Numbers with a large prime factor

by
Hong-Quan Liu (Harbin) and Jie Wu (Nancy)

1. Introduction. Let $P(x)$ be the greatest prime factor of the integer $\prod_{x<n \leq x+x^{1 / 2}} n$. It is expected that $P(x) \geq x$ for $x \geq 2$. However, this inequality seems extremely difficult to verify. In 1969, Ramachandra [20, I] obtained a non-trivial lower bound: $P(x) \geq x^{0.576}$ for sufficiently large x. This result has been improved consecutively by many authors. The best estimate known to date is very far from the expected result. The historical records are as follows:

$$
\begin{array}{ll}
P(x) \geq x^{0.625} & \text { by Ramachandra }[20, \mathrm{II}] \\
P(x) \geq x^{0.662} & \text { by Graham }[8] \\
P(x) \geq x^{0.692} & \text { by Jia }[16, \mathrm{I}] \\
P(x) \geq x^{0.7} & \text { by Baker }[1] \\
P(x) \geq x^{0.71} & \text { by Jia }[16, \mathrm{II}] \\
P(x) \geq x^{0.723} & \text { by Jia }[16, \mathrm{III}] \text { and Liu }[18] \\
P(x) \geq x^{0.728} & \text { by Jia }[16, \mathrm{IV}] \\
P(x) \geq x^{0.732} & \text { by Baker and Harman }[2]
\end{array}
$$

We note that the last two papers are independent. In both, the same estimates for exponential sums were used. But Baker and Harman [2] introduced the alternative sieve procedure, developed by Harman [10] and by Baker, Harman and Rivat [3], to get a better exponent. In this paper we shall prove a sharper lower bound.

THEOREM 1. We have $P(x) \geq x^{0.738}$ for sufficiently large x.
As Baker and Harman indicated in [2], it is very difficult to make any progress without new exponential sum estimates. Naturally we first treat

[^0]the corresponding exponential sums
\[

$$
\begin{aligned}
S_{I} & :=\sum_{h \sim H} \sum_{m \sim M} \sum_{n \sim N} b_{n} e\left(\frac{x h}{m n}\right), \\
S_{I I} & :=\sum_{h \sim H} \sum_{m \sim M} \sum_{n \sim N} a_{m} b_{n} e\left(\frac{x h}{m n}\right),
\end{aligned}
$$
\]

where $e(t):=e^{2 \pi i t},\left|a_{m}\right| \leq 1,\left|b_{n}\right| \leq 1$ and $m \sim M$ means $c M<m \leq c^{\prime} M$ with some positive unspecified constants c, c^{\prime}. The improvement in Theorem 1 comes principally from our new bound for S_{I} ($\S 2$, Corollary 2), where we extend the condition $N \leq x^{3 / 8-\varepsilon}$ of Jia [16, III] and Liu [18] to $N \leq x^{2 / 5-\varepsilon}$ (ε is an arbitrarily small positive number). It is noteworthy that we prove this as an immediate consequence of a new estimate on special bilinear exponential sums ($\S 2$, Theorem 2). This estimate has other applications, which will be taken up elsewhere. Our results on $S_{I I}(\S 3$, Theorem 3) improve Theorem 6 of [7] (or [18], Lemma 2) and Lemma 14 of [1]. We need Lemma 9 of [1] only in a very short interval $(3 / 5 \leq \theta \leq 11 / 18)$.

If the interval $\left(x, x+x^{1 / 2}\right]$ is replaced by $\left(x, x+x^{1 / 2+\varepsilon}\right]$, one can do much better. In 1973, Jutila [17] proved that the largest prime factor of $\prod_{x<n \leq x+x^{1 / 2+\varepsilon}} n$ is at least $x^{2 / 3-\varepsilon}$ for $x \geq x_{0}(\varepsilon)$. The exponent $2 / 3$ was improved successively to 0.73 by Balog [4, I], to 0.772 by Balog [4, II], to 0.82 by Balog, Harman and Pintz [5], to 11/12 by Heath-Brown [12] and to $17 / 18$ by Heath-Brown and Jia [13]. It should be noted that their methods cannot be applied to treat $P(x)$, and this leads to the comparative weakness of the results on $P(x)$ (cf. [5]).

Throughout this paper, we put $\mathcal{L}:=\log x, y:=x^{1 / 2}, N(d):=\mid\{x<n \leq$ $x+y: d \mid n\} \mid$ and $v:=x^{\theta}$. From [16, III], [18] and [2], in order to prove Theorem 1 it is sufficient to show

$$
\begin{equation*}
\sum_{x^{0.6-\varepsilon}<p \leq x^{0.738}} N(p) \log p<0.4 y \mathcal{L}, \tag{1.1}
\end{equation*}
$$

where p denotes a prime number. For this we shall need an upper bound for the quantity $S(\theta):=\sum_{x^{\theta}<p \leq e x^{\theta}} N(p)(0.6 \leq \theta \leq 0.738)$. We write

$$
\begin{equation*}
S(\theta)=\sum_{x^{\theta}<p \leq e x^{\theta}} \sum_{x<m p \leq x+y} 1=\sum_{p \in \mathcal{A}} 1=S\left(\mathcal{A},(e v)^{1 / 2}\right), \tag{1.2}
\end{equation*}
$$

where $\mathcal{A}=\mathcal{A}(\theta):=\left\{n: x^{\theta}<n \leq e x^{\theta}, N(n)=1\right\}, S(\mathcal{A}, z):=\mid\{n \in \mathcal{A}:$ $\left.P^{-}(n) \geq z\right\} \mid$ and $P^{-}(n):=\min _{p \mid n} p\left(P^{-}(1)=\infty\right)$. We would like to give an upper bound for $S(\theta)$ of the form

$$
\begin{equation*}
S(\theta) \leq\{1+O(\varepsilon)\} \frac{u(\theta) y}{\theta \mathcal{L}} \tag{1.3}
\end{equation*}
$$

where $u(\theta)$ is as small as possible. Thus in order to prove (1.1), it suffices to
show (1.3) and

$$
\begin{equation*}
\int_{0.6}^{0.738} u(\theta) d \theta<0.4 \tag{1.4}
\end{equation*}
$$

As in [2], we shall prove (1.3) by the alternative sieve for $0.6 \leq \theta \leq 0.661$ and by the Rosser-Iwaniec sieve for $0.661 \leq \theta \leq 0.738$. Thanks to our new estimates for exponential sums, our $u(\theta)$ is strictly smaller than that of Baker and Harman [2].

In the sequel, we use ε_{0} to denote a suitably small positive number, ε an arbitrarily small positive number, ε^{\prime} an unspecified constant multiple of ε and put $\eta:=e^{-3 / \varepsilon}$.
2. Estimates for bilinear exponential sums and for S_{I}. First we investigate a special bilinear sum of type II:

$$
S(M, N):=\sum_{m \sim M} \sum_{n \sim N} a_{m} b_{n} e\left(X \frac{m^{1 / 2} n^{\beta}}{M^{1 / 2} N^{\beta}}\right)
$$

Here the exponent $1 / 2$ is important in our method. We have the following result.

Theorem 2. Let $\beta \in \mathbb{R}$ with $\beta(\beta-1) \neq 0, X>0, M \geq 1, N \geq 1$, $\mathcal{L}_{0}:=\log (2+X M N),\left|a_{m}\right| \leq 1$ and $\left|b_{n}\right| \leq 1$. Then

$$
\begin{aligned}
S(M, N) \ll & \left\{\left(X^{4} M^{10} N^{11}\right)^{1 / 16}+\left(X^{2} M^{8} N^{9}\right)^{1 / 12}+\left(X^{2} M^{4} N^{3}\right)^{1 / 6}\right. \\
& \left.+\left(X M^{2} N^{3}\right)^{1 / 4}+M N^{1 / 2}+M^{1 / 2} N+X^{-1 / 2} M N\right\} \mathcal{L}_{0}
\end{aligned}
$$

Proof. In view of Theorem 2 of [7] (or Lemma 3.1 below), we can suppose $X \geq N$. In addition we may also assume $\beta>0$. Let $Q \in\left(0, \varepsilon_{0} N\right]$ be a parameter to be chosen later. By the Cauchy-Schwarz inequality and Lemma 2.5 of [9], we have

$$
\begin{aligned}
|S|^{2} \ll & \frac{(M N)^{2}}{Q} \\
& +\frac{M^{3 / 2} N}{Q} \sum_{1 \leq\left|q_{1}\right|<Q}\left(1-\frac{\left|q_{1}\right|}{Q}\right) \sum_{n \sim N} b_{n+q_{1}} \bar{b}_{n} \sum_{m \sim M} m^{-1 / 2} e\left(A m^{1 / 2} t\right),
\end{aligned}
$$

where $t=t\left(n, q_{1}\right):=\left(n+q_{1}\right)^{\beta}-n^{\beta}$ and $A:=X /\left(M^{1 / 2} N^{\beta}\right)$. Splitting the range of q_{1} into dyadic intervals and removing $1-q_{1} / Q$ by partial summation, we get

$$
\begin{equation*}
|S|^{2} \ll(M N)^{2} Q^{-1}+\mathcal{L}_{0} M^{3 / 2} N Q^{-1} \max _{1 \leq Q_{1} \leq Q}\left|S\left(Q_{1}\right)\right| \tag{2.1}
\end{equation*}
$$

where

$$
S\left(Q_{1}\right):=\sum_{q_{1} \sim Q_{1}} \sum_{n \sim N} b_{n+q_{1}} \bar{b}_{n} \sum_{m \sim M} m^{-1 / 2} e\left(A m^{1 / 2} t\right)
$$

If $X(M N)^{-1} Q_{1} \geq \varepsilon_{0}$, by Lemma 1.4 of [18] we transform the innermost sum to a sum over l and then by using Lemma 4 of [16, IV] with $n=n$ we estimate the corresponding error term. As a result, we obtain

$$
\begin{aligned}
S\left(Q_{1}\right) \ll & \sum_{q_{1} \sim Q_{1}} \sum_{n \sim N} b_{n+q_{1}} \bar{b}_{n} \sum_{l \in I\left(n, q_{1}\right)} l^{-1 / 2} e\left(A_{0} t^{2}\right)+\left\{\left(X M^{-1} N^{-1} Q_{1}^{3}\right)^{1 / 2}\right. \\
& \left.+M^{-1 / 2} N Q_{1}+\left(X^{-1} M N Q_{1}\right)^{1 / 2}+\left(X^{-2} M N^{4}\right)^{1 / 2}\right\} \mathcal{L}_{0},
\end{aligned}
$$

where $A_{0}:=\frac{1}{4} A^{2} l^{-1}, I\left(n, q_{1}\right):=\left[c_{1} A M^{-1 / 2}|t|, c_{2} A M^{-1 / 2}|t|\right]$ and c_{j} are some constants. Interchanging the order of summation and estimating the sum over l trivially, we find, for some $l \asymp X(M N)^{-1} Q_{1}$, the inequality

$$
\begin{align*}
S\left(Q_{1}\right) \ll & \left(X M^{-1} N^{-1} Q_{1}\right)^{1 / 2}\left|\sum_{\left(n, q_{1}\right) \in \mathbf{D}(l)} b_{n+q_{1}} \bar{b}_{n} e\left(A_{0} t^{2}\right)\right| \tag{2.2}\\
& +\left\{\left(X M^{-1} N^{-1} Q_{1}^{3}\right)^{1 / 2}\right. \\
& \left.+M^{-1 / 2} N Q_{1}+\left(X^{-1} M N Q_{1}\right)^{1 / 2}+\left(X^{-2} M N^{4}\right)^{1 / 2}\right\} \mathcal{L}_{0},
\end{align*}
$$

where $\mathbf{D}(l)$ is a subregion of $\left\{\left(n, q_{1}\right): n \sim N, q_{1} \sim Q_{1}\right\}$. Let $S_{1}\left(Q_{1}\right)$ be the double sums on the right-hand side of (2.2). Let $Q_{2} \in\left(0, \varepsilon_{0} \min \left\{Q_{1}, N^{2} / X\right\}\right]$ be another parameter to be chosen later. Using again the Cauchy-Schwarz inequality and Lemma 2.5 of [9] yields

$$
\begin{equation*}
\left|S_{1}\left(Q_{1}\right)\right|^{2} \ll\left(N Q_{1}\right)^{2} Q_{2}^{-1}+N Q_{1} Q_{2}^{-1} \sum_{1 \leq q_{2} \leq Q_{2}}\left|S_{2}\left(q_{1}, q_{2}\right)\right| \tag{2.3}
\end{equation*}
$$

where

$$
S_{2}\left(q_{1}, q_{2}\right):=\sum_{n \sim N} \sum_{q_{1} \in J_{1}(n)} b_{n+q_{1}+q_{2}} \bar{b}_{n+q_{1}} e\left(t_{1}\left(n, q_{1}, q_{2}\right)\right),
$$

