,m) : n > 0,
m > 1} is tiled by 3 kinds of tiles with the values H,, ,,,(¢) and H,, ,,,(€) on
it with various scales.

In Section 5, we develop a general theory of Padé approximation. We also
obtain the admissible continued fraction expansion of . and ¢z, the formal
Laurent series (4) with h = —1 for the sequences ¢ and g, and determine
all the convergents py/qx of the continued fractions. It is known in general
that the set of the convergents py/qr for ¢ is the set of diagonal Padé
approximations and the set of degrees of ¢;’s in z coincides with the set of
normal indices for .

2. Structure of the Fibonacci word. In what follows, o denotes the
substitution defined by (2), and

é\:/\()El...gn... (§n€{a,b})

is the (infinite) Fibonacci word (1). A finite word over {a,b} is sometimes
considered to be an element of the free group generated by a and b with

inverses a~! and b=!. For n = 0, 1,. .., we define the nth Fibonacci word F,,
and the nth singular word W, as follows:
(7 F,:=0"(a) = o™ (b), W, :=B.Fua,",

where we put

. Ja (neven, modd),
(8) On = fm = {b (n odd, m even),

and we define W_5 to be the empty word and W_; := a for convenience.
Let (fn;n € Z) be the Fibonacci sequence:
9) for2=fos1tfn (MEZ), fa=fi=1

Then |F,| = |W,| = fn(n > 0), where |{| denotes the length of a finite
word £.

For a finite word & = &pé1...&,—1 and a finite or infinite word n =
oM - . . over an alphabet, we denote

(10) §=<kn
if € = neMks1 - .- Metn—1. We simply write
(11) §=n

and say that £ is a subword of n if £ < n for some k. For a finite word
E=&06 ... &1 and ¢ with 0 <4 < n, we denote the ith cyclic permutation
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of 45 by Cl(g) = {i{i-}—l PN gn—1§0§1 .. -gi—l- We also define Cl(é) = Ci/ (6)
with i’ := i — n[i/n] for any i € Z.

In this section, we study the structure of the Fibonacci word & and discuss
the repetition property. The following two lemmas were obtained by Z.-X.
Wen and Z.-Y. Wen [5] and we omit the proofs.

LEMMA 1. We have the following statements:

1) g= FnFn_anFn+1Fn+2 c. (n > 1),
) F,=F, 1F, 2= Fn72anlﬂ;1aglﬂnan (n > 2)5
) F,F, <€ (n>3),
4) = W_ WW 1 WolWs.. .,
5) Wy =W, oWy _3W, 2 (n > 1)7
(6) W, is a palindrome, that is, W,, stays invariant under reading the
letters from the end (n > —2),
(7) Ci(Fp) <€ (n>0, 0<i< fn),
(8) Ci(Fy) # Cj(Fy,) for any i # j, moreover, they are different already
before their last places (n > 1, 0 <i < fp),
(9) W, #Ci(F,) (n>0,0<1i< fp),
(10) & < € and |£] = fn imply that either § = Ci(F,,) for some i with
0<i< fporl=W, (n>0).

LEMMA 2. For any k > —1, we have the decomposition of € as follows:
e=W_aWo.. Wi ) WioWeyr o Wevn - - -

where all the occurrences of Wy, in € are picked up and ~y,, is either Wyy1 or
Wy_1 corresponding to g, is a or b, respectively. That is, any two different
occurrences of Wy, do not overlap and are separated by Wy11 or Wi_q.

We introduce another method to discuss the repetition property of .
Let N be the set of nonnegative integers. For n € N| let

oo

n=> m(n)fi,

i=0

7i(n) € {0,1} and 7;(n)Tiz1(n) =0 (i €N)

be the regular expression of n in the Fibonacci base due to Zeckendorf. For
m,n € N and a positive integer k, we define

(13) m=Ln
if 7;(m) = 1;(n) for all i < k.

(12)

LEMMA 3. We have €, = a if and only if 1o(n) = 0.

Proof. We use induction on n. The lemma holds for n = 0,1, 2. Assume
that it holds for any n € N with n < f; for some k > 2. Take any n € N
with fr <n < fgr1. Then, since 0 < n — fr < fr_1, we have
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k—1
n=> 7(n—fi)fi+ fr,
i=0
which gives the regular expression if 7,_1(n — fx) = 0. If 7,1 (n — fx) =1,

then we have the regular expression n = Zf;oz Ti(n — fx)fi + fr+1. In any

case, we have m9(n) = m9(n — fi). On the other hand, since £ starts with
FF,_1 by Lemma 1, we have &, = &,_y,. Hence, €, = a if and only if
To(n) = 0 by the induction hypothesis. Thus, we have the assertion for any
n < fr+1, and by induction, we complete the proof. m

LEMMA 4. Let n = Y .2 n;f; with n; € {0,1} (i € N). Assume that
niniy1 =0 for 0 <i < k. Then n; = 7;(n) for 0 <i < k.

Proof. If there exists ¢ € N such that n;n; 11 = 1, let ¢ be the maximum
such i. Take the maximum j such that n; 11 = nj,43 = Njy45 = ... = n;
= 1. Then, replacing fi, + fig+1 + fio+3 + fig+5 +-- -+ f; by fj+1, we have
a new expression of n:

oo io—l (o]
n = anfz = Z nifi + fi41 + Z " fi
i=0 i=0 i=j+3

This new expression is unchanged at the indices less than k, and is either
regular or has a smaller maximum index ¢ with njn;,, = 1. By continuing
this procedure, we finally get the regular expression of n, which does not
differ from the original expression at the indices less than k. Thus, n; = 7;(n)
forany 0 <i<k. m

LEMMA 5. For anyn € N and k > 0, 7o(n + fx) # 10(n) if and only if
either n =gyo frr1 — 2 orn =g42 fr+1 — 1. Moreover,

T
* (=D*a=b)  (n=ksa fry1 — 1),
where a and b are considered as independent variables.

Proof. If k =0, we can verify the statement by a direct calculation.
Assume that £ > 1 and 7;(n) = 0. Then

k—1 o
ntfi=> mm)fi+ i+ Y, nn)fi
=0 i=k+1

By Lemma 4, we have 7o(n+ fi) = 70(n) if k > 2 or if £ = 1 and 79(n) = 0.
In the case where k = 1, 79(n) = 1 and 72(n) = 0, since

n+tfr=1+2+ ZTi(n)fi =fo+ ZTi(n)fia
i=3 i=3

we have 7o(n + fx) = 0 by Lemma 4. On the other hand, in the case where

k=1, 7(n) =1 and m»(n) =1, since
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n+ fr= 1+2+3+Z7'i(n)fi = f0+f3+ZTi(n)fia
i=4 i=4
we have 17o(n + fx) = 1 by Lemma 4.

Thus, in the case where k > 1 and 7(n) = 0, o(n + fr) # 70(n) if
and only if £ = 1, 79(n) = 1 and 72(n) = 0, or equivalently, if and only
if n =g492 fry1 — 2 with £ = 1. Note that n =341 fr41 — 1 with £ =1
contradicts 7(n) = 0.

Now assume that £ > 1 and 74(n) = 1. Take the minimum j > 0 such

that 7,(n) = m—2(n) = T_4(n) = ... = 75(n) = 1. Then since 2f; =
fix1 + fi—o for any ¢ € N, we have
j—3
(14) n+fr= ZTi(n)fi+fj—2
i=0
+fis+ fist fivs + o fon+ D ()i,
i=k+2

where the first term on the right-hand side vanishes if j = 0, 1, 2. Hence by
Lemma 4, 1o(n + fr) = 7o(n) if j > 4.

In the case where j = 3, 79(n + fx) = 70(n) holds if 79(n) = 0 by (14)
and Lemma 4. If 79(n) = 1, then by (14) and Lemma 4, 19(n + fx) = 0.
Thus, for j =3, 79(n + fx) # 10(n) if and only if 79(n) = 1.

If j = 2, then by the assumption on j, we have 79(n) = 0. On the other
hand, since fy = 1, by (14) and Lemma 4, we have 7o(n + fi) = 1. Thus,
To(n + fx) # 10(n).

If 5 =1, then 79(n) = 0 since 71 (n) = 1 by the assumption on j. On the
other hand, since f_; = 1, we have 79(n + fx) = 1 by (14) and Lemma 4.
Thus, 79(n + fi) # T0(n).

If j = 0, then by the assumption on j, 79(n) = 1. On the other hand, since
f—2 =0, we have 79(n + fx) = 0 by (14) and Lemma 4. Thus, mo(n + fx) #
To(n).

By combining all the results as above, we get the first part.