$J_{1}(n)$ is a subinterval of $\left[Q_{1}, 2 Q_{1}\right]$ and $t_{1}\left(n, q_{1}, q_{2}\right):=A_{0}\left\{t\left(n, q_{1}+q_{2}\right)^{2}-\right.$ $\left.t\left(n, q_{1}\right)^{2}\right\}$. Putting $n^{\prime}:=n+q_{1}$, we have

$$
S_{2}\left(q_{1}, q_{2}\right) \ll \sum_{n^{\prime} \sim N}\left|\sum_{q_{1} \in J_{2}\left(n^{\prime}\right)} e\left(t_{1}\left(n^{\prime}-q_{1}, q_{1}, q_{2}\right)\right)\right|
$$

where $J_{2}\left(n^{\prime}\right)$ is a subinterval of $\left[Q_{1}, 2 Q_{1}\right]$. Noticing

$$
\begin{aligned}
& t\left(n^{\prime}-q_{1}, q_{1}+q_{2}\right)-t\left(n^{\prime}-q_{1}, q_{1}\right)=t\left(n^{\prime}, q_{2}\right), \\
& t\left(n^{\prime}-q_{1}, q_{1}+q_{2}\right)+t\left(n^{\prime}-q_{1}, q_{1}\right)=2 t\left(n^{\prime}-q_{1}, q_{1}\right)+t\left(n^{\prime}, q_{2}\right),
\end{aligned}
$$

we have

$$
t_{1}\left(n^{\prime}-q_{1}, q_{1}, q_{2}\right)=f\left(n^{\prime}\right) q_{1}+r\left(n^{\prime}, q_{1}\right)+A_{0} t\left(n^{\prime}, q_{2}\right)^{2},
$$

where $f\left(n^{\prime}\right):=2 \beta A_{0} t\left(n^{\prime}, q_{2}\right) n^{\prime \beta-1}$ and $r\left(n^{\prime}, q_{1}\right):=2 A_{0} t\left(n^{\prime}-q_{1}, q_{1}\right) t\left(n^{\prime}, q_{2}\right)-$ $f\left(n^{\prime}\right) q_{1}$. Since the last term on the right-hand side is independent of q_{1}, it
follows that

$$
S_{2}\left(q_{1}, q_{2}\right) \ll \sum_{n^{\prime} \sim N}\left|\sum_{q_{1} \in J_{2}\left(n^{\prime}\right)} e\left(\pm\left\|f\left(n^{\prime}\right)\right\| q_{1}+r\left(n^{\prime}, q_{1}\right)\right)\right|
$$

where $\|a\|:=\min _{n \in \mathbb{Z}}|a-n|$. Since $Q_{2} \leq \varepsilon_{0} N^{2} / X$, we have

$$
\max _{n^{\prime} \sim N} \max _{q_{1} \in J_{2}\left(n^{\prime}\right)}\left|\partial r / \partial q_{1}\right| \leq c_{3} X N^{-2} q_{2} \leq 1 / 4
$$

By Lemmas 4.8, 4.2 and 4.4 of [21], the innermost sum on the right-hand side equals

$$
\begin{aligned}
& \int_{J_{2}\left(n^{\prime}\right)} e\left(\pm\left\|f\left(n^{\prime}\right)\right\| s+r\left(n^{\prime}, s\right)\right) d s+O(1) \\
& \ll \begin{cases}\left\|f\left(n^{\prime}\right)\right\|^{-1} & \text { if }\left\|f\left(n^{\prime}\right)\right\| \geq \varepsilon_{0}^{-1} X N^{-2} q_{2}, \\
\left(X N^{-2} Q_{1}^{-1} q_{2}\right)^{-1 / 2} & \text { if }\left\|f\left(n^{\prime}\right)\right\|<\varepsilon_{0}^{-1} X N^{-2} q_{2},\end{cases}
\end{aligned}
$$

which implies

$$
\begin{aligned}
S_{2}\left(q_{1}, q_{2}\right) \ll & \sum_{\left\|f\left(n^{\prime}\right)\right\| \geq \varepsilon_{0}^{-1} X N^{-2} q_{2}}\left\|f\left(n^{\prime}\right)\right\|^{-1} \\
& +\sum_{\left\|f\left(n^{\prime}\right)\right\|<\varepsilon_{0}^{-1} X N^{-2} q_{2}}\left(X N^{-2} Q_{1}^{-1} q_{2}\right)^{-1 / 2} \\
= & S_{2}^{\prime}+S_{2}^{\prime \prime} .
\end{aligned}
$$

As $f^{\prime}\left(n^{\prime}\right) \asymp X N^{-2} Q_{1}^{-1} q_{2}$, Lemma 3.1.2 of [14] yields

$$
\begin{aligned}
& S_{2}^{\prime} \ll \mathcal{L}_{0} \max _{\varepsilon_{0}^{-1} X N^{-2} q_{2} \leq \Delta \leq 1 / 2} \sum_{\Delta \leq\left\|f\left(n^{\prime}\right)\right\|<2 \Delta} \Delta^{-1} \ll\left(N+X^{-1} N^{2} Q_{1} q_{2}^{-1}\right) \mathcal{L}_{0}, \\
& S_{2}^{\prime \prime} \ll\left(X Q_{1} q_{2}\right)^{1 / 2}+\left(X^{-1} N^{2} Q_{1}^{3} q_{2}^{-1}\right)^{1 / 2} .
\end{aligned}
$$

These imply, via (2.3),

$$
\left|S_{1}\left(Q_{1}\right)\right|^{2} \ll\left\{\left(X N^{2} Q_{1}^{3} Q_{2}\right)^{1 / 2}+\left(N Q_{1}\right)^{2} Q_{2}^{-1}+\left(X^{-1} N^{4} Q_{1}^{5} Q_{2}^{-1}\right)^{1 / 2}\right\} \mathcal{L}_{0}^{2}
$$

where we have used the fact that

$$
N^{2} Q_{1}+X^{-1} N^{3} Q_{1}^{2} Q_{2}^{-1} \ll\left(N Q_{1}\right)^{2} Q_{2}^{-1} \quad\left(X \geq N \text { and } Q_{1} \geq Q_{2}\right) .
$$

Using Lemma 2.4 of [9] to optimise Q_{2} over $\left(0, \varepsilon_{0} \min \left\{Q_{1}, N^{2} / X\right\}\right.$], we obtain

$$
\left|S_{1}\left(Q_{1}\right)\right|^{2} \ll\left\{\left(X N^{4} Q_{1}^{5}\right)^{1 / 3}+\left(N^{3} Q_{1}^{4}\right)^{1 / 2}+N^{2} Q_{1}+X Q_{1}^{2}\right\} \mathcal{L}_{0}^{2}
$$

where we have used the fact that $\left(X^{-1} N^{4} Q_{1}^{4}\right)^{1 / 2}$ and $\left(N^{2} Q_{1}^{5}\right)^{1 / 2}$ can be absorbed by $\left(N^{3} Q_{1}^{4}\right)^{1 / 2}$ (since $\left.X \geq N \geq Q_{1}\right)$. Inserting this inequality into (2.2) yields

$$
\begin{aligned}
S\left(Q_{1}\right) \ll & \left\{\left(X^{4} M^{-3} N Q_{1}^{8}\right)^{1 / 6}+\left(X^{2} M^{-2} N Q_{1}^{6}\right)^{1 / 4}+\left(X M^{-1} N Q_{1}^{2}\right)^{1 / 2}\right. \\
& \left.+\left(X^{2} M^{-1} N^{-1} Q_{1}^{3}\right)^{1 / 2}+\left(X^{-1} M N Q_{1}\right)^{1 / 2}+\left(X^{-2} M N^{4}\right)^{1 / 2}\right\} \mathcal{L}_{0}
\end{aligned}
$$

where we have eliminated two superfluous terms $\left(X M^{-1} N^{-1} Q_{1}^{3}\right)^{1 / 2}$ and $M^{-1 / 2} N Q_{1}$. Replacing Q_{1} by Q and inserting the estimate obtained into (2.1), we find

$$
\begin{align*}
|S|^{2} \ll & \left\{\left(X^{4} M^{6} N^{7} Q^{2}\right)^{1 / 6}+\left(X^{2} M^{4} N^{5} Q^{2}\right)^{1 / 4}\right. \tag{2.4}\\
& \left.+\left(X^{2} M^{2} N Q\right)^{1 / 2}+(M N)^{2} Q^{-1}+\left(X M^{2} N^{3}\right)^{1 / 2}\right\} \mathcal{L}_{0}^{2}
\end{align*}
$$

where we have used the fact that $\left(X^{-1} M^{4} N^{3} Q^{-1}\right)^{1 / 2}$ and $X^{-1} M^{2} N^{3} Q^{-1}$ can be absorbed by $(M N)^{2} Q^{-1}$ (since $Q \leq \varepsilon_{0} N \leq \varepsilon_{0} X$).

If $X(M N)^{-1} Q_{1} \leq \varepsilon_{0}$, we first remove $m^{-1 / 2}$ by partial summation and then estimate the sum over m by the Kuz'min-Landau inequality ([9], Theorem 2.1). Therefore (2.4) always holds for $0<Q \leq \varepsilon_{0} N$. Optimising Q over $\left(0, \varepsilon_{0} N\right]$ yields the desired result.