The second part follows from Lemma 3 and the fact that for any k£ > 0,

Jeri—1=fe+ foe—oat...+ fi
with 4 = 0 if k is even and 7 = 1 if k is odd. Hence,

a (kodd, h even),
To(fre1 — 1) = 10(fr41 — 2) = {b gk‘ even, h odd%. n

LEMMA 6. For any k > 0, Wy, <, € if and only if n =12 fre1 — 1.
Proof. By Lemma 2, the smallest n € N such that Wy, <,, € is
faatfot+tfit+.ooit+ foer= fropr — 1,
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which is the smallest n € N such that n =;42 frr1 — 1. Let ng := fr41 — 1.
Then the regular expression of ng is

no = fr+ fe—2 + fe—a+ ...+ fa,
where d = (1 — (—1)*)/2. The next n with n =2 ng is clearly

n=frro+ fo+ fo—2+...+ fa,
which is, by Lemma 2, the next n such that Wy, <,, €since fix+ fr+1 = frto.
Fori=1,2,..., let
oo
n; =ng + ZTj(i)fk-i-Q-i-j'

§=0
Then it is easy to see that n; is the ith n after ng such that n =9 fri1—1.
We prove by induction on ¢ that n; is the ith n after ng such that Wy, <,, .
Assume that it is so for ¢. Then by Lemma 4, Wy, W), <, €. Hence, the
next n after n; such that Wy <, €is n; + fx + |i|. Thus, we have

ni + fe + vl =1 + fr + frr1laza + fr-1la=p
=n; + fetelriy=0 + fet1lri)=1 = Ni+1,
which completes the proof. m
LEMMA 7. Let k > 0 and n,i € N satisfy n =p41 ¢.

(1) If 0 < i < fx, then o(n + j) = 10(i + j) for any j = 0,1,...,
fr42 —1—3.

(2) If fr < i< frt1, then o(n+j) = 10(i + j) for any j = 0,1,...,
Jrts —1—3.

Proof. (1) We prove the lemma by induction on k. The assertion holds
for kK = 0. Let kK > 1 and assume that the assertion is valid for &£ — 1. For
j=0,1,..., fr —i, we have n + j =, i + j and hence, 1o(n + j) = 70(i + j).
Let jo = fr — . Then, since n + jo =¢ @ + jo =k 0, we have 19(n + jo +
Jj) =70(i + jo+7) = 10(j) for any j = 0,1,..., frr1 — 3 by the induction
hypothesis. Thus, 79(n + j) = 70(i + j) for any j = 0,1,..., fryo — i — 3.
This proves (1).

(2) In this case, 7x+1(n) = 0. Hence, n =2 i. Therefore, we can apply
(1) with k& + 1 for k. Thus, we get (2). m

Let n,m,i € N with m > 2 and 0 < ¢ < m. We call n an (m,1)-shift
invariant place in € if
é\ngn—i-l cee é\n—‘,—m—l = é\n—&—ié\n—&-i—i-l cee é\n—i—i—l-'m—l-

We call n an m-repetitive place in £ if there exist 7,5 € N with 4 > 0 and
i+ j < m such that n + j is an (m,¢)-shift invariant place in . Let R,, be
the set of m-repetitive places in &.
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LEMMA 8. (1) Let n =11 0 for some k > 1. Then n is an (fr+1—2, fr)-
shift invariant place in €.

(2) Let n =g41 fr for some k > 2. Then n is an (fr4+1 — 2, fr—1)-shift
invariant place in £.

Proof. (1) Since the least ¢ > n such that either i =549 fry1 — 1 or
1 =p+y2 fur1 — 2 is not less than n + fr11 — 2, by Lemma 5, we have

En€n41---En+fry1—-3 = En+fréntfr+1 - - En+fr+frop1—3-

(2) Since the minimum ¢ > n such that either ¢ =511 fi — 1 or ¢ =441
fr—2isn+ fry1 — 2, by Lemma 5, we have

En€ntl - Entfri1—-3 = Entfr_1Entfr_1+1l - Entfr_1+fry1—-3- W

THEOREM 1. The pair (n,m) of nonnegative integers satisfies n € R,
if one of the following two conditions holds:

(D) fe+1<m< frg1—2,n—1i=k41 0 and i <n for some k > 1 and
1€Z with f + 1 <m+1 < fr11 — 2.

(2) frc1+1<m< frp1—2,0<nandn—1i =gy fr for some k > 2
and i € Z with fr_1+1<m+i < fr11 — 2.

REMARK 2. The “if and only if” statement actually holds in Theorem
1 in place of “if” since we will prove later that H, ,, # 0 if none of the
conditions (1) and (2) hold.

Proof (of Theorem 1). Assume (1) and ¢ > 0. By Lemma 8(1), n —1 is
an (fr+1 — 2, fx)-shift invariant place. Then n is an (m, f)-shift invariant
place since ¢ +m < fry1 — 2. Thus, n € R,, as f < m.

Assume (1) and ¢ < 0. Then, since n—i is an ( fx4+1 —2, fx)-shift invariant
place and m < fri12—2, it is an (m, fx)-shift invariant place. Moreover, since
fr —1 < m, nis an m-repetitive place.

Assume (2) and ¢ > 0. Then, n — i is an (fr+1 — 2, fr—1)-shift invariant
place by Lemma 8(2). Then, n is an (m, fx_1)-shift invariant place since
i+ m < frr1 — 2. Thus, n is an m-repetitive place as fr_1 < m.

Assume (2) and ¢ < 0. Then, since n — ¢ is an (fr+1 — 2, fr—1)-shift
invariant place and m < fry1 — 2, it is an (m, fr—1)-shift invariant place.
Then n is an m-repetitive place, since fr_1 — i < m. Thus, n € R,,. m

COROLLARY 1. The place 0 is m-repetitive for an m > 2 if m &
Urzi{fe — 1, fi}-

REMARK 3. The “if and only if” statement actually holds in Corollary 1
in place of “if” since we prove later that Hy,,, # 0if m € Upe {fx — 1, fx}-

Proof (of Corollary 1). Let ¢ = 0 in (1) of Theorem 1. Then 0 is
m-repetitive if f, +1 <m < fry1 —2forsome k> 1. m
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COROLLARY 2. Let k > 2. The place n is fi-repetitive if
Wi < Ent1Ent2 - - -Entaf,—3-

Proof. By (2) of Theorem 1, for any k > 2, n is an fi-repetitive place if
n—1 =gy1 fr for some ¢ with i <nand —fr_o+1 <1 < fr_1 —2. Since the
condition n — i =41 fi is equivalent to n — i =12 fr and there is no carry
in addition of —i to both sides of n =12 fr + 4, the condition n —¢ =41 fi
is equivalent to n =2 fr +1. Hence, the place n is fy-repetitive if n =49 j
for some j with fr—1 +1 < j < fr41 — 2. By Lemma 6, this condition is
equivalent to Wy, starting at one of the places in {n +1,n+2,..., fr — 2},
which completes the proof. m

3. Hankel determinants. The aim of this section is to find the value
of the Hankel determinants

Hn,m = n,m(E)
Hy o i= Hpy o (€)

= det(entitjo<ij<m—1,

= det(Entitjo<ij<m—1
(n=0,1,...;m=1,2,...)

for the Fibonacci word e(a,b) at (a,b) = (1,0) and (a,b) = (0,1):

e(1,0) = 10110101101101 ... .,

£(0,1) = 01001010010010. . .

£

g:
It is clear that H,, ,,(c(a,b)) = 0 if n is the m-repetitive place in ¢(a, b),
where a, b are considered to be two independent variables, and that, in gen-
eral, Hy, ,,(¢(a,b)) becomes a polynomial in a and b as stated in Remark 1.
In the following lemmas, theorems and corollary, we give parallel state-
ments for € and €, while we give the proofs only for ¢ since those for € are
similar. The only difference is the starting point, Lemma 5, where a — b on
the right-hand side is 1 for € and —1 for €.
We use the following notation: for every subset S of {0,1,2,3,4,5},
x(k : S) is the function on k € Z such that
X(k:S):{l—l ifk:z§ (mod 6) for some s € 5,
otherwise.
The following corollary follows from Theorem 1.

COROLLARY 3. Hy, , = 0 if one of the conditions (1), (2) in Theorem 1
is satisfied. The same statement holds for Hy, ., .

LEMMA 9. For any k > 2, we have

HU,fk = X(k : 2’3)(H07fk—1 - (_1)fkilek—1,fk—1)7
HU,fk = X(k :1,3,4, 5)(H07fk—1 - (_1)fk71ka—1,fk—1)'
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Proof. The matrix (€;4;)o<i,j<f, is decomposed into three parts:

A
(Eitj)o<i<rn = [ A |
B

where
A = (€i45)0<i< fis,0<5< fi
A" = (€ fu_atits J0<i< fis, 0<j < fis
B = (gfk—1+i+j)0§i<fk—2yOSj<fk'
By Lemma 5, the following two subwords of &:
E0EL -+ - Efp_o+fr—2 and Efpc1Cfu1+1l - Efr 1+ fr—ot+fr—2

differ only at two places, namely, €f,_2 # €p_,4+f,—2 and €5, 1 #
€ fp_1+fu—1. Thus, we get

—1)k
(15) B—A= 0 (=1)
(—1)F (—1)+! 0
Let Ag, A1,..., Ay, 1 be the columns of the matrix (;14,) in order from the
left. Since
(AoAr ... Ap, -2) = (€i+j)o<ic<fu—1,0<j<fr—a—15
(Afk—lAfk—1+1 <o Afk—Q) = (efk—1+i+j)0§i<fk—170§j<fk—2—1
and

€01 Efp_otfu—1—-3 = €fu1€fu1+l - Ef1tfo_otfr_1-3
by Lemma 5, we get

(16) (AOAl s Afk—2_2) = (Afk—lAfk—1+1 s Afk_2)'
Thus, from (15) and (16) we obtain
Ag ... Ap o1 Ap oo Apo Ap
(=D)F  (=)+!
(17) Hoy, = det (=1)F (=1t

1
= det (—1)k (-1)
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= (—1)(k71)fk72(—1)”1672/2} det(A0A1 e Afk—l—l)
+ (—1)kfk_2(—1)[fk_2/2]+fk_1 det(Afk_leAl e Afk71—2)'
Since
E0€1 - - '€2fk—1_3 = Efkéfk+1 e Efk+2fk71_3
by Lemma 5, we get
det(Afp,—140A1... Ay, —2) = det(ef,—11itj)o<ij<fi 1 = Hp—1,51 -
Thus we get
Hosz = (_1)(k_1)fk72(_1)[fk72/2]H07fk-—1
+ (_1)kfk_2(_1)[fk_2/2]+fk_1ka*1 fr—1
= X(k : 273)(H07fk71 - (_1)fk_1ka*1,fk71)7
where we have used the fact that
(_1)(k_1)fk—2(_1)[fk—2/2] =x(k:2,3). =
LEMMA 10. For k > 2, we have
ka+1*17fk = X(k : 1737475)ka+1*17fk717
ka+1—1,fk = X(k : 273)ka+1_1:fk—1'

Proof. Just as in the proof of Lemma 9, we decompose the matrix
(€fus1—1+i+j)0<i,j<s, into three parts:

A

_ !
(€fupr—1+itio<ij<p = | 4" ],
B

where
A = (€f141-14i43)0<i< fua, 0<5 < fior
A" = (Efup1—14 fuo+i+7)0<i< fr5,0<j< s
B = (€ fp1—14 fror+i+5)0<i< fis, 0<j < fu-
By Lemma 5, the following two subwords of &:
Efri1—1€fui1 - Efugrtfo_otfo—3 and
Efrt1—1+fo1€fur1+fr—1 - Efor1tFfo—1+fr—2+fu—3
differ only at two places. Namely, ¢, 1pr—2 # €fiitfiit+fe2 and
€fpirtfr—1 7 Efusitfu_1+fu—1. Therefore, we get
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Thus, we have

(18)  det(ey,,—1+it+j)o<ij<fu

Ao Ay ..o Ap_ o Ap . Ap_s Ap_
(=1)*
= det (-DF (=D*!

0
(~DF (~1)F! 0
= (—1)kfe-2 (1) e-2/2 det(Ag Ay ... Af 1)
=x(k:1,3,4,5)Hys —1,f,_,-®
LEMMA 11. For any k > 2, we have
ka+1_1,fk71 = X(k : 2, 5>H01fk717
ka+1—1,fk—1 = X(k 2 2, 5)H0,fk—1'
Proof. Since, by Lemma 5,
Efror1—1€fr1 - Efprtfo1—2 = Efunit+ o1 =1 foqpi+fo—1 - - Efup1+2f_1—2>

we get,

(Efara—1+i+4)0<ij<fr1 = C o (Efarat+iti)o<ij<fr 1
0 10
Also, by Lemma 5,
(Eferat+iti)o<ij<fr = (Eits)o<ij<fu-
Thus we obtain
ka-+1—1,fk71 = det(ekarl—1+i+j)0Si7j<fk71

= (=1 det(eg,,, 4ivi)o<ig<fis
=x(k:2,5)Ho,p, ,. m

LEMMA 12. For any k > 3, we have
Hof, = x(k:2,3)Ho g, _, + x(k:2,4)Ho 5, _,,
Hy s =x(k:1,3,4,5)Ho s, , +x(k:0,1,2,3)Ho 5, ,.
Proof. Clear from Lemmas 9-11. =
LEMMA 13. For any k > 0, we have
Ho . = x(k : 2) fi-1,
Ho g, = x(k:1,2,4) fr_2.
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Proof. We have
H07f0 =1, H07f1 =1, Hy fo = -2,
Hos =0, Hoy =-1, Hyy=-1.

Thus, the assertion holds for £k = 0,1,2. For £ > 3, we can prove it by
induction on k using Lemma 12. =

LEMMA 14. For any k > 1, we have

HO,fk—l = X(k : 074)fk—27
Hoafk—l = X(k : 2737475)fk—3-

Proof. Since the matrix (€i4;)o<i,j<f.—1 is obtained from (&,1;)o<i,j< fx
by removing the last row and the last column, for any & > 2 we have by (17),

(19)  Ho,p—1
Ao A1 ... Ap 0 0 0
(—1)k
— det (=1)F  (=1)F!

0
(—1)F  (~1)k 0
_ (_1)’“(]‘)«—2*1)(_1)[(fk—2*1)/2} det(AgA; . --Afk_l—l)

= (1)U (1) [(fe2=D/2 g,

Hence, in view of Lemma 13, we obtain the formula for Hy ¢, 1. =

THEOREM 2. For any m,k > 1 with fr_1 < m < fr and n € N with
n =k4+1 0, we have

X(k:2)fr—1  if m=fi,
Hyom =1 x(k:0,4)fr—2 if m=fr—1,
0

otherwise,

X(k : 17274).]0]{72 Zf m = fk7
Hn,m = X(k : 2, 3,4, 5)fk,3 ’l,f m = fk — 1,
0

otherwise.

Proof. By Lemmas 3 and 7, the matrix for H,, ,,, coincides with that for
Hy ,, so that H,, ,, = Hp . Thus, the first two cases follow from Lemmas
13 and 14. For the last case, by Corollary 1, there exist two identical rows
in the matrix (5i+j)0§i,j<ma so that HO,m =0.m
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THEOREM 3. For any k,n,i € N withn =411 and 0 < < fr11 — 1, we

have
Nk s 25k s 1,4 fy

if either Tp11(n) =0 and 0 < i < fr_1

or Tg41(n) =1 and 0 < i < f,
anflc = X(k : 17274)]016*2

if either Tp41(n) =0 and i = fr_1

ori= frr1—1,
0  otherwise,

( X(k : 17274)X(k : 174)lfk—2
if either T11(n) =0 and 0 < i < fr_q
. or Tgr1(n) =1 and 0 < i < f,
nfr = § X(k:2)fr_s
if either Tp41(n) =0 and i = fr—1
ori= fry1—1,
\0  otherwise.
Proof. The assertion holds for £ = 0. Let & > 1.
Assume that either 7441(n) = 0 and 0 < i < fr—1 or 7k41(n) = 1 and
0 <1 < fgx. Then by Lemmas 3 and 7 we have

Ae

€it+j = En+tj (]ZO,l,,fk—’L—l),
Civi—fr =CEntj (= Jo =0 oo 2k = 2),
gj:€j+fk (j:O,l,...,fk—l).
Hence, the columns of the matrix (€,4n+j)o<h,j<f. coincide with those of
(€htj)o<h,j<f.- The jth column of the former is the (i + j) (mod fi)th
column of the latter for j = 0,..., fy — 1. Therefore, we get H, ; =

(=1)"fx=) Hy ¢, , which leads to the first case of our theorem by Theorem
2.

Assume that i = fx41—1. Then H,, y, = Hy, 1,5, by Lemmas 3 and 7.
Thus, by Lemmas 10-12 we get

Hn,fk = X(k‘ : 1, 2,4)fk_2.

Assume that 7x41(n) = 0 and ¢ = fi_1. Then, since n =42 i, we have
Hy ¢, = Hy, | 7. by Lemmas 3 and 7. By Lemma 1,
§1=€fi st Ef2fi—2 <1 WeaWie a Wi Wi 1 Wi o,
N = €fr1—1€fupr -+ Efugpr1+2f—3 =fu Wi oW i Wi Wi _1 Wi _a.
Since the last letter of n comes one letter before the last letter of the palin-

drome word Wiy _oWi_1 Wi Wy_1Wi_o, it follows that £ is the mirror image
of 17, so that
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(€ fusti+i)o<ij<s
1 1
0 1 0 1
= _ (€ fisr —14it5)0<ij< fi .
1 0 1 0
1 1
Thus, we obtain Hy, | s, = Hp,_ -1y, and
Hy, o =x(k:1,2,4)fr_o.