Next we consider a triple exponential sum

$$
S_{I}^{*}:=\sum_{m_{1} \sim M_{1}} \sum_{m_{2} \sim M_{2}} \sum_{m_{3} \sim M_{3}} a_{m_{1}} b_{m_{2}} e\left(X \frac{m_{1}^{\alpha} m_{2} m_{3}^{-1}}{M_{1}^{\alpha} M_{2} M_{3}^{-1}}\right),
$$

which is a general form of S_{I}. We have the following result.
Corollary 1. Let $\alpha \in \mathbb{R}$ with $\alpha(\alpha-2) \neq 0, X>0, M_{j} \geq 1,\left|a_{m_{1}}\right| \leq 1$, $\left|b_{m_{2}}\right| \leq 1$ and let $Y:=2+X M_{1} M_{2} M_{3}$. Then

$$
\begin{aligned}
S_{I}^{*} \ll & \left\{\left(X^{6} M_{1}^{11} M_{2}^{10} M_{3}^{6}\right)^{1 / 16}+\left(X^{4} M_{1}^{9} M_{2}^{8} M_{3}^{4}\right)^{1 / 12}\right. \\
& +\left(X^{3} M_{1}^{3} M_{2}^{4} M_{3}^{2}\right)^{1 / 6}+\left(X M_{1}^{3} M_{2}^{2} M_{3}^{2}\right)^{1 / 4}+\left(X M_{1}\right)^{1 / 2} M_{2} \\
& \left.+M_{1}\left(M_{2} M_{3}\right)^{1 / 2}+M_{1} M_{2}+X^{-1} M_{1} M_{2} M_{3}\right\} Y^{\varepsilon} .
\end{aligned}
$$

Proof. If $M_{3}^{\prime}:=X / M_{3} \leq \varepsilon_{0}$, the Kuz'min-Landau inequality implies $S_{I}^{*} \ll X^{-1} M_{1} M_{2} M_{3}$. Next suppose $M_{3}^{\prime} \geq \varepsilon_{0}$. As before using Lemma 1.4 of [18] to the sum over m_{3} and estimating the corresponding error term by Lemma 4 of $[16$, IV $]$ with $n=m_{1}$, we obtain

$$
S_{I}^{*} \ll X^{-1 / 2} M_{3} S+\left(X^{1 / 2} M_{2}+M_{1} M_{2}+X^{-1} M_{1} M_{2} M_{3}\right) \log Y
$$

where

$$
S:=\sum_{m_{1} \sim M_{1}} \sum_{m_{2} \sim M_{2}} \sum_{m_{3}^{\prime} \sim M_{3}^{\prime}} \widetilde{a}_{m_{1}} \widetilde{b}_{m_{2}} \xi_{m_{3}^{\prime}} e\left(2 X \frac{m_{1}^{\alpha / 2} m_{2}^{1 / 2} m_{3}^{\prime 1 / 2}}{M_{1}^{\alpha / 2} M_{2}^{1 / 2} M_{3}^{1 / 2}}\right)
$$

and $\left|\widetilde{a}_{m_{1}}\right| \leq 1,\left|\widetilde{b}_{m_{2}}\right| \leq 1,\left|\xi_{m_{3}^{\prime}}\right| \leq 1$. Let

$$
M_{2}^{\prime}:=M_{2} M_{3}^{\prime} \quad \text { and } \quad \widetilde{\xi}_{m_{2}^{\prime}}:=\sum_{m_{2} m_{3}^{\prime}=m_{2}^{\prime}} \widetilde{b}_{m_{2}} \xi_{m_{3}^{\prime}} .
$$

Then S can be written as a bilinear exponential sum $S\left(M_{2}^{\prime}, M_{1}\right)$. Estimating it by Theorem 2 with $(M, N)=\left(M_{2}^{\prime}, M_{1}\right)$, we get the desired result.

Corollary 2. Let $x^{\theta} \leq M N \leq e x^{\theta}$ and $\left|b_{n}\right| \leq 1$. Then $S_{I}<_{\varepsilon} x^{\theta-2 \varepsilon}$ provided $1 / 2 \leq \theta<1, H \leq x^{\theta-1 / 2+3 \varepsilon}, M \leq x^{3 / 4-\varepsilon^{\prime}}$ and $N \leq x^{2 / 5-\varepsilon^{\prime}}$.

Proof. We apply Corollary 1 with $\left(X, M_{1}, M_{2}, M_{3}\right)=(x H /(M N)$, $N, H, M)$.
3. Estimates for exponential sums $S_{I I}$. The main aim of this section is to prove the next Theorem 3. The inequality (3.1) improves Theorem 6 of [7] (or [18], Lemma 2) and the estimate (3.2) sharpens Lemma 14 of [1].

Theorem 3. Let $\alpha \in \mathbb{R}$ with $\alpha \neq 0,1, x>0, H \geq 1, M \geq 1, N \geq 1$, $X:=x H /(M N),\left|a_{m}\right| \leq 1$ and $\left|b_{n}\right| \leq 1$. Let (κ, λ) be an exponent pair. If $H \leq N$ and $H N \leq X^{1-\varepsilon}$, then

$$
\begin{align*}
S_{I I} \ll & \left\{\left(X^{3} H^{5} M^{9} N^{15}\right)^{1 / 14}+\left(X H^{5} M^{7} N^{11}\right)^{1 / 10}+\left(X H^{2} M^{3} N^{6}\right)^{1 / 5}\right. \tag{3.1}\\
& +\left(X^{2} H^{5} M^{9} N^{17}\right)^{1 / 14}+\left(H^{5} M^{7} N^{13}\right)^{1 / 10}+\left(X H^{4} M^{6} N^{14}\right)^{1 / 10} \\
& \left.+\left(H M^{2} N\right)^{1 / 2}+\left(X^{-1} H M^{2} N^{3}\right)^{1 / 2}\right\} x^{\varepsilon},
\end{align*}
$$

$$
\begin{align*}
S_{I I} \ll & \left\{\left(X^{1+2 \kappa} H^{-1-2 \kappa+4 \lambda} M^{4 \lambda} N^{3-2 \kappa+4 \lambda}\right)^{1 /(2+4 \lambda)}+\left(H M^{2} N\right)^{1 / 2}\right. \tag{3.2}\\
& +\left(X^{2 \kappa-2 \lambda} H^{-1-2 \kappa+4 \lambda} M^{4 \lambda} N^{1-2 \kappa+8 \lambda}\right)^{1 /(2+4 \lambda)} \\
& \left.+\left(X^{-1} H M^{2} N^{3}\right)^{1 / 2}\right\} x^{\varepsilon} .
\end{align*}
$$

The following corollary will be needed in the proof of Theorem 1.
Corollary 3. Let $x^{\theta} \leq M N \leq e x^{\theta},\left|a_{m}\right| \leq 1$ and $\left|b_{n}\right| \leq 1$. Then $S_{I I}<_{\varepsilon} x^{\theta-2 \varepsilon}$ provided one of the following conditions holds:

$$
\begin{array}{ll}
\frac{1}{2} \leq \theta<\frac{5}{8}, & H \leq x^{\theta-1 / 2+3 \varepsilon}, \quad x^{\theta-1 / 2+3 \varepsilon} \leq N \leq x^{2-3 \theta-\varepsilon^{\prime}} ; \tag{3.3}\\
\frac{1}{2} \leq \theta<\frac{2}{3}, & H \leq x^{\theta-1 / 2+3 \varepsilon}, \quad x^{\theta-1 / 2+3 \varepsilon} \leq N \leq x^{1 / 6-\varepsilon^{\prime}} ; \\
\frac{1}{2} \leq \theta<\frac{11}{16}, & H \leq x^{\theta-1 / 2+3 \varepsilon}, \quad x^{\theta-1 / 2+3 \varepsilon} \leq N \leq x^{(9 \theta-3) / 17-\varepsilon^{\prime}} ; \\
\frac{1}{2} \leq \theta<\frac{7}{10}, & H \leq x^{\theta-1 / 2+3 \varepsilon}, \quad x^{\theta-1 / 2+3 \varepsilon} \leq N \leq x^{(12 \theta-5) / 17-\varepsilon^{\prime}} ; \\
\frac{1}{2} \leq \theta<\frac{17}{24}, \quad H \leq x^{\theta-1 / 2+3 \varepsilon}, \quad x^{\theta-1 / 2+3 \varepsilon} \leq N \leq x^{(55 \theta-25) / 67-\varepsilon^{\prime}} ; \\
\frac{1}{2} \leq \theta<\frac{5}{7}, & H \leq x^{\theta-1 / 2+3 \varepsilon}, \quad x^{\theta-1 / 2+3 \varepsilon} \leq N \leq x^{(59 \theta-28) / 66-\varepsilon^{\prime}} ; \\
\frac{1}{2} \leq \theta<\frac{23}{32}, & H \leq x^{\theta-1 / 2+3 \varepsilon}, \quad x^{\theta-1 / 2+3 \varepsilon} \leq N \leq x^{(245 \theta-119) / 261-\varepsilon^{\prime}} .
\end{array}
$$

Proof. We obtain (3.3) from Lemma 9 of [1]. The result (3.4) is an immediate consequence of (3.1). Let A and B be the classical A-process and B-process. Taking, in (3.2),

$$
\begin{aligned}
(\kappa, \lambda) & =B A\left(\frac{1}{6}, \frac{4}{6}\right)=\left(\frac{2}{7}, \frac{4}{7}\right), \\
(\kappa, \lambda) & =B A^{2}\left(\frac{1}{6}, \frac{4}{6}\right)=\left(\frac{11}{30}, \frac{16}{30}\right), \\
(\kappa, \lambda) & =B A^{3}\left(\frac{1}{6}, \frac{4}{6}\right)=\left(\frac{13}{31}, \frac{16}{31}\right), \\
(\kappa, \lambda) & =B A^{4}\left(\frac{1}{6}, \frac{4}{6}\right)=\left(\frac{57}{126}, \frac{64}{126}\right), \\
(\kappa, \lambda) & =B A^{5}\left(\frac{1}{6}, \frac{4}{6}\right)=\left(\frac{60}{127}, \frac{64}{127}\right),
\end{aligned}
$$

we obtain (3.5)-(3.9). This completes the proof.
In order to prove Theorem 3, we need the next lemma. The first inequality is essentially Theorem 2 of [7] with $\left(M_{1}, M_{2}, M_{3}, M_{4}\right)=(H, M, N, 1)$, and the second one is a simple generalisation of Proposition 1 of [22]. It seems interesting that we prove (3.10) by an argument of Heath-Brown [11] instead of the double large sieve inequality ([7], Proposition 1) as in [7].