Assume that n does not belong to the above two cases. Then, since
Tr+1(n) = 1 implies i < fi, we have the following condition:

Tr+1(n) =0 and  fr_1 +1<0< frgq — 2.

This condition is nonempty only if & > 2, which we assume. Then the
condition (2) of Theorem 1 is satisfied with fi (resp. i — fx) in place of m
(resp. i). Thus, by Corollary 3, Hy, 5, =0. m

LEMMA 15. For any k,n,v € N with k > 1 and n =41 ¢, assume that
either Tk41(n) =0 and 0 < i < fr—1 or Tkr1(n) =1 and 0 < i < fi. Then

X(k:0,4) fr—2 ' (i=0),
x(k 2 2,3)x(k 1727475)ZHi+fk7fk—1_1
Hn,fkfl = + X(k 1 273)5)X(k :'174)ka*2 (0 <1 < fk72)7
X(k 2 3) k : 1727475)1Hi+fk1fk71—1 (fk—Q <1< fk—l)v
\ X(k‘ 0, 4) (ki : 1’4)sz_2 (fk—l <1< fk),
x(k:2,3,4,5) fr—3 (i=0),
o X(k‘ 1 3 4 5) (k‘ 1,2 4 )H1+fk7fk—1_1
Hy -1 = +X(k 0,1)x(k:1,4)° fk 3 (0<i< fr_2),
x(k:1,3,4,5)x(k : 172,475) 'Hitfofor—1 (fom2 <i< foo1),
\X(k:273’475) (k]-74) fk—3 (fk—1<i<fk)'
Proof. If : =0, then the statement follows from Theorem 2. Let
Aj="(ej 8541 Ejrpii—1),s
(20) Al ="(ej,8541, €54 frr—2)s
B =it s €t fortls- it fu-1)  (G=0,1,...).

Then, by the same argument as in the proof of Theorem 3, we obtain
. Ai...Afk_le...Ai_g
Hu, -1 = det (B; ...B} _\By...Bl_,

v Ao Ara A A
= (=D det <BZ...B;_2B;...B?€_1> :
k
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Therefore, if fr_2 < i < fr_1, then by the same argument as for (17), we
obtain

(_1)(i_1)(fk—i)Hn7fk71

AOH.Ai72Ai~-Af;€,171 0 0 Afk,1
(F (D
= det (—1)k-1
0 0
(D% (=D
Since by Lemma 5,
0
Afk_l - Afk72—1 = 0 )
(=1)*
we get
(-1 DU= g Foo1
Ay AL LALLAY 0 0 0
B S 0 0 (—1)k
_ (=DF  (=1)Ft
= det (—1)k-1
0 0
(=DF (=Dt
= (—D)Mr=2 (=)= det(Ay ... A, AL Ay )
=x(k:1,3,4,5)(=1)0" D=0, 0o
Thus we obtain
Hy o1 =x(k:2,3)x(k:1,2,4,5) Hitp, o 11
Assume that fr_1 < i < fi. Then as above we have
(_1)(1‘*1)(&4)[{” Foo1
Aog... Ap 1 0 ...0 0... 0 Ag 1
(D% (=D
iy 0 (-1
= det 0 0 (—1)F1
(—1)* 0 0

(—DF
= (_]_)k(i_fk—l_1)+(k_1)(fk_i)+[(fk—2_1)/2] det(Ag... As_, 1)
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Hence, by Lemma 13,
Hy o1 =x(k:0,3,4)x(k:1,4) Ho 5, , = x(k:0,4)x(k : 1,4)" fr_o.

Assume that 0 < ¢ < fi_2. Then, since 4; 145, , = A;—1, by the same
arguments as above we get

(,1)(i—1)(fk—i)Hn’fk_1

Ap A ALAY 0 LA 0
Kook kL Lk 0 U (—1)k
_ (=DF (=1F
= det (—1)k-1
0 0
(=D)*

= ()2 (—n)Ue—2/2 det(A) ... Al AL LAY )
i (_1)k(i—1)+(k—1)(fk—2—i)(_1)i—1+[(fk—2_1)/2]
x det(Ag... Ai2A;.. . Ay 14;1).
Since
det(Ag... Ay oA;... A, 1A 1) = (1) Hyp
by Lemma 13 we obtain
(21) Hy -1 = x(k: 2,3)x(k : 1,2,4,5) Hit py oy 1
+x(k:1,2,3,5)x(k:1,4)" fr—o.
Note that (21) holds also for i = f;_o since in this case,
H, 1= (_1)k(fk—2_1)(_1)fk—2—1+[(fk—2_1)/2]
x det(Ag ... Af, ,—2A5, ... Af —2Af 1)
and
Ap 1 =Ap 1 +50,...,0,(=1)"). m

LEMMA 16. For any k,n,i € N with k > 1 and n =41 ¢, assume that
either Tp41(n) =0 and 0 < i < fr_1 or Tk1(n) =1 and 0 < i < fi. Then

x(k:0,4)fi—s =0,
Hp o1 =4 x(k:1,2,3,5)x(k: 1,4) fi_s  (0<i< fr_a),
X(k:0,4)x(k : 1,4)" fr—2 (fro—1 <@ < [fr),
_ x(k:2,3,4,5) fis (i = 0),
Hn,fk—l - X(k : 07 1)X(k : 1’4>sz_4 (0 <1 < fk—1)7
X(k : 2737475)X(k : 1a4)lfk:—3 (fk—l <1< fk)
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Proof. The first and third cases have already been proved in Lemma 15.
Consider the second case where 0 < i < f,_1. We divide it into two subcases,
and use induction on k.

Case 1: i =1. If k=1, then
Hn7fk71 = Hn71 =E&p = 0

since n =5 1 and 79(n) = 1. On the other hand, fy_3 = f_2 = 0, and hence,
we get the statement. Assume that k£ > 2 and the assertion holds for & — 1.
Then, by Lemma 15 and the induction hypothesis, we get

Hy o1 =xk:2,3)x(k:1,2,4,5) Hitfy fr 11
+x(k:1,2,3,5)x(k:1,4) fr_o
=x(k:1,3,4,5)Hiyf 11+ x(k:2,3,4,5) fr—2
=x(k:1,3,4,5)x(k—1:2,3,4,5)fr—a + x(k :2,3,4,5) fr—2
=x(k:0,1)fr—a+x(k:2,3,4,5)fr—2
=x(k:2,3,4,5) fr—3,
which is the desired statement.

CASE 2: 4> 2. If fr_o < i < fr_1, then it follows from the third case
and then the fourth case of Lemma 15 that

Hn,fkfl = X(k : 2’3)X(k : 172747 5)iHi+fk,fk,1fl
=x(k:2,3)x(k:1,2,4,5)x(k —1:0,4)x(k —1:1,4)" fr_3
=x(k:1,2,3,5)x(k:1,4)" fr_3.

Assume that i < fj,_o and the statement holds for k—1. Then by Lemma 15,
we get

Hy o1 =x(k:2,3)x(k:1,2,4,5) Hi g pr -1
+x(k:1,2,3,5)x(k:1,4) fr_a
=x(k:2,3)x(k:1,2,4,5)x(k—1:1,2,3,5)x(k—1:1,4)" fr_4
+x(k:1,2,3,5)x(k:1,4) fr_a
=x(k:0,4)x(k:1,4) fr_a+x(k:1,2,3,5)x(k: 1,4)" fr_o
=x(k:1,2,3,5)x(k:1,4)"fr_3. m
LEMMA 17. For any k,n € N with k > 2 and 71,41(n) = 0, we have

H 1= Xk:27314a5)fk—3 ( N =k+1 fk? 1)
e X(E:0,4)fr_o n=gy1 fe—1+1),

(
( (n
T _ {X(k :0,4) fr—a (7 =gt fo-1),
n,fu—1 X(k:2,3,4,5)fk—3 (n=gq1 fr—1+1).