Lemma 3.1. Let $\alpha, \beta \in \mathbb{R}$ with $\alpha \beta \neq 0, X>0, H \geq 1, M \geq 1, N \geq 1$, $\mathcal{L}_{0}:=\log (2+X H M N),\left|a_{h}\right| \leq 1$ and $\left|b_{m, n}\right| \leq 1$. Let $f(h) \in C^{\infty}[H, 2 H]$ satisfy the condition of exponent pair with $f^{(k)}(h) \asymp F / H^{k}\left(h \sim H, k \in \mathbb{Z}^{+}\right)$ and

$$
S=S(H, M, N):=\sum_{h \sim H} \sum_{m \sim M} \sum_{n \sim N} a_{h} b_{m, n} e\left(X \frac{f(h) m^{\alpha} n^{\beta}}{F M^{\alpha} N^{\beta}}\right) .
$$

If (κ, λ) is an exponent pair, then

$$
\begin{align*}
S \ll & \left\{(X H M N)^{1 / 2}+H^{1 / 2} M N+H(M N)^{1 / 2}+X^{-1 / 2} H M N\right\} \mathcal{L}_{0}, \tag{3.10}\\
S \ll & \left\{\left(X^{\kappa} H^{1+\kappa+\lambda} M^{2+\kappa} N^{2+\kappa}\right)^{1 /(2+2 \kappa)}+H(M N)^{1 / 2}+H^{1 / 2} M N\right. \\
& \left.+X^{-1 / 2} H M N\right\} \mathcal{L}_{0} .
\end{align*}
$$

Proof. Let $Q \geq 1$ be a parameter to be chosen later and let $M_{0}:=$ $C M^{\alpha} N^{\beta}$ where C is a suitable constant. Let $T_{q}:=\{(m, n): m \sim M, n \sim N$, $\left.M_{0}(q-1)<m^{\alpha} n^{\beta} Q \leq M_{0} q\right\}$. Then we can write

$$
S=\sum_{h \sim H} a_{h} \sum_{q \leq Q} \sum_{(m, n) \in T_{q}} b_{m, n} e\left(X \frac{f(h) m^{\alpha} n^{\beta}}{F M^{\alpha} N^{\beta}}\right) .
$$

By the Cauchy-Schwarz inequality, we have

$$
\begin{align*}
|S|^{2} & \ll H Q \sum_{q \leq Q} \sum_{(m, n) \in T_{q}} b_{m, n} \sum_{(\widetilde{m}, \tilde{n}) \in T_{q}} \bar{b}_{\widetilde{m}, \tilde{n}} \sum_{h \sim H} e(g(h)) \tag{3.12}\\
& \ll H Q \sum_{m, \widetilde{m} \sim M} \sum_{n, \tilde{n} \sim N}\left|\sum_{h \sim H} e(g(h))\right|=: H Q\left(E_{0}+E_{1}\right),
\end{align*}
$$

where $\sigma:=m^{\alpha} n^{\beta}-\widetilde{m}^{\alpha} \widetilde{n}^{\beta}, g(h):=X \sigma f(h) /\left(F M^{\alpha} N^{\beta}\right)$ and E_{0}, E_{1} are the contributions corresponding to the cases $|\sigma| \leq M_{0} /(M N), M_{0} /(M N)<|\sigma|$ $\leq M_{0} / Q$, respectively.

Let $\mathcal{D}(M, N, \Delta):=\left|\left\{(m, \widetilde{m}, n, \widetilde{n}): m, \widetilde{m} \sim M ; n, \widetilde{n} \sim N ;|\sigma| \leq \Delta M_{0}\right\}\right|$. By using Lemma 1 of [7], we find

$$
\begin{equation*}
E_{0} \ll H \mathcal{D}(M, N, 1 /(M N)) \ll H M N \mathcal{L}_{0} . \tag{3.13}
\end{equation*}
$$

We prove (3.10) and (3.11) by using two different methods to estimate E_{1}. Take $Q:=\max \left\{1, X /\left(\varepsilon_{0} H\right)\right\}$. Then $\max _{h \sim H}\left|g^{\prime}(h)\right|=X H^{-1} \Delta \leq$ $1 / 2$. The Kuz'min-Landau inequality implies

$$
\begin{equation*}
E_{1} \ll \mathcal{L}_{0} \max _{Q \leq 1 / \Delta \leq M N} \mathcal{D}(M, N ; \Delta)\left(X H^{-1} \Delta\right)^{-1} \ll X^{-1} H(M N)^{2} \mathcal{L}_{0}^{2} \tag{3.14}
\end{equation*}
$$

Now the inequality (3.10) follows from (3.12)-(3.14).
In view of (3.10), we can suppose $X \geq M N$. Splitting ($\left.M_{0} /(M N), M_{0} / Q\right]$ into dyadic intervals ($\Delta M_{0}, 2 \Delta M_{0}$] with $Q \leq 1 / \Delta \leq M N$ and applying the exponent pair (κ, λ) yield

$$
\begin{align*}
E_{1} & \ll \mathcal{L}_{0} \max _{Q \leq 1 / \Delta \leq M N} \mathcal{D}(M, N ; \Delta)\left\{\left(X H^{-1} \Delta\right)^{\kappa} H^{\lambda}+\left(X H^{-1} \Delta\right)^{-1}\right\} \tag{3.15}\\
& \ll\left(X^{\kappa} H^{-\kappa+\lambda} M^{2} N^{2} Q^{-1-\kappa}+X^{-1} H M^{2} N^{2}\right) \mathcal{L}_{0}^{2} .
\end{align*}
$$

Inserting (3.13) and (3.15) into (3.12) and noticing $X^{-1}(H M N)^{2} Q \leq$ $H^{2} M N Q$, we get

$$
|S|^{2} \ll\left\{X^{\kappa} H^{1-\kappa+\lambda} M^{2} N^{2} Q^{-\kappa}+H^{2} M N Q\right\} \mathcal{L}_{0}^{2} .
$$

Using Lemma 2.4 of [9] to optimise Q over $[1, \infty)$ yields the required result (3.11).

Next we combine the methods of [1], [7] and [19] to prove Theorem 3.
Let $Q_{1}:=a H /(b N) \in[100, H N]$ be a parameter to be chosen later with $a, b \in \mathbb{N}$ and let $Q_{1}^{*}:=N Q_{1} /(\sqrt{10} H)$. Introducing $T_{q_{1}}:=\{(h, n): h \sim H$, $\left.n \sim N,\left(q_{1}-1\right) / Q_{1}^{*} \leq h n^{-1}<q_{1} / Q_{1}^{*}\right\}$, we may write

$$
S_{I I}=\sum_{q_{1} \leq Q_{1}} \sum_{m \sim M} \sum_{(h, n) \in T_{q_{1}}} \sum_{m} a_{m} b_{n}\left(\frac{x h}{m n}\right) .
$$

As before by the Cauchy-Schwarz inequality, we have

$$
\begin{equation*}
\text { 6) } \quad\left|S_{I I}\right|^{2} \lll<Q_{1}\left|\sum_{\substack{n_{1}, n_{2} \sim N \\\left|h_{1} / n_{1}-h_{2} / n_{2}\right|<1 / Q_{1}^{*}}} \sum_{h_{1}, h_{2} \sim H} b_{n_{1}} \bar{b}_{n_{2}} \delta\left(\frac{h_{1}}{n_{1}}, \frac{h_{2}}{n_{2}}\right) \sum_{m \sim M} e\left(\frac{x\left(h_{1} n_{2}-h_{2} n_{1}\right)}{m n_{1} n_{2}}\right)\right| \text {, } \tag{3.16}
\end{equation*}
$$

where $\delta\left(u_{1}, u_{2}\right):=\left|\left\{q \in \mathbb{Z}^{+}: Q_{1}^{*} \max \left(u_{1}, u_{2}\right)<q \leq Q_{1}^{*} \min \left(u_{1}, u_{2}\right)+1\right\}\right|$. Without loss of generality, we can suppose $h_{1} / n_{1} \geq h_{2} / n_{2}$ in (3.16). Thus we have, with $u_{i}:=h_{i} / n_{i}$,

$$
\begin{aligned}
\delta\left(u_{1}, u_{2}\right) & =\left[Q_{1}^{*} u_{2}+1\right]-\left[Q_{1}^{*} u_{1}\right]=1+Q_{1}^{*}\left(u_{2}-u_{1}\right)-\psi\left(Q_{1}^{*} u_{2}\right)+\psi\left(Q_{1}^{*} u_{1}\right) \\
& =: \delta_{1}+\delta_{2}-\delta_{3}+\delta_{4},
\end{aligned}
$$

where $\psi(t):=\{t\}-1 / 2$ and $\{t\}$ is the fractional part of t. Inserting into (3.16) yields

$$
\left|S_{I I}\right|^{2} \ll M Q_{1}\left(\left|S_{1}\right|+\left|S_{2}\right|+\left|S_{3}\right|+\left|S_{4}\right|\right)
$$

with

$$
S_{j}:=\sum_{\substack{n_{1}, n_{2} \sim N \\\left|h_{1} / n_{1}-h_{2} / n_{2}\right|<1 / Q_{1}^{*}}} \sum_{h_{1} h_{2} \sim H} b_{n_{1}} \bar{b}_{n_{2}} \delta_{j} \sum_{m \sim M} e\left(\frac{x\left(h_{1} n_{2}-h_{2} n_{1}\right)}{m n_{1} n_{2}}\right) .
$$

We estimate $M Q_{1}\left|S_{3}\right|$ only; the other terms can be treated similarly. We write

$$
M Q_{1}\left|S_{3}\right| \ll M Q_{1} \sum_{n_{1}, n_{2} \sim N}\left|\sum_{0 \leq k \ll H N / Q_{1}} \sum_{\substack{h_{1}, h_{2} \sim H \\ h_{1} n_{2}-h_{2} n_{1}=k}} \delta_{3} \sum_{m \sim M} e\left(\frac{x k}{m n_{1} n_{2}}\right)\right| .
$$

Since $\left|\delta_{3}\right| \leq 1$, the terms with $k=0$ contribute trivially $O\left(H M^{2} N Q_{1} \mathcal{L}_{0}\right)$. After dyadic split, we see that for some K with $1 \leq K \ll H N / Q_{1}$ and some D with $1 \leq D \leq \min \{K, N\}$,

$$
\begin{aligned}
& M Q_{1}\left|S_{3}\right| \mathcal{L}_{0}^{-2} \ll M Q_{1} \sum_{d \sim D} \sum_{\substack{n_{1}, n_{2} \sim N^{\prime} \\
\left(n_{1}, n_{2}\right)=1}}\left|\sum_{r \sim R} \omega_{d}\left(n_{1}, n_{2} ; r\right) \sum_{m \sim M} e\left(\frac{x r}{d m n_{1} n_{2}}\right)\right| \\
&+H M^{N} N Q_{1},
\end{aligned}
$$

where $N^{\prime}:=N / D, R:=K / D$ and

$$
\omega_{d}\left(n_{1}, n_{2} ; r\right):=\sum_{\substack{h_{1}, h_{2} \sim H \\ h_{1} n_{2}-h_{2} n_{1}=r}} \sum_{\substack{ \\x_{1}}} \psi\left(Q_{1}^{*} h_{2} /\left(d n_{2}\right)\right) .
$$

In view of $H \leq N$, Lemma 4 of [19] gives

$$
\begin{align*}
\left|\omega_{d}\left(n_{1}, n_{2} ; r\right)\right| & =\left|\int_{0}^{1} \widehat{\omega}_{d}\left(n_{1}, n_{2} ; \vartheta\right) e(r \vartheta) d \vartheta\right| \tag{3.17}\\
& \leq \int_{0}^{1}\left|\widehat{\omega}_{d}\left(n_{1}, n_{2} ; \vartheta\right)\right| d \vartheta \ll D \mathcal{L}_{0}^{3}
\end{align*}
$$

where

$$
\widehat{\omega}_{d}\left(n_{1}, n_{2} ; \vartheta\right):=\sum_{|m| \leq 8 H N} \omega_{d}\left(n_{1}, n_{2} ; m\right) e(-m \vartheta) .
$$

If $L:=X K /(H M N) \geq \varepsilon_{0}$, by Lemma 1.4 of [18] we transform the sum over m into a sum over l, then we interchange the order of summations (r, l), finally by Lemma 1.6 of [18] we relax the condition of summation of r. The contribution of the main term of Lemma 1.4 of [18] is

$$
\begin{aligned}
& \left(X^{-1} H M^{4} N K^{-1} Q_{1}^{2}\right)^{1 / 2} \\
& \quad \times \sum_{d \sim D} \sum_{\substack{n_{1}, n_{2} \sim N^{\prime} \\
\left(n_{1}, n_{2}\right)=1}} \sum_{l \sim L}\left|\sum_{r \sim R} g(r) e(r t) \omega_{d}\left(n_{1}, n_{2} ; r\right) e(W \sqrt{r / R})\right|
\end{aligned}
$$

where $g(r)=(r / R)^{1 / 4}, W:=2(X K /(H N))(l / L)^{1 / 2}\left(d n_{1} n_{2} /\left(D N^{\prime 2}\right)\right)^{-1 / 2}$, t is a real number independent of variables. Let $J:=N^{2} / D$ and $\tau_{3}(j):=$ $\sum_{d n_{1} n_{2}=j} 1$. Let c_{i} be some constants and

$$
T_{i}(j):=\min \left\{\left(X^{-1} H M^{2} N^{-1} j r^{-1}\right)^{1 / 2}, 1 /\left\|c_{i} X H^{-1} M^{-1} N r / j\right\|\right\}
$$

By Lemma 4 of $[16, \mathrm{IV}]$, the contribution of the error term of Lemma 1.4 of [18] is

$$
\begin{aligned}
& \ll D \mathcal{L}_{0}^{4} M Q_{1}\left\{D^{-1} N^{2} R+X^{-1} D^{-2} H M N^{3}+\sum_{r \sim R} \sum_{j \sim J} \tau_{3}(j)\left(T_{1}(j)+T_{2}(j)\right)\right\} \\
& \ll\left(H M N^{3}+X^{-1} H M^{2} N^{3} Q_{1}+X^{1 / 2} H M N Q_{1}^{-1 / 2}+X^{-1 / 2} H M^{2} N Q_{1}^{1 / 2}\right) x^{\varepsilon}
\end{aligned}
$$

Combining these and noticing $X^{-1 / 2} H M^{2} N Q_{1}^{1 / 2} \leq H M^{2} N Q_{1}$, we obtain

$$
\begin{align*}
M Q_{1}\left|S_{3}\right| x^{-\varepsilon} \ll & \left(X^{-1} H M^{4} N K^{-1} Q_{1}^{2}\right)^{1 / 2} S_{3,1}+H M^{2} N Q_{1} \tag{3.18}\\
& +X^{-1} H M^{2} N^{3} Q_{1}+X^{1 / 2} H M N Q_{1}^{-1 / 2}+H M N^{3}
\end{align*}
$$

where

$$
S_{3,1}:=\sum_{d \sim D} \sum_{\substack{n_{1}, n_{2} \sim N^{\prime} \\\left(n_{1}, n_{2}\right)=1}} \sum_{l \sim L}\left|\sum_{r \sim R} g(r) e(r t) \omega_{d}\left(n_{1}, n_{2} ; r\right) e(W \sqrt{r / R})\right|
$$

Let $S_{3,2}$ be the innermost sum. Using the Cauchy-Schwarz inequality and (3.17), we deduce

$$
\left|S_{3,2}\right|^{2} \ll D \mathcal{L}_{0}^{3} \int_{0}^{1}\left|\widehat{\omega}_{d}\left(n_{1}, n_{2} ; \vartheta\right)\right|\left|\sum_{r \sim R} g(r) e(r t-r \vartheta) e(W \sqrt{r / R})\right|^{2} d \vartheta
$$

By Lemma 2 of [7], we have, for any $Q_{2} \in\left(0, R^{1-\varepsilon}\right]$,

$$
\begin{aligned}
\mid \sum_{r \sim R} g(r) e(r t- & r \vartheta)\left.e(W \sqrt{r / R})\right|^{2} \\
& \leq C\left\{R^{2} Q_{2}^{-1}+R Q_{2}^{-1} \sum_{1 \leq q_{2} \leq Q_{2}} \eta \sum_{r \sim R} a_{r, q_{2}} e\left(\frac{W t\left(r, q_{2}\right)}{\sqrt{R}}\right)\right\}
\end{aligned}
$$

where C is a positive constant, $\eta=\eta_{q_{2}, \vartheta, t}=e^{4 \pi i q_{2}(t-\vartheta)}\left(1-\left|q_{2}\right| / Q_{2}\right), a_{q_{2}, r}=$ $g\left(r+q_{2}\right) g\left(r-q_{2}\right), t\left(r, q_{2}\right):=\left(r+q_{2}\right)^{1 / 2}-\left(r-q_{2}\right)^{1 / 2}$. Splitting the range of q_{2} into dyadic intervals and inserting the preceding estimates into the
definition of $S_{3,1}$, we find, for some $Q_{2,0} \leq Q_{2}$,

$$
\begin{align*}
\left|S_{3,1}\right|^{2} & \ll J L \sum_{d \sim D} \sum_{\substack{n_{1}, n_{2} \sim N^{\prime} \\
\left(n_{1}, n_{2}\right)=1}} \sum_{l \sim L}\left|S_{3,2}\right|^{2} \tag{3.19}\\
& \ll D^{2} \mathcal{L}_{0}^{7}\left\{(J L R)^{2} Q_{2}^{-1}+J L R Q_{2}^{-1} S_{3,3}\right\},
\end{align*}
$$

where $Z:=2 X K /(H N)$ and

$$
S_{3,3}:=\sum_{q_{2} \sim Q_{2,0}} \sum_{j \sim J} \tau_{3}(j)\left|\sum_{l \sim L} \sum_{r \sim R} a_{r, q_{2}} e\left(Z \frac{(l / j)^{1 / 2} t\left(r, q_{2}\right)}{(L R / J)^{1 / 2}}\right)\right| .
$$

Applying (3.10) of Lemma 3.1 with $(X, H, M, N)=\left(Z R^{-1} q_{2}, R, J, L\right)$ to the inner triple sums and summing trivially over q_{2}, we find

$$
\begin{aligned}
S_{3,3} \ll & \left\{\left(Z J L Q_{2,0}^{3}\right)^{1 / 2}+(J L)^{1 / 2} R Q_{2,0}+J L R^{1 / 2} Q_{2,0}\right. \\
& \left.+\left(Z^{-1} J^{2} L^{2} R^{3} Q_{2,0}\right)^{1 / 2}\right\} x^{\varepsilon} .
\end{aligned}
$$

Replacing $Q_{2,0}$ by Q_{2} and inserting the estimate obtained into (3.19) yield

$$
\begin{aligned}
S_{3,1} \ll & \left\{\left(Z J^{3} L^{3} R^{2} Q_{2}\right)^{1 / 4}+J L R Q_{2}^{-1 / 2}+\left(Z^{-1} J^{4} L^{4} R^{5} Q_{2}^{-1}\right)^{1 / 4}\right. \\
& \left.+(J L)^{3 / 4} R+J L R^{3 / 4}\right\} D x^{\varepsilon} .
\end{aligned}
$$

Using Lemma 2.4 of [9] to optimise Q_{2} over $\left(0, R^{1-\varepsilon}\right]$, we find

$$
\left|S_{3,1}\right| \ll\left\{\left(Z J^{5} L^{5} R^{4}\right)^{1 / 6}+(J L)^{3 / 4} R+J L R^{3 / 4}\right\} D x^{\varepsilon},
$$

where for simplifying we have used the fact that $J L R^{1 / 2} \leq J L R^{3 / 4}$, $(J L R)^{7 / 8}=\left\{(J L)^{3 / 4} R\right\}^{1 / 2}\left\{J L R^{3 / 4}\right\}^{1 / 2}, Z^{-1 / 4} J L R \leq J L R^{3 / 4}$. Inserting $J=D^{-1} N^{2}, L=X K /(H M N), R=D^{-1} K, Z=2 X K /(H N)$, we obtain an estimate for $S_{3,1}$ in terms of (X, D, H, M, N, K). Noticing that all exponents of D are negative, we can replace D by 1 to write

$$
\begin{aligned}
\left|S_{3,1}\right| \ll & \left\{\left(X^{6} H^{-6} M^{-5} N^{4} K^{10}\right)^{1 / 6}+\left(X^{3} H^{-3} M^{-3} N^{3} K^{7}\right)^{1 / 4}\right. \\
& \left.+\left(X^{4} H^{-4} M^{-4} N^{4} K^{7}\right)^{1 / 4}\right\} x^{\varepsilon} .
\end{aligned}
$$

Inserting into (3.18) and replacing K by $H N / Q_{1}$ yield

$$
\begin{align*}
M Q_{1}\left|S_{3}\right| \ll & \left\{\left(X^{3} H^{4} M^{7} N^{14} Q_{1}^{-1}\right)^{1 / 6}+\left(X H^{4} M^{5} N^{10} Q_{1}^{-1}\right)^{1 / 4}\right. \tag{3.20}\\
& +\left(X^{2} H^{3} M^{4} N^{11} Q_{1}^{-1}\right)^{1 / 4} \\
& \left.+H M^{2} N Q_{1}+X^{-1} H M^{2} N^{3} Q_{1}\right\} x^{\varepsilon} \\
= & E\left(Q_{1}\right) x^{\varepsilon},
\end{align*}
$$

where we have used the fact that

$$
X^{1 / 2} H M N Q_{1}^{-1 / 2}+H M N^{3} \ll\left(X^{2} H^{3} M^{4} N^{11} Q_{1}^{-1}\right)^{1 / 4}
$$

If $L \leq \varepsilon_{0}$, using the Kuz'min-Landau inequality and (3.17) yields

$$
M Q_{1}\left|S_{3}\right| \mathcal{L}_{0}^{-2} \ll M Q_{1} D^{-1} N^{2} R D \mathcal{L}_{0}^{3} / L \ll X^{-1} H M^{2} N^{3} Q_{1} \mathcal{L}_{0}^{3} \ll E\left(Q_{1}\right) \mathcal{L}_{0}^{3}
$$

Therefore the estimate (3.20) always holds. Similarly we can establish the same bound for $M Q_{1}\left|S_{j}\right|(j=1,2,4)$. Hence we obtain, for any $Q_{1} \in$ [100, HN],

$$
\left|S_{I I}\right|^{2} \ll E\left(Q_{1}\right) x^{\varepsilon} .
$$

In view of the term $H M^{2} N Q_{1}$, this inequality is trivial when $Q_{1} \geq H N$. By using Lemma 2.4 of [9], we see that there exists some $\widetilde{Q}_{1} \in[100, \infty)$ such that

$$
\begin{aligned}
E\left(\widetilde{Q}_{1}\right) \ll & \left(X^{3} H^{5} M^{9} N^{15}\right)^{1 / 7}+\left(X H^{5} M^{7} N^{11}\right)^{1 / 5}+\left(X^{2} H^{4} M^{6} N^{12}\right)^{1 / 5} \\
& +\left(X^{2} H^{5} M^{9} N^{17}\right)^{1 / 7}+\left(H^{5} M^{7} N^{13}\right)^{1 / 5}+\left(X H^{4} M^{6} N^{14}\right)^{1 / 5} \\
& +H M^{2} N+X^{-1} H M^{2} N^{3} .
\end{aligned}
$$

Now taking $Q_{1}:=100\left[\widetilde{Q}_{1}\right] H(1+[N]) /((1+[H]) N)$ and noticing that $E\left(Q_{1}\right) \ll E\left(\widetilde{Q}_{1}\right)$, we obtain the desired result (3.1).