Hankel determinants and Padé approximation 141

Proof. Assume that n =g41 fr—1. Then since 7,41(n) = 0, we have
n =g4+2 fr—1. Therefore, by Lemmas 3 and 7, we get

Ajo o Ap i Ap o Afy s
H fi—1= det < /k71 /k /k /k+1 )
e Bfk—l Bfk 1Bfk "Bfk+1—2

where we use the notation (20). By Lemma 5, the following two subwords
of e:

En€n+l - Entfi_o+fr—3 and Entfr_1€ntfr1+1l - Entfr_1+fr_ot+fe—3

differ only at two places, namely, at the (fx —2 — fr_1)th and the (fr —1—
fr—1)th places. Hence, we have

Ap s Ap 1 Ap o Apa
H7 _1:det< fr—1 fr & k1
mf B}k—l B}k—lB}k "'B}k+1—2
o Apy Ap A
(_1 k (_1)k71
(_1 k—1

0
(1F ()
By adding the first fr_o — 1 columns and subtracting the last fp_o — 1
columns to and from the column beginning by Ay, _1, we get the column

fAp,_10...0) +((=1)*t0...0(=1)%0...0),
where (—1)* is at the (fx_2 — 1)th place. Since, by Lemma 5,
(Afp g oo Ap—2) = (A2p -  Afy—2)

we get,

(22) Hn,fk—l
_ (71)k(fk72—1)(fl)fk—l(fk—2—1)+[(fk—2—1)/2}

x {det(Af1Af, ... A, —o) + (—1)F N det(AY .. A% )

fk:+1_2
+ (=DM det (AT LAY o))
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where

A;’ = t(€j+1 e €j+fk71_1),

A =g i fun—2Ejtfu s Ejtfra—1)-
Here, we have
det(Ap, 1Ay, ... Ap i —2) = Hp—1,50 4

(23)
det( I;k T /f{k+1_2) = ka+17fk71*17

and by Lemma 5,

det( ‘/f/-; ;ﬁ;+1_2)

_ " "
=|ay..4

fet+fro—2—1
(-1
(-1)* 0
Cr
: 0
ka+fk—2_2
ka‘l‘fk:fQ (_1)k_1
- ot
(1)1t
ka+1—l (il}k O

where we put
Cj = (€j€541 -+ Ejt fr_a—1)-
Since Ct, 4 £, 45 = Crots (1 =0,1,..., fr—3 —2) by Lemma 5, we have
det(A7 ... A% | o)
C
— (=1)F=DUrs=DFfrs=1+(Fe-s=1)/2] ot :

ka+fk—2—2
ka+1*1
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Moreover it follows from Lemma 5 that

ka ka+1
det : = det : = (_1)fk72_1ka+1—1,fk_2a
ka+fk—2—2 ka+1+fk—2_2
ka+1_1 Cf}g+1fl

which implies

det( ;ﬁ; o /Jﬁ;+1_2) =x(k:0,3, 5)ka+1_17fk_2.
Thus by (22), (23), Theorem 3 and Lemma 16, we obtain

Hy po—1=x(k:4)Hyp 15, +x(k:0,2)Hp 415 -1
+x(k:1,3,4)Hy,  —1.4,
=x(k:2,3,4,5)fx_3+x(k:2,3,4,5)fr—a+x(k:0,1)fr_4
=x(k:2,3,4,5) fr—s,

which is the first case of our lemma.

To prove the second case, assume that n =41 fr—1 + 1. Then as above
we get

A g Ay Ap A

Hn, = det( fr—1+ k k k+1

T B}k—1+1 "'B}k—lB}k : "B}k-o—l—l
Ap 1 . Apy Ag o Ap
1
k
= det 0
(-1 (-1
(1
— (_1)(k_1)(fk—2_1)(_]_)(fk—z_1)fk—1+[(fk—2_1)/2]

X det(Afk "-Af;ﬁqfl)‘

Therefore, by Theorem 3 we get
Hn,fk—l = X(k : 07374)X(k —1: 2)fk—2 = X(k : 074)fk—2- u

THEOREM 4. For any k,n,i e Nwithk > 1, n=411 and 0 <14 < fr11,
we have



144 T. Kamae et al.

X(k 2 0,4) fr—2 (1=0),
X(k : 1327375)X(k : 1a4)ifk:—3 (0 <1< fk:—l)a
X(k:0,4)x(k: 1,4) fy—2 (fe—1 <@ < fx
Hy f—1= and Tp+1(n) = 1),
X(k:0,4)fr—2 (1= fe—1+1
and Tp+1(n) =0),
L0 (otherwise),
x(k:2,3,4,5) fr—3 (i =0),
X(k‘ : 0, 1))((]6‘ : 1,4)ifk_4 (0 <1< fk:—l),
o X(k‘ :2,3,4, 5)X(k’ 1 1, 4)ifk_3 (fk—l <1< fx
Hp -1 = and Tp41(n) = 1),
x(k:2,3,4,5)fr_3 (i=fe1+1
and Tp+1(n) =0),
(0 (otherwise).

Proof. The first four cases follow from Lemmas 16 and 17. Note that
for i@ = fr—_1, the assertions in these lemmas coincide, so that H,, r, _1 is
independent of 7;11(n). Consider the last case, where 7;41(n) = 0 and
fre—1+2 < i< fre1 — 1. We may assume that & > 2. Then, with m = f;, —1
and i — fi in place of i there, the condition (2) of Theorem 1 is satisfied.
Therefore by Theorem 1, n € R,,, which implies that H,, s, 1 =0. =

LEMMA 18. For any n,m € N such that fr_o+1<m < fr—2,i<n
andn —i =41 0 for some i,k € Z with k > 2 and m + i = fi,, we have
Hym = x(k = 2)x(k 2 3,4,5) (=) /2 £,
Hn,m = X(k : 174)X(k : 07 1’ 2)1(71)[1/2}]‘}6—3
Proof. First, we consider the case i < fr_s. By arguments similar to
those used in the proof of Lemma 15, we get, with the notation (20),

Az‘Ai+1 Afk,1+i71 0 0 Afk,1
(-} (~1)k

0 0
O VLN C D
Therefore, by Theorems 3 and 4,
H, = (_1)’€(fk_2—i+1)+[(fk_2—i+1)/2}Hi

H,, ,, = det

Jr—1—1

4 (_1)(k_l)(fk72—i)+[(fk—2_i)/2]Hi Fon
= x(k:2)x(k : 3,4,5) (= 1)/H (= fr_s + fr2)
= x(k: 2)x(k : 3,4,5) (~1)/2 f, 5.

If i = fi_o, then the statement follows from Theorem 3.
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Finally, we consider the case fr_o < i < fr_1. Then, setting
(24) A7 ="(gjejt1- - Ej4r-1),
by Theorem 3 we obtain

Hpom = det(AT AT AT

l+1 fk—l

fr—2 fr—2 fr—2 fr—2 fr—2 fr—2

Aik Ai—T—l Af:_1—2 AfZ—l—l Af;:_l Af:—l
CE
0 (—1)*
= det .« .. .« ..
0

(1 (1)
(=1

— (_l)k(fkflfi)(_1)(fk—1*’i)fk—2+[(fk—1*i)/Q}
= x(k:2)x(k:3,4,5) (=1)l/2f 3. mw

LEMMA 19. For any n,m € N such that fr_1+1 <m < fr, — 2,1 < n,
n —1i =g fr_1 for some i,k € Z with k > 2 and m + i = fi, we have

Hyno=x(k:1,2,4)x(k - 0,1,2)(=1)/2 o,
Hyom = x(k: 2)x(k : 3,4,5) (=1)E/Af, .

ka—hfk—z

Proof. By the same arguments and in the same notations as in the
second part of the proof of Lemma 18, we obtain

Hn,m = det(A‘;:__lz_,’_l .« 14fk_Z A;k_l . Afk—l )

fk_]- k o fk+1—1
Sr— Sre— Sr— Sr— Sre— Jr—
Al Al AT, AR AR AR
(=DF (=D
(~1)k
= det
0
(~DF  (~1)F
(_1)k71

_ (_1)(76—1)(fk—2—i)(_1)(fk72—i)fkfl-‘r[(fk—z—i)/Q]ka’fk_1

= X(k : 17274)X(k : 07 172)1(_1>[1/2]fk—2 L

LEMMA 20. For any n,m € N such that fr_1+1<m< fr—2,i<n
andn —1i =41 0 for some i,k € Z with k > 2 and m+i = fi, — 1, we have

Hypn = x(k 2 0,4)x(k : 3,4,5) (=1) /2 .,
Hym = x(k:2,3,4,5)x(k:0,1,2) (=12 3.
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Proof. The proof is similar to the first part of the proof of Lemma 18.
With the notation in (20), we get

AiAH-l “e Afk_1+i—1 0 0 e 0
(—1)k
H,, ,, = det
0 .
(1) (=1)Ft 0

= (—l)k(fk72717i)(—1)[(fk72717i)/2} det(AiAH_l e Afk,1+i—1)'
Hence, by Theorem 3
Hn,m = X(k : 074)X(k : 33475)1(_1)[1/2]fk—2 u

LEMMA 21. For any n,m € N such that fr_o+1<m< fr—2,i<n
andn—1i =y fr_1 for some i,k € Z with k > 2 and m+1i = fi — 1, we have

Hyom = x(k:2,3,4,5)x(k : 0,1,2)(—=1)/2 f,, 5,
Hpyn = x(k:0,4)x(k : 3,4,5) (=1)E/2 4.
Proof. Sincei=fr —1—m, weget 1 <i< fr_1 —2.
If i = fr_o— 1, then m = fy_1 and n = fr — 1. Therefore, by Theorem
3, we get
Hn,m == X(k —1: 17274)fk'737
which coincides with the required identity since
X(k:0,1,2)7271 = y(k : {0,1,2} N {0,3}) = x(k : 0),
(~1)[Us=2=D/2) = (R + 0,4),
If i = fy_o, then m = f_1 — 1 and n = 0. Therefore, by Theorem 4,
we get,
Hn,m = X(k —1: 074)fk737
which coincides with the required statement since
x(k:0,1,2)7 2 = x(k:{0,1,2} N {1,2,4,5}) = x(k : 1,2),
(—1)e2/2 = (K = 3,4).
If fk_g +1<1:1< fk—l — 2, then n — v =5 0 with ¢/ := 1 — fk_g. Then,

sincem+1i = fr_1—1and fr_o+1<m< fr_1 —2, applying Lemma 20,
we obtain

k—1:0,4)x(k—1:3,4,5)7" (=2 _4
k:1,5)x(k:0,4,5)x(k: {0,4,5} N {1,2,4,5})(-1)"/2 £, _4
kol 4) (k:0,4,5)(—1)/2 (1) ezt D2l qyifi-z gy o
k:2,3,4,5)x(0,1,2) (=1)/2 f; .