In order to prove (3.2), we first write

$$
S_{3,1}=\sum_{d \sim D} \sum_{\substack{n_{1}, n_{2} \sim N^{\prime} \\\left(n_{1}, n_{2}\right)=1}} \sum_{l \sim L}\left|\int_{0}^{1} \widehat{\omega}_{d}\left(n_{1}, n_{2} ; \vartheta\right) S_{d, n_{1}, n_{2}, l}(\vartheta) d \vartheta\right|,
$$

where $S_{d, n_{1}, n_{2}, l}(\vartheta)=\sum_{r \sim R} g(r) e(f(r)), f(r)=W \sqrt{r / R}+(t+\vartheta) r$ $(t, \vartheta \in[0,1])$. Since $H N \leq X^{1-\varepsilon}$, we have

$$
f^{\prime}(r) \asymp W / R+t+\vartheta \asymp L M / R+t+\vartheta \geq L M / K+t+\vartheta \geq(H N)^{\varepsilon} .
$$

Removing the smooth coefficient $g(r)$ by partial summation and using the exponent pair (κ, λ) yield the inequality $S_{d, n_{1}, n_{2}, l}(\vartheta) \ll(W / R)^{\kappa} R^{\lambda}$ uniformly for $\vartheta \in[0,1]$. Thus by (3.17), we find

$$
S_{3,1} \ll J L(W / R)^{\kappa} R^{\lambda} D \mathcal{L}_{0}^{3} \ll X^{1+\kappa} H^{-1-\kappa} M^{-1} N^{1-\kappa} K^{1+\lambda} \mathcal{L}_{0}^{3},
$$

which implies, via (3.18),

$$
\begin{aligned}
M Q_{1}\left|S_{3}\right| \ll & \left(X^{1 / 2+\kappa} H^{\lambda-\kappa} M N^{2-\kappa+\lambda} Q_{1}^{-\lambda+1 / 2}\right. \\
& \left.+H M^{2} N Q_{1}+X^{-1} H M^{2} N^{3} Q_{1}\right) x^{\varepsilon}
\end{aligned}
$$

where we have used the fact that

$$
X^{1 / 2} H M N Q_{1}^{-1 / 2}+H M N^{3} \ll X^{1 / 2+\kappa} H^{\lambda-\kappa} M N^{2-\kappa+\lambda} Q_{1}^{-\lambda+1 / 2}
$$

The same estimate holds also for $M Q_{1}\left|S_{j}\right|(j=1,2,4)$. Thus we obtain, for any $Q_{1} \in[100, H N]$,
$\left|S_{I I}\right|^{2} \ll\left(X^{1 / 2+\kappa} H^{\lambda-\kappa} M N^{2-\kappa+\lambda} Q_{1}^{-\lambda+1 / 2}+H M^{2} N Q_{1}+X^{-1} H M^{2} N^{3} Q_{1}\right) x^{\varepsilon}$.
This implies (3.2). The proof of Theorem 3 is finished.
4. Rosser-Iwaniec's sieve and bilinear forms. Let
$\mathcal{A}_{d}:=\{n \in \mathcal{A}: d \mid n\}, \quad r(\mathcal{A}, d):=\left|\mathcal{A}_{d}\right|-y / d \quad$ and $\quad P^{*}(z):=\prod_{p<z} p$.
We recall the formula of the Rosser-Iwaniec linear sieve [15] in the form stated in [1], Lemma 10.

Lemma 4.1. Let $0<\varepsilon<1 / 8$ and $2 \leq z \leq D^{1 / 2}$. Then

$$
S(\mathcal{A}, z) \leq y V(z)\{F(\log D / \log z)+E\}+\mathcal{R}(\mathcal{A}, D)
$$

where $V(z):=\prod_{p<z}(1-1 / p), E=C \varepsilon+O\left(\log ^{-1 / 3} D\right)$ with an absolute constant C and $F(t):=2 e^{\gamma} / t$ for $1 \leq t \leq 3(\gamma$ is the Euler constant $)$. Here

$$
\mathcal{R}(\mathcal{A}, D):=\sum_{(D)} \sum_{\substack{\nu<D^{\varepsilon} \\ \nu \mid P^{*}\left(D^{\varepsilon^{2}}\right)}} c_{(D)}(\nu, \varepsilon) \sum_{\substack{D_{i} \leq p_{i}<D_{i}^{1+\varepsilon^{7}} \\ p_{i} \mid P^{*}(z)}} r\left(\mathcal{A}, \nu p_{1} \ldots p_{t}\right)
$$

where $\left|c_{(D)}(\nu, \varepsilon)\right| \leq 1$ and $\sum_{(D)}$ runs over all subsequences $D_{1} \geq \ldots \geq$ D_{t} (including the empty subsequence) of $\left\{D^{\varepsilon^{2}\left(1+\varepsilon^{7}\right)^{n}}: n \geq 0\right\}$ for which $D_{1} \ldots D_{2 l} D_{2 l+1}^{3} \leq D(0 \leq l \leq(t-1) / 2)$.

Let $r_{0}(\mathcal{A}, d):=\psi((x+y) / d)-\psi(x / d)$, where $\psi(t)$ is defined as in Section 3. Then
$\left|\mathcal{A}_{d}\right|=\sum_{x^{\theta}<d k \leq e x^{\theta}}\left\{y /(d k)+r_{0}(\mathcal{A}, d k)\right\}=y / d+O\left(y / x^{\theta}\right)+\sum_{x^{\theta}<d k \leq e x^{\theta}} r_{0}(\mathcal{A}, d k)$.
Thus $r(\mathcal{A}, d)=O\left(y / x^{\theta}\right)+\sum_{x^{\theta}<d k \leq e x^{\theta}} r_{0}(\mathcal{A}, d k)$ and
$\mathcal{R}(\mathcal{A}, D)$

$$
\begin{aligned}
= & \sum_{(D)} \sum_{\substack{\nu<D^{\varepsilon} \\
\nu \mid P^{*}\left(D^{\varepsilon^{2}}\right)}} c_{(D)}(\nu, \varepsilon) \sum_{D_{i} \leq p_{i}<\min \left\{z, D_{i}^{1+\varepsilon^{7}}\right\}} \sum_{x^{\theta}<\nu k p_{1} \ldots p_{t} \leq e x^{\theta}} r_{0}\left(\mathcal{A}, \nu k p_{1} \ldots p_{t}\right) \\
& +O\left(D y / x^{\theta}\right) .
\end{aligned}
$$

We would like to find $D=D(\theta)$, as large as possible, such that $\mathcal{R}(\mathcal{A}, D) \ll_{\varepsilon}$ y / \mathcal{L}^{2}. For this, it suffices to impose $D \leq x^{\theta-\varepsilon^{\prime}}$ and to prove

$$
\begin{align*}
\mathcal{R}^{*}(\mathcal{A}, D) & :=\sum_{A_{1} \leq p_{1}<B_{1}} \ldots \sum_{A_{t} \leq p_{t}<B_{t}} \sum_{x^{\theta}<\nu k p_{1} \ldots p_{t} \leq e x^{\theta}} r_{0}\left(\mathcal{A}, \nu k p_{1} \ldots p_{t}\right) \tag{4.1}\\
& \ll y x^{-\varepsilon}
\end{align*}
$$

for

$$
\left\{\begin{array}{l}
1 \leq \nu \leq D^{\varepsilon}, t \ll 1, A_{i} \geq 1, B_{i} \leq 2 A_{i}, A_{1} \geq \ldots \geq A_{t} \\
A_{1} \ldots A_{2 l} A_{2 l+1}^{3} \leq D^{1+\varepsilon}(0 \leq l \leq(t-1) / 2)
\end{array}\right.
$$

In order to prove (4.1), we need to treat the following bilinear forms:

$$
\begin{aligned}
& \mathcal{R}_{I}\left(M, N ; x^{\theta}\right):=\sum_{\substack{m \sim M \\
x^{\theta}<m n \leq e x^{\theta}}} \sum_{n \sim N} b_{n} r_{0}(\mathcal{A}, m n), \\
& \mathcal{R}_{I I}\left(M, N ; x^{\theta}\right):=\sum_{\substack{m \sim M \\
x^{\theta}<m n \leq e x^{\theta}}} \sum_{n \sim N} b_{n} r_{0}(\mathcal{A}, m n),
\end{aligned}
$$

where $\left|a_{m}\right| \leq 1,\left|b_{n}\right| \leq 1$. Using the Fourier expansion of $\psi(t)$, we reduce the estimation for $\mathcal{R}_{I}, \mathcal{R}_{I I}$ to the estimation for the exponential sums S_{I}, $S_{I I}$ (cf. [7], Lemma 9). Applying Corollaries 2 and 3 to these sums, we can immediately get the desired results on \mathcal{R}_{I} and $\mathcal{R}_{I I}$.

Before stating our results, it is necessary to introduce some notation. Let $\phi_{1}:=3 / 5=0.6, \phi_{2}:=11 / 18 \approx 0.611, \phi_{3}:=35 / 54 \approx 0.648, \phi_{4}:=2 / 3 \approx$ $0.666, \phi_{5}:=90 / 131 \approx 0.687, \phi_{6}:=226 / 323 \approx 0.699, \phi_{7}:=546 / 771 \approx$ $0.708, \phi_{8}:=23 / 32 \approx 0.718$ and $\phi_{9}:=0.738$. For $\phi_{1} \leq \theta \leq \phi_{8}$, we define $I=I(\theta):=\left[a x^{\varepsilon^{\prime}}, b x^{-\varepsilon^{\prime}}\right]$ with $a=a(\theta):=x^{\theta-1 / 2}, b=b(\theta):=x^{\tau(\theta)}$ and

$$
\tau(\theta):= \begin{cases}2-3 \theta & \text { if } \phi_{1} \leq \theta \leq \phi_{2} \\ 1 / 6 & \text { if } \phi_{2} \leq \theta \leq \phi_{3} \\ (9 \theta-3) / 17 & \text { if } \phi_{3} \leq \theta \leq \phi_{4} \\ (12 \theta-5) / 17 & \text { if } \phi_{4} \leq \theta \leq \phi_{5} \\ (55 \theta-25) / 67 & \text { if } \phi_{5} \leq \theta \leq \phi_{6} \\ (59 \theta-28) / 66 & \text { if } \phi_{6} \leq \theta \leq \phi_{7} \\ (245 \theta-119) / 261 & \text { if } \phi_{7} \leq \theta \leq \phi_{8}\end{cases}
$$

For \mathcal{R}_{I}, we have the following result, which improves Corollary 1 of [2].
Lemma 4.2. Let $1 / 2<\theta<3 / 4$ and $N \leq x^{2 / 5-\varepsilon^{\prime}}$. Then $\mathcal{R}_{I}\left(M, N ; x^{\theta}\right)$ $\ll \varepsilon y x^{-3 \eta}$.

For $\mathcal{R}_{I I}$, we have the following result, which improves Lemmas 2 and 3 of [2].

Lemma 4.3. Let $1 / 2<\theta<\phi_{8}$ and $N \in I(\theta)$. Then $\mathcal{R}_{I I}\left(M, N ; x^{\theta}\right)$ $\ll \varepsilon y x^{-3 \eta}$.