X(
(
(
(

Il
===
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Now, we consider the case 1 <1 < fr_o — 2. Then, with the notations in
(24) and in (20), we get
_ fo—i Fu—i g fu—i fa—i
Hy = det(Af’ZilH e AfzflAfi . .AfZJer)
Afk—1+i Afk—1+i+1 ce Afk—2 Afk—l Afk s Afk+1—2
(=DF (=1)Ft
(_1)k—1
= det -
(—=1)*
(DF
Therefore, by arguments similar to those used in the first part of the proof
of Lemma 17, we get

Hn,m — (_l)k(fk—2*1*i)(_l)fk—l(fk—?*1*7;)4’[(](7@—2*1*7;)/2]
X {det(Afk_lAfk - Afk+1—2) + (—l)kil det( I;k - I;k+172)
+ (—D)MH T det (AT LAY o))

where we use the same notations as in the proof of Lemma 17 except for

A”’s which are defined by

A = Yej et funmim2Ejt frnmi -+ - Ejt fr1—1)-

Then, following the arguments there, we get

Ho o = (ke )k 0,1,2) (~1) /2 Hy, Ly,

+ (=D Hp g g1+ (CD)FH TR
with
E = det(A, ... A}, _5)

= det(Af, - Ap g i A i A1)
= det(Ay - A ami2 A fami e A1)

o _o—i—1 _3+i
= (—1)Ur2mimDUks T de(A) L A i)

= (=)r—2mimDestd g,
where we have used Lemma 5. Therefore, by Theorems 3 and 4, we have
Hypom = x(k: 4)x(k 2 0,1,2) (=12 x(k —1:1,2,4) fr_3
+ (=D (k —1:2,3,4,5) fr_4
+ (_1)k+fk72*1*i(_1)(fk72*i*1)(fk—3+i)
x x(k—1:1,2,3,5)x(k—1:1,4)fs=270f 3
= x(k:2,3,4,5)x(k:0,1,2) (=1)F/2f, 5. mw
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4. Tiling for H,, ,, and Emm. In this section, we collect the values of
H,, ,, and ﬁmm obtained in the last section and arrange them in the quarter
plane 2 := {0,1,...} x {1,2,...}. We will tile {2 by the following tiles on
which the values H,, ,, are written in. That is, U; := V; := {(1,—-1)}, and
for k > 2,

Up:={(i,§) €Z*: 0<i+j < frm1 — 1, —fro1 <j < -1},
Vie={(i,j) €Z*: 0<i+j< fo—o—1, —fr_o <j< -1},

with the written-in values wuy, : Uy — Z and vy, : Vi — Z given by uq(1, —1)
=0, v1(1,—-1) := 1, and for k > 2,

x(k 2 2)x(k:3,4,5) (=D f 5 (i+j=0),
x(k : 0,3, 4)X(k 0,3)" fr—3s (J=—fr-1),
(i, §) = x(k:3,5)x(k: 2,3, 4 (=) fy_s (i+j = frm1 — 1),
x(k:1,2,3 5)x(k 1 A fes (j=-1),
0 (otherwise)
x(k:1,2,4)x(k:0,1,2)(-=)/2Af 5 (i+4=0),
x(k:2,3,5)x(k:2,5)" fr—2 (J = —fr—2),
(i) == x(k:0,1,2,3)x(k: 1,2,3) (=) fy o (i+j= fro—1),
X(k:0,1)x(k:1,4)" fr—o (j=-1),
L0 (otherwise)

and with @y, : Uy — Z and Uy, : Vi, — Z given u1(1,—1) := 1, v1(1,—1) := 0,
and for k > 2,

X(k = 1,4)x(k : 0,1,2) (—1)l/2 f_y (i+7=0),
X(k:4)x(k:0,3) froa ‘ (J = —fr-1);
(i, j) =  X(E 12,3, 4)x(k 0,1,5) (=02 f s (i4j=fe1—1),
X(k : 0, 1)X(k : 174)Z k—4 (] = _1)’
0 (otherwise)
x(k 2 2)x(k:3,4,5) (=12 f 5 (i+j=0),
x(k : 3)x(k : 2,5)" fr_s , (J = —fr-2),
U(6,5) = 4§ x(k:2,4)x(k:0,4,5) (=) fr g (i4j=fea—1),
X(k : 172’3’5)X(k : 174)ka73 (] = _1))
L 0 (otherwise)

For k > 1 let
U, :={(n, fr) :n € Nand n =,y 0},
Vi :i={(n, fr):ne€Nand n =¢i2 fot1+ fu—1}s
= (Vi + (= fo—2, fu)) N 2
where V + (z,y) := {(v+ z,w +y) : (v,w) € V} for V C Z?,(z,y) € Z*.
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THEOREM 5. We have

2= U( U (Uk + (1,5)) U U (Vk+(i,j))UTk>,

k=1 (i,j)ets (,) €V

where the right hand side is a disjoint union, so that (2 is tiled by the Uy ’s,
Vi.'’s and Ty, ’s. Moreover, for any (n,m) € £2, if (n,m) = (i,7) + (¢, j") with
(i,5) € Ux and (i',5") € Uy, then Hy, y = ug(i,5) and Hy m = Uk (i, j). Also,
if (nym) = (i,7) + (', j") with (i,5) € Vi and either (i',j") € Vi or (i',j') =
(—fr—2, fx), then Hy m = vi(i,5) and Hy . = Ok (i, §). Furthermore, in this
tiling, the tiles Uy, Vi and Ty with k > 2 are followed by the sequences
of smaller tiles Up_1Vi_1Ur_1, Ux_1 and Ui_1, respectively, as shown in
Figure 1.

% 7 U8
! u7
§ T6
N U6
R
S
= T5 V5 us
1 Us us
X
AN -
S U4 uvd u4 U4
3— Tj'ﬁ u3 3 V3 o3
N =y _\_‘§a\___@i->u>\___@l,—>@\__ e - —Sahes - SEhgiete. - SSEgRei
[
n=0 1 2

Fig. 1. Tiling for Hn,m

Proof. Take an arbitrary point (n,m) € 2. Let fr—1 < m < fi. If
n+m — fr >0, define 0 < i < fri9 by i =g42 n.

CASE 1: n+m — fi, < 0. We get (n,m) € Tj.

CASE 2: 0<i < fr_1. We get (n,m) € Up + (n+m — i — fi, fr)
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CASE 3: fr—1 <i < frt11. Weget (n,m) € Ugp1+(n+m—i— frt1, fret1)-

CASE 4: fr41 < i < fr41 + fe—1- We get (n,m) € Uy + (n+m — i+
Jr—1, fr)-

CASE 5: fri1 + fr—1 <@ < frio. We get (n,m) € Ve + (n+m —i+
2fr—1, fr)-

The fact that the written-in values coincide with H,, ,,, and ﬁn,m follows
from Lemma 18 (first case in uy and uy), Theorem 3 (second case), Lemma
21 (third case), Theorem 4 (fourth case), Corollary 3 (fifth case), Lemma 19
(first case in vy and vy), Theorem 3 (second case), Lemma 20 (third case),
Lemma 20 (fourth case) and Corollary 3 (fifth case). The m in the preceding
lemmas and theorems coincides with fi 4 j in Theorem 5 while the meaning
of the symbols k, i, n is not necessarily the same. m

5. Padé approximation. Let ¢ = po¢1 ... be an infinite sequence over

a field K, H,, ., := H, m(p) be the Hankel determinant (3), and ¢(z) the
formal Laurent series (4) with h = —1. We also denote the Hankel matrices
by

(25) Mmm = (Son+i+j)i,j:0,l,...,m—1 (7’L = 0, ]., ey M = 1, 2, . .),

so that ﬁmm = det ]\/Inm.
The following proposition is well known ([1], for example). But we give
a proof for self-containment.