Let $D=D(\theta):=(b / a) x^{2 / 5-\varepsilon^{\prime}}$ for $\phi_{1} \leq \theta \leq \phi_{8}$ and $D:=x^{2 / 5-\varepsilon^{\prime}}$ for $\phi_{8} \leq \theta \leq \phi_{9}$. We define $\varrho(\theta)$ by $D=x^{\varrho(\theta)-\varepsilon^{\prime}}$, i.e.

$$
\varrho(\theta)= \begin{cases}(29-40 \theta) / 10 & \text { if } \phi_{1} \leq \theta \leq \phi_{2}, \\ (16-15 \theta) / 15 & \text { if } \phi_{2} \leq \theta \leq \phi_{3}, \\ (123-80 \theta) / 170 & \text { if } \phi_{3} \leq \theta \leq \phi_{4}, \\ (103-50 \theta) / 170 & \text { if } \phi_{4} \leq \theta \leq \phi_{5}, \\ (353-120 \theta) / 670 & \text { if } \phi_{5} \leq \theta \leq \phi_{6}, \\ (157-35 \theta) / 330 & \text { if } \phi_{6} \leq \theta \leq \phi_{7}, \\ (1159-160 \theta) / 2610 & \text { if } \phi_{7} \leq \theta \leq \phi_{8}, \\ 2 / 5 & \text { if } \phi_{8} \leq \theta \leq \phi_{9} .\end{cases}
$$

For our choice of D, it is easy to verify $D \leq x^{\theta-\varepsilon^{\prime}}$. Next we prove (4.1).
Lemma 4.4. Let $\phi_{1} \leq \theta \leq \phi_{9}$ and let D be defined as before. Then (4.1) holds.

Proof. If $\phi_{8} \leq \theta \leq \phi_{9}$, then $A_{1} \ldots A_{t} \ll D^{1+\varepsilon} \ll x^{2 / 5-\varepsilon^{\prime}}$. Thus Lemma 4.2 gives (4.1). When $\phi_{1} \leq \theta \leq \phi_{8}$, we have $D=(b / a) x^{2 / 5-\varepsilon^{\prime}}$. If there exists $\mathcal{J} \subset\{1, \ldots, t\}$ satisfying $\prod_{j \in \mathcal{J}} A_{j} \in I(\theta)$, we can apply Lemma 4.3 with a suitable choice of a_{m}, b_{n} to get (4.1). Otherwise Lemma 5 of [6] implies $A_{1} \ldots A_{t} \leq D^{1+2 \varepsilon} a / b<x^{2 / 5-\varepsilon^{\prime}}$. Thus Lemma 4.2 is applicable to give (4.1).

Combining Lemmas 4.1 and 4.4, we immediately obtain the following result.

Lemma 4.5. Let $D^{1 / 3} \leq z \leq D^{1 / 2}$. Then $S(\mathcal{A}, z) \leq\{1+O(\varepsilon)\} 2 y /(\varrho(\theta) \mathcal{L})$.
5. An alternative sieve. In this section, we insert our new results on bilinear forms \mathcal{R}_{I} and $\mathcal{R}_{I I}$ into the alternative sieve of Baker and Harman ([2], Section 5). This allows us to improve all results there. Since the proof is very similar, we just state our results and omit the details.

Let $\omega(t)$ be the Buchstab function, in particular,

$$
t \omega(t)= \begin{cases}1 & \text { if } 1 \leq t \leq 2, \\ 1+\log (t-1) & \text { if } 2 \leq t \leq 3, \\ 1+\log (t-1)+\int_{2}^{t-1} s^{-1} \log (s-1) d s & \text { if } 3 \leq t \leq 4 .\end{cases}
$$

Let $\mathcal{B}=\mathcal{B}(\theta):=\left\{n: x^{\theta}<n \leq e x^{\theta}\right\}$. For $\mathcal{E}=\mathcal{A}$ or \mathcal{B}, we write $\mathcal{E}_{m}=$ $\{n: m n \in \mathcal{E}\}$. Define

$$
S\left(\mathcal{B}_{m}, z\right):=\sum_{m n \in \mathcal{B}, P^{-(}(n) \geq z} y /(m n) .
$$

Corresponding to Lemma 9 of [2], we have the following sharper result.
Lemma 5.1. Let $\left|b_{n}\right| \leq 1$. For $N \leq x^{2 / 5-\varepsilon^{\prime}}$, we have

$$
\sum_{n \leq N} b_{n}\left|\mathcal{A}_{n}\right|=y \sum_{n \leq N} b_{n} / n+O_{\varepsilon}\left(y x^{-3 \eta}\right) .
$$

Proof. In the proof of Lemma 9 of [2], replace Corollary 1 there by our Lemma 4.2.

The next lemma is an improvement of Lemma 10 of [2].
LEMMA 5.2. Let $N \leq x^{2 / 5-\varepsilon^{\prime}}, 0 \leq b_{n} \leq 1, b_{n}=0$ unless $P^{-}(n) \geq x^{\eta}$ $(1 \leq n \leq N)$. Then

$$
\sum_{n \leq N} b_{n} S\left(\mathcal{A}_{n}, x^{\eta}\right)=\{1+O(G(\varepsilon / \eta))\} \sum_{n \leq N} b_{n} S\left(\mathcal{B}_{n}, x^{\eta}\right)+O_{\varepsilon}\left(y x^{-3 \eta}\right)
$$

where $G(t):=\exp \{1+(\log t) / t\} \quad(t>0)$.
Proof. In the proof of Lemma 10 of [2], replace Lemma 9 there by Lemma 5.1 above.

We can improve Lemma 11 of [2] as follows.
Lemma 5.3. Let $\left|a_{m}\right| \leq 1$ and $\left|b_{n}\right| \leq 1$. For $\phi_{1} \leq \theta \leq \phi_{8}$ and $N \in I(\theta)$, we have

$$
\sum_{\substack{m n \in \mathcal{A} \\ m \sim M, n \sim N}} a_{m} b_{n}=y \sum_{\substack{m n \in \mathcal{B} \\ m \sim M, n \sim N}} a_{m} b_{n} /(m n)+O_{\varepsilon}\left(y x^{-5 \eta}\right)
$$

Proof. In the proof of Lemma 11 of [2], replace (4.1) of [2] by our Lemma 4.3.

Finally, similar to Lemmas 12, 13 and 15 of [2], we have the following results.

Lemma 5.4. Let $h \geq 1$ be given and suppose that $\mathcal{J} \subset\{1, \ldots, h\}$. For $\phi_{1} \leq \theta \leq \phi_{8}, N \in I(\theta)$ and $N_{1}<2 N$, we have

$$
\sum_{p_{1}} \ldots \sum_{p_{h}}^{*} S\left(\mathcal{A}_{p_{1} \ldots p_{h}}, p_{1}\right)=\sum_{p_{1}} \ldots \sum_{p_{h}}^{*} S\left(\mathcal{B}_{p_{1} \ldots p_{h}}, p_{1}\right)+O_{\varepsilon}\left(y x^{-5 \eta}\right)
$$

Here $*$ indicates that p_{1}, \ldots, p_{h} satisfy $x^{\eta} \leq p_{1}<\ldots<p_{h}$ and

$$
\begin{equation*}
N \leq \prod_{j \in \mathcal{J}} p_{j}<N_{1} \tag{5.1}
\end{equation*}
$$

together with no more than ε^{-1} further conditions of the form

$$
\begin{equation*}
R \leq \prod_{j \in \mathcal{J}^{\prime}} p_{j} \leq S \tag{5.2}
\end{equation*}
$$

Lemma 5.5. Let $M \leq a$ and $N \leq x^{2 / 5-\varepsilon^{\prime}} /(2 a)$. Let $M \leq M_{1} \leq 2 M$ and $N \leq N_{1} \leq 2 N$. Let $x^{\eta} \leq z \leq b / a$. Suppose that $\{1, \ldots, h\}$ partitions into two sets \mathcal{J} and \mathcal{K}. Then

$$
\sum_{p_{1}} \ldots \sum_{p_{h}}^{*} S\left(\mathcal{A}_{p_{1} \ldots p_{h}}, z\right)=\{1+O(\varepsilon)\} \sum_{p_{1}} \ldots \sum_{p_{h}}^{*} S\left(\mathcal{B}_{p_{1} \ldots p_{h}}, z\right)
$$

Here $*$ indicates that p_{1}, \ldots, p_{h} satisfy $z \leq p_{1}<\ldots<p_{h}$ and

$$
\begin{equation*}
M \leq \prod_{j \in \mathcal{J}} p_{j}<M_{1}, \quad N \leq \prod_{j \in \mathcal{K}} p_{j}<N_{1} \tag{5.3}
\end{equation*}
$$

together with no more than ε^{-1} further conditions of the form (5.2). The case $h=0, \mathcal{J}$ and \mathcal{K} empty is permitted.

Lemma 5.6. Let $\phi_{1} \leq \theta \leq \phi_{2}, e v / b^{2}<P \leq x^{-\varepsilon^{\prime}} v / a^{3}$ and $b / a<Q \leq b$. Then

$$
\sum_{p \sim P} \sum_{q \sim Q} S\left(\mathcal{A}_{p q}, q\right)=\{1+O(\varepsilon)\} \sum_{p \sim P} \sum_{q \sim Q} S\left(\mathcal{B}_{p q}, q\right) .
$$

Proof. In view of Lemma 5.4, we can suppose $Q<a$. By the Buchstab identity, we write

$$
\begin{align*}
& \sum_{p \sim P} \sum_{q \sim Q} S\left(\mathcal{A}_{p q}, q\right) \tag{5.4}\\
& \quad=\sum_{p \sim P} \sum_{q \sim Q} S\left(\mathcal{A}_{p q}, b / a\right)-\sum_{p \sim P} \sum_{q \sim Q} \sum_{b / a \leq r<q} S\left(\mathcal{A}_{p q r}, r\right) .
\end{align*}
$$

Since $P \leq x^{-\varepsilon^{\prime}} v / a^{3} \leq x^{2 / 5-\varepsilon^{\prime}} /(2 a)$ and $Q \leq a$, Lemma 5.5 can be applied to the first sum on the right-hand side of (5.4). When $\phi_{1} \leq \theta \leq \phi_{2}$, we have $(b / a)^{2} \geq a$. Thus the parts of the second sum with $q r \leq b$ may be evaluated asymptotically via Lemma 5.4. For the remaining portion of the sum we note that it counts numbers pqrs $\in \mathcal{A}$ where $s<e v /(P q r) \leq e v /\left(\left(e v / b^{2}\right) b\right)=b$ and $s>v /\left(8 P Q^{2}\right) \geq v /\left(8\left(x^{-\varepsilon^{\prime}} v / a^{3}\right) a^{2}\right)=x^{\varepsilon^{\prime}} a / 8 \geq a$. Hence Lemma 5.4 is again applicable and this completes the proof.
6. The proof of (1.3). We establish (1.3) by three different methods according to the size of θ. Our function $u(\theta)$ is better than that of Baker and Harman [2]. We begin with the simplest case. Applying directly Lemma 4.5 with $z=D^{1 / 3}$, we have the following result.

Lemma 6.1. If $\phi_{1} \leq \theta \leq \phi_{9}$, then (1.3) holds with $u(\theta)=5 \theta$.
This result is very rough. In fact $S\left(\mathcal{A}, D^{1 / 3}\right)$ counts many numbers not counted by $S(\theta)$. For some of these we can apply Lemma 4.3 and so obtain an improved bound by removing the "deductible" terms. Similarly to Lemma 17 of [2], we have the following sharper result.