PROPOSITION 1. (1) For any m = 1,2,..., a Padé pair (P,Q) of order
m for ¢ exists. Moreover, for each m, the rational function P/Q € K(z) is
determined uniquely for such Padé pairs (P, Q).

(2) For any m = 1,2,..., m is a normal index for ¢ if and only if
Ho () # 0.
Proof. Let
P =po+piz+pe2® +.. 4+ pmz™,
Q=qo+qz+ @+ ..+ gz
Then the condition ||Qy — P|| < exp(—m) is equivalent to

— DPm = 07

dmPo —Pm-1=0,

(26) q1p0 + coo + gmem—-1 —po =0,
Qovot+ @1t o+ GmPm =0,

GoPm-1+ Q1Pm—2+ ... + GmPam—1 =0.
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Furthermore, the system (26) for (qoq1 - .. gm) is equivalent to

(27> (QO(J1 so. Qm—l)MO,m + (Jm(@m@m+1 o 902m—1) - (00 R 0)7

where (pop1 ... pm) is determined by (goqi - - - ¢m) by the upper half of (26).
There are two cases.

CASE 1: ﬁoym = 0. In this case, since det Mg’m = fAIO,m = 0, there exists

a nonzero vector (qoqi - -.Gm—1) such that (goqs - ~-Qm—1)j/\4\0,m = 0. Then
(27) is satisfied with this (goq1 ... ¢m—1) and ¢, = 0.

CASE 2: I:To,m # 0. In this case, since det ]\/4\0,m = ﬁo,m # 0, there exists
a unique vector (qoq - .- ¢m—1) such that

(28) (QOQ1 e qul)MO,m = _(SDmSOerl e QDmel)-

Then (27) is satisfied with this (qoq1 ... gm-1) and ¢, = 1.

Thus, a Padé pair of order m exists. Moreover, by the above arguments,
a Padé pair (P, Q) of order m with deg Q < m exists if and only if flgm =0,
since if PAIOVm # 0, then by (27), ¢, = 0 implies (qoq1 - .. gm—1) = (00...0),
and hence @ = 0.

Now we prove that for any Padé pairs (P, Q) and (P’,Q’) of order m,
we have P/Q = P'/Q’. By (5), we have

¢ — P/Q| < exp(—n —degQ), ¢ —P'/Q'|| < exp(—m — degQ’).
Hence,

|1P/Q — P'/Q'|| < exp(—m — deg Q A deg Q’).

Therefore,
|PQ" — P'Q| < exp(—m +degQ V degQ') < 1.

Since PQ" — P'Q is a polynomial of z, |[PQ" — P’Q)|| is either 0 or not less
than 1. Hence, the above inequality implies PQ' — P'Q =0. =

In view of (26), without loss of generality, we can put

P=py+piz +p222 + ... +pm_12m_l,

(29) ) -
Q=q +qz+q@z"+...+qgnz™.

THEOREM 6. Let (P, Q) be the normalized Padé pair for ¢ with deg Q as
its normal index m with P,Q given by (29). Then
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(1) Q(z) = Hyp det(zMo,m — My ).
(2) det(zI — M\o,m) is equal to

z 1
z 1
z 1
z 1
Pm—1 1
Pm—-2 Pm-—1 gm-1 1
D1 Pm—1 @ ... 1
Po Pm—2 Pm—1 Q1 ... gm-1 1
po - . Pm-2 g ... ... : gm—-1 1
p1 : q0
po 1 oa @ . 1
Do q0 qa . .. gm—1 1

where I is the unit matriz of size m.
(3) We have

Hop = (-1 T Pl)=DMpp [ Q)

2 Q(2)=0 z; P(2)=0

where HZ,R(Z):O denotes the product over all the roots of the polynomial
R(z) with their multiplicity and py, is the leading coefficient of P(z), that is,
Pm-1=-..=pr+1 = 0,pr # 0 if P(2) is not the zero polynomial, otherwise
Pk = 0.

Proof. (1) Note that ¢, = 1 by the assumption that (P,Q) is the
normalized Padé pair. By (28), we have

0 1
0 1
Mo = M .
0 1
—qo —q1 cor TQm—-2 —Qqm-1

Since

ﬁ()’m = det ]/\Z()’m 75 0
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by the normality of the index m, it follows that

0 1
0
Q(z) =det | 21 —
—q0 —q1

—~_

= det(zI — M\LmMO,m)

= ﬁ_l det(z]\?o’m — Ml,m)'

0,m

(2) We define the matrices:

Pm—1 Pm—2
Pm—2
P, =
b1
Po
P;n 1=
Pm—1 Pm—2
1
dm—1 1
Qm =
a1 q2
Q=
1 dm—1

q2

0

—qm—

P1 Do
Po

Pm—1

b2

dm—1

q1

1

2 —Gm-1

Pm—-1

Pm—2

D2
b1

153
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1
dm—1 1 O
Q;vlm—l = ‘ . 9
2 G - QGm-1 1
g q2 ... dm-2 (dm-1
9 q1 --- dm-3 (dm-2
q0 q1 .. dm—3
Qm,m—l = .. .. : )
0 q1
q0
®0
O 2] P1
Qsmfl - :
©m-—3
Yo ¥1 e POm—3 Pm-—2

We denote by O the zero matrices of various sizes. We also denote by I,, the
unit matrix of size n. By (26), we have

det(zI — M, m)
m 1 O
= det <z < > < lQm m—1 MO,m))
(" 0. ) (0 2)~(onaris )
Q;LlQm,m—l MO,m
(-6 g) (o i)
N @ Qm Qmm 1 QmMO,m
B 0 0 —I1 0 Iy O &y
(46 @)~ (o ) (" 2 7))
O O —Ipn1 O =P,

- det <Z<O Qm>‘(Qm,m_11 P, 1))

where we use (26) to get the last equality. Hence

. B O ) _Im—l 0] _@m—l
det(zI — Mo ,,) = det <Z (O an) B <Qm,m—1 P, ))
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" @) O O Iy O —@,,
— m—1 _ m—1 m—1
_det<< o Im) <Z<O Qm> <Qm,m—1 Pm >>>
_ 0 0\ (-Qu, O-P,,
= det <Z<O Qm>_<Qm,m—l Pm >>

= comae (g O )+ (5 )

I @) z1,,
=(-)"det[ O QL. O P,,]|,
le Qm,m—l Pm

which implies (2).
(3) By (2), we have

Hom = (—1)" det(0I — My,

Pm—1 1
Pm—2 Pm-—1 dm—1 1
D1 Pm—1 @ 1
:(_1)[m/2] Po Pm—2 DPm-—1 q1 qm—1 |,
Po Pm—2 Q0 - Gm—2
Po P1 q1
Po qo

which completes the proof since the last determinant is Sylvester’s determi-
nant for P(z) and Q(z). m

For a finite or infinite sequence ag(z), a1(z), ... of elements in K((z71)),
we use the notation

[ag(2); a1(2),a2(2),...,an(2)] := ap(z) + L i
ar(z) + w22+
L1
an(z)
and
(30) [ap(2);a1(2),a2(2),...] :== nllngo[ao(z); ay1(2),a2(2),...,a,(2)]

provided that the limit exists, where the limit is taken with respect to the
metric induced by the nonarchimedean norm in K((271)).
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We define
(31) po(z) =ao(2), p-1(2) =1, q(z)=1, q-1(2) =0,
pn(z) = an(z)pn—l(z)+pn—2(z)a QH(Z) = an(z)Qn—l(z>+Qn—2(z)
(n=1,2,3,...)

for any given sequence a;(z),as(z),... € K((271)). Then p,(2),qn(2) €
K((27")),pn(2) # 0 if ga(2) = 0, and

P — fao(ehian(e) ) an (2] € K U0} (02 0)
where we mean /0 := oo for ¢ € K((271))\{0}, and ¢+00 := 00,1 /c0 := 0
for 9 € K((271)). By using (31), it can be shown that the limit (30) always
exists in the set K((271)) as far as
(32) an(z) €K[z] (n>0), degan(z)>1 (n>1).

For (z) € K((271)) given by (4), we denote by |¢(z)] the polynomial part
of ¢(z), which is defined as follows:

h
le(2)] =D pnz""*" € K[2].
k=0
We denote by T the mapping T : K((z71)) \ {0} — K((271)) defined by

1 1 .
W) =5 - o] 0O exE o

Then, for any given p(z) € K((271)), we can define the continued fraction

expansion of ¢(z):

[ lao(2);a1(2),a2(2),...,an—1(2)] if ¢(2) € K(z),
(33) #(2) = { [ag(z);al(z),az(z),ag(z), oo otherwise

with a,(z) satisfying (32) according to the following algorithm.

Continued Fraction Algorithm:

@ =Le@) @)= | pero |

N = N(p(2)) :=inf{m : T (p(2)) =0}  (inf0 := o).

We note that if ¢(2) € K(z), then N < oo; if ¢(2) € K((271)) \ K(2), then
N = oo and the continued fraction (33) converges to the given p(z) € K(z).
We say a continued fraction is admissible if it is obtained by the algorithm.
We remark that a continued fraction (33) is admissible if and only if (32)
holds.

The following proposition is known [2], but we give a proof for complete-
ness.
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PROPOSITION 2. The set of all P/Q € K(z) for Padé pairs (P,Q) for
©(z) € K((2)) coincides with the set of convergents p,(z)/qn(2) (0 <n < N)
of the continued fraction expansion of ¢(z). Moreover, m is a normal index
if and only if m is a degree of q,(z) for somen =0,1,2,... (withn < N if
o(z) € K(2)).

Proof. Note that

o(z) = (an(z) +T"(p(2) — ao))pn-1(2) +pn—2(2)7
(an(z) +T(¢(2) = a0))qn-1(2) + gn-2(2)
(_1)n = pn—l(z)Qn—Q(z) - pn—2(z)Qn—1(z)'
Hence, we have

(=1)"T"(p(z) — ao(2))
an(2) + T (p(2) — ao(2))qn-1(2)
= exp(—degan+1(n) — deggn(z)),

lan(2)(2) = pn(2)] =

so that

(34) lgn(2)p(2) = pn(2)]| < exp(—deggn(z)) (n <N).

In the case N < oo, the left-hand side of (34) turns out to be 0 for n =
N — 1. Therefore, (p,(z),qn(2)) is a Padé pair of order m = deggq,(z) for
all m € {degq,(2): 0 <n < N}.

Conversely, for any k = 1,2,..., let (P,Q) be a Padé pair of order k.
Let degqn(z) < k < deggni1(z) for some n = 0,1,2,... with n < N
(deggn(z) := o0). Then, since deg @ < k < degqn+1, it follows from (34)
that

lo(2) = pn(2)/an(2)|| = exp(— deg gn(2) — deg gn+1(2))
< exp(—deggn(z) — deg Q).
Since (P, Q) is a Padé pair of order k, we have

lo(z) — P/Q| < exp(—k — deg Q) < exp(—deggn(z) — deg Q).

Therefore,
P p,(2)

3 (o) < exp(—deggn(2) — deg Q).
On the other hand, if P/Q # p,(2)/qn(2), then
)
)

z

P pn( PQn(z) - Qpn<z)
Q  an(z

Qan(2)
> exp(—deg qn(2) — deg Q),
which is a contradiction. Thus P/Q = p,(z)/qn(2).
Note that p,(z)/q.(z) is irreducible for any n = 1,2,... with n < N,
since ppgn_1 — Pn_1qn = (—1)""1. Let m = deg ¢, (z) for some n = 1,2,...
with n < N. Take any Padé pair (P, Q) of order m. Then deg @ < m. On the
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other hand, by the above argument, P/Q = p,,(2)/qn(2). Since p,,(2)/qn(2)
is irreducible, this implies that deg @ > deg ¢, (z) = m. Thus, m is a normal
index.

Conversely, let m > 0 be any normal index. Take any Padé pair (P, Q)
of order m. Then, by the above argument, there exists n = 0,1,2,... with
n < N such that P/Q = p,(2)/q.(z). Hence the irreducibility of p,(z)/q.(2)
implies deg ¢, (z) < deg@ (< m). Hence, (pn(2),qn(2)) is a Padé pair of
order m. Since m is a normal index, deg g, (z) = m. =

We now obtain the continued fraction expansions for
pe(2) =G0z Bz P+ 82+ € Q((z7Y))

corresponding to the Fibonacci words € = ¢(a,b) with (a,b) = (1,0) and
(a,b) = (0,1). As in Section 3, we use the notations ¢ and € for them.
The proofs in the following theorems are given only for ¢, since the proof is
similar for €. In [3], J. Tamura gave the Jacobi-Perron—Parusnikov expansion
for a vector consisting of Laurent series with coefficients given by certain
substitutions, which contains the following as its special case (cf. the footnote
on p. 301 of [3]):

ProrosiTioN 3. We have
(z = D)pe(z) = [0; 272, 201 2o 2 220 ],

THEOREM 7. We have the following admissible continued fraction for
ve(2) and p=(z):

ve(2) = [0;a1,a2,a3,...], ¢=(2)=1[0;a1,a,as,...|

with

ay = z, a22_2+1a a3:_%(z+1)’

Gonpo = (=D)L T2 41,

1
Agngs = (—1)"7! z—1 n=12,...),
e R )

and

ayp = 22, a2 = —2,

Tonpr = (1) T AT ),

1
Aop42 = (_1)n71 (Z - 1) (n = 172> )
fn—lfn
Proof. We put
On 1= [0;277, 2w iz, ] (n > -2,

n—1 fngn + fn—lfn + fsgn—s—l
z—1

gn = (*1)
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n—1 z—1
N = (—1 n>1),
( ) fnfn+1 + frzzen—H ( )
eni= ()" 2T T 1) (n > 1),
1
d, = (—1)"1 z—1 n>1).
(D= (2
Then
(35) En = lensma] (= cn+1/mm),  Mn = [dn; &l
Using

9;1 — an + 9n+l
and Proposition 3, we get

0_o
pe(2) = —7  (10-2/(z =Dl <1)
= [0; (2 = 1)023)]
=0;z—14+(z—1)0_1] (|-14+(z—1)b_41] <1)
- 0_1 9
- o;z,_l‘l] — [O;z, gl 0]
-0 +z-1 —1 -6y
[ 14+ (=24 2)0 14+ (—z+2)b
=0z, —z 414 =T 0 STAET AN
_,z, z+ 1+ 1 -6, ] (’ 16, <
- 4 -1
L —z+2+0,
[ —z—1-0;
pr— -0727_Z+1, 2_{—01}
[ 1 407 +2
=10;2,—2+1,—= 1), —+——=
_O,z, z4+1, 2(z+ ), por }
[ 1 4Z+2+402
=0z, 2+ 1, —=(z+1), — =72
_O,Z, z4+1, 2(z+ ), pog| }
Hence, we have
(36) f2)=[02,—z+1,-5(z+1),&] (&7 < D).
From (35) and (36), it follows that
f(z)= [O;z,—z—i—1,—%(z+1)cl,d1,...,cn,dn,§n+1]
= [O; z, —z+1,—%(,2—1—1)cl,d1,02,d2,...]

which completes the proof for ¢ (z).

Starting from the identity ¢=(2) = (1 —0_»

)/(z — 1) instead of ¢.(z) =

0_5/(z—1), we can get the admissible continued fraction for pz(z) in a

similar fashion. m
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THEOREM 8. The numerator p, := pn(z) (B, := D, (%), resp.) and the de-
nominator ¢ := qn(z) (q,, := q,,(2), resp.) of the nth convergent of the con-
tinued fraction expansion for p.(z) (and p=(z), resp.) are given as follows:

p0:07 p1:17 p2:_z+17
QO:L q =z, QQ:—22+Z+17

(coz™ Ve 22 4 tep 1),

Pon—-1 =
" fnfl
Pan = (—1)n{fn—12f” (Eozf”’l_l +epzfn 1724 4 €fn_1—1)
— fnfg(E()Zf"_l + Elzf"_2 + ...+ €fn71)}/(2’ — 1),

1
J— fTL
qon—1 = z —1 )
! fn—l( )

Gon = (1) fn_12/m (27t g 2P 72 1)
— fao (T 22 D) (n=2,3,..),
and
Po=0, p=1,
=1 g =2
1
n—2
Pon_1 = (—1)""H ozl (Fozlr7 4 E 2172 4 E )

— fnfg(gozf"_l +§1Zf"_2 + ... +Efn,1)}/(z — 1) + fn72,
1
(an . 1)’

Pop_o = (€ozf"_1 +512’f"_2 +... —I—Efn,l),

qon—2 =
n—2

Ton_1 = (D)"Y fpozlr(fr7t g 2f=2 4 4 1)
— o T2 D (n=2,3,..),
where pa, and Dy,,_1 are polynomials since the numerators are divisible by
z—1.
Proof. The values for pg, p1,p2, qo, q1,q2 are obtained from Theorem 7

by direct calculations. For a general n, we can prove the formula for p,, g,
by induction on n using (31) and Theorem 7 without difficulty. m

REMARK 4. From Proposition 2 and Theorem 8§, it follows that the set
of normal indices for ¢.(z) (and ¢z(z), resp.), is {0, fo = f1 — 1, f1r = fa —
1, fa, fs—1,...} ({0, f1 = foa—1, fo, fs — 1,...}, resp.) which together with
Proposition 1 gives another proof of the third cases of Theorem 2 with n = 0.

REMARK 5. In [4], the continued fraction expansion for Laurent series
corresponding to infinite words over {a, b} generated by substitutions of “Fi-
bonacci type” is considered, where a, b are viewed as independent variables.
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