Lemma 6.2. Let $\theta_{0}:=\varrho(\theta) /(3 \theta), \theta_{1}:=(\theta-1 / 2) / \theta$ and $\theta_{2}:=\tau(\theta) / \theta$. If $189 / 290 \leq \theta \leq \phi_{8}$, then (1.3) holds with

$$
\begin{aligned}
u(\theta)= & \frac{2}{3 \theta_{0}}-\int_{\theta_{1}}^{\theta_{2}} \omega\left(\frac{1-\alpha}{\alpha}\right) \frac{d \alpha}{\alpha^{2}}-\int_{\theta_{0}}^{\theta_{1}} \frac{d \alpha_{1}}{\alpha_{1}} \int_{\theta_{1}}^{\theta_{2}} \omega\left(\frac{1-\alpha_{1}-\alpha_{2}}{\alpha_{2}}\right) \frac{d \alpha_{2}}{\alpha_{2}^{2}} \\
& -\int_{\theta_{0}}^{\theta_{1}} \frac{d \alpha_{1}}{\alpha_{1}} \int_{\alpha_{1}}^{\theta_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \int_{\theta_{1}}^{\theta_{2}} \omega\left(\frac{1-\alpha_{1}-\alpha_{2}-\alpha_{3}}{\alpha_{3}}\right) \frac{d \alpha_{3}}{\alpha_{3}^{2}} .
\end{aligned}
$$

Remark. We have $\theta_{1} \geq \theta_{0}$ for $\theta \geq 189 / 290$. Therefore the last two integrals are positive.

Proof (of Lemma 6.2). By using the Buchstab identity, we write, with $z=D^{1 / 3}$,

$$
\begin{align*}
& S\left(\mathcal{A},(e v)^{1 / 2}\right) \tag{6.1}\\
& =S(\mathcal{A}, z)-\sum_{z \leq p<a} S\left(\mathcal{A}_{p}, p\right)-\sum_{a \leq p<b} S\left(\mathcal{A}_{p}, p\right)-\sum_{b \leq p<(e v)^{1 / 2}} S\left(\mathcal{A}_{p}, p\right) .
\end{align*}
$$

Applying again the Buchstab identity yields

$$
\begin{align*}
& \sum_{z \leq p<a} S\left(\mathcal{A}_{p}, p\right)=\sum_{z \leq p<a} S\left(\mathcal{A}_{p}, b\right)+\sum_{z \leq p \leq q<a} \sum_{a} S\left(\mathcal{A}_{p q}, q\right) \tag{6.2}\\
& +\sum_{z \leq p<a \leq q<b} \sum S\left(\mathcal{A}_{p q}, q\right), \\
& \sum_{z \leq p \leq q<a} \sum S\left(\mathcal{A}_{p q}, q\right)=\sum_{z \leq p \leq q<a} \sum_{z} S\left(\mathcal{A}_{p q}, b\right)+\sum_{z \leq p \leq q \leq r<a} \sum_{i} S\left(\mathcal{A}_{p q r}, r\right) \tag{6.3}\\
& +\sum_{z \leq p \leq q<a \leq r<b} \sum S\left(\mathcal{A}_{p q r}, r\right) .
\end{align*}
$$

Inserting (6.2) and (6.3) into (6.1), we find

$$
\begin{align*}
S\left(\mathcal{A},(e v)^{1 / 2}\right)= & S(\mathcal{A}, z)-\sum_{a \leq p<b} S\left(\mathcal{A}_{p}, p\right)-\sum_{z \leq p<a \leq q<b} \sum S\left(\mathcal{A}_{p q}, q\right) \tag{6.4}\\
& -\sum_{z \leq p \leq q<a \leq r<b} \sum_{p} S\left(\mathcal{A}_{p q r}, r\right) \\
& -\sum_{z \leq p<a} S\left(\mathcal{A}_{p}, b\right)-\sum_{z \leq p \leq q<a} \sum_{p\left(\mathcal{A}_{p q}, b\right)} \\
& -\sum_{z \leq p \leq q \leq r<a} \sum_{p q} S\left(\mathcal{A}_{p q r}, r\right)-\sum_{b \leq p<(e v)^{1 / 2}} S\left(\mathcal{A}_{p}, p\right) \\
= & R_{1}-R_{2}-R_{3}-R_{4}-\ldots-R_{8} \\
\leq & R_{1}-R_{2}-R_{3}-R_{4} .
\end{align*}
$$

By Lemma 4.5, we have

$$
\begin{equation*}
R_{1} \leq\{1+O(\varepsilon)\} \frac{2 y}{\varrho(\theta) \mathcal{L}} \tag{6.5}
\end{equation*}
$$

We may evaluate asymptotically R_{2}, R_{3}, R_{4} via Lemma 5.4. Applying Lemma 8 of [2] and using the standard procedure for replacing sums over primes by integrals, we can prove

$$
\begin{align*}
R_{2} & =\{1+O(\varepsilon)\} \frac{y}{\theta \mathcal{L}} \int_{\theta_{1}}^{\theta_{2}} \omega\left(\frac{1-\alpha}{\alpha}\right) \frac{d \alpha}{\alpha^{2}} \tag{6.6}\\
R_{3} & =\{1+O(\varepsilon)\} \frac{y}{\theta \mathcal{L}} \int_{\theta_{0}}^{\theta_{1}} \frac{d \alpha_{1}}{\alpha_{1}} \int_{\theta_{1}}^{\theta_{2}} \omega\left(\frac{1-\alpha_{1}-\alpha_{2}}{\alpha_{2}}\right) \frac{d \alpha_{2}}{\alpha_{2}^{2}}, \tag{6.7}\\
R_{4} & =\{1+O(\varepsilon)\} \frac{y}{\theta \mathcal{L}} \int_{\theta_{0}}^{\theta_{1}} \frac{d \alpha_{1}}{\alpha_{1}} \int_{\alpha_{1}}^{\theta_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \int_{\theta_{1}}^{\theta_{2}} \omega\left(\frac{1-\alpha_{1}-\alpha_{2}-\alpha_{3}}{\alpha_{3}}\right) \frac{d \alpha_{3}}{\alpha_{3}^{2}} . \tag{6.8}
\end{align*}
$$

Inserting (6.5)-(6.8) into (6.4), we obtain the required result.
Finally, we apply the alternative sieve of Baker and Harman to deduce the desired upper bound $u(\theta)$ for $\phi_{1} \leq \theta<7 / 10$. By the Buchstab identity, we can write

$$
\begin{align*}
S\left(\mathcal{A},(e v)^{1 / 2}\right)= & S(\mathcal{A}, b / a)-\sum_{b / a \leq p<a} S\left(\mathcal{A}_{p}, p\right) \tag{6.9}\\
& -\sum_{a \leq p \leq b} S\left(\mathcal{A}_{p}, p\right)-\sum_{b<p<(e v)^{1 / 2}} S\left(\mathcal{A}_{p}, p\right) .
\end{align*}
$$

For the second term on the right-hand side, we apply again two times the Buchstab identity

$$
\begin{align*}
\sum_{b / a \leq p<a} S\left(\mathcal{A}_{p}, p\right)= & \sum_{b / a \leq p<a} S\left(\mathcal{A}_{p}, b / a\right)-\sum_{b / a \leq q<p<a} S\left(\mathcal{A}_{p q}, b / a\right) \tag{6.10}\\
& \left.+\sum_{b / a \leq r<q<p<a} \sum_{p} \sum_{p q}, r\right) .
\end{align*}
$$

Inserting (6.10) into (6.9) yields

$$
\begin{align*}
S\left(\mathcal{A},(e v)^{1 / 2}\right)= & S(\mathcal{A}, b / a)-\sum_{b / a \leq p<a} S\left(\mathcal{A}_{p}, b / a\right) \tag{6.11}\\
& +\sum_{b / a \leq q<p<a} \sum S\left(\mathcal{A}_{p q}, b / a\right)-\sum_{b / a \leq r<q<p<a} \sum_{p\left(\mathcal{A}_{p q r}, r\right)} \sum S \mathcal{A}_{a \leq p<} S(e v)^{1 / 2} \\
& -\sum_{a \leq p \leq b} S\left(\mathcal{A}_{p}, p\right)-\sum_{b}= \\
= & S_{1}-S_{2}+S_{3}-S_{4}-S_{5}-S_{6} .
\end{align*}
$$

Noticing $a \leq x^{2 / 5-\varepsilon^{\prime}} /(2 a)$ for $\theta<7 / 10$, Lemma 5.5 allows us to get the asymptotic formulae for $S_{j}(1 \leq j \leq 3)$. In addition, by Lemma 5.4 we also obtain the asymptotic formula for S_{5}.

In order to treat S_{4}, it is necessary to introduce some notation. We write $p=v^{\alpha_{1}}, q=v^{\alpha_{2}}, r=v^{\alpha_{3}}, s=v^{\alpha_{4}}, t=v^{\alpha_{5}}$ and $\bar{\alpha}:=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. Let $\theta_{3}:=\theta_{2}-\theta_{1}$ and

$$
\begin{aligned}
\mathbb{E}_{n}:=\left\{\left(\alpha_{1}, \ldots, \alpha_{n}\right): \theta_{3} \leq \alpha_{n}<\ldots\right. & <\alpha_{1}<\theta_{1} \\
& \left.\alpha_{1}+\ldots+\alpha_{n-1}+2 \alpha_{n} \leq 1+1 /(\theta \mathcal{L})\right\}
\end{aligned}
$$

A point $\bar{\alpha}$ of \mathbb{E}_{n} is said to be bad if no sum $\sum_{j \in \mathcal{J}} \alpha_{j}$ lies in $\left[\theta_{1}+\varepsilon^{\prime}, \theta_{2}-\varepsilon^{\prime}\right]$ where $\mathcal{J} \subset\{1, \ldots, n\}$. The set of all bad points is denoted by \mathbb{B}_{n}. The points of $\mathbb{G}_{n}:=\mathbb{E}_{n} \backslash \mathbb{B}_{n}$ are called good. Let $\theta_{4}:=(9 / 10-\theta) / \theta, \mathbb{U}:=\left\{\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in\right.$ $\left.\mathbb{B}_{3}: \alpha_{2}+2 \alpha_{3} \geq \theta_{4}-\varepsilon^{\prime}\right\}, \mathbb{V}:=\mathbb{B}_{3} \backslash \mathbb{U}$ and $\mathbb{W}:=\mathbb{G}_{3}$. We see that \mathbb{E}_{3} partitions into $\mathbb{U}, \mathbb{V}, \mathbb{W}$. Thus

$$
S_{4}=\sum_{\bar{\alpha} \in \mathbb{U}} S\left(\mathcal{A}_{p q r}, r\right)+\sum_{\bar{\alpha} \in \mathbb{V}} S\left(\mathcal{A}_{p q r}, r\right)+\sum_{\bar{\alpha} \in \mathbb{W}} S\left(\mathcal{A}_{p q r}, r\right)=: S_{7}+S_{8}+S_{9} .
$$

According to the definition of \mathbb{W}, S_{9} can be evaluated asymptotically. For S_{8}, we use the Buchstab identity to write

$$
\begin{aligned}
S_{8} & =\sum_{\bar{\alpha} \in \mathbb{V}} S\left(\mathcal{A}_{p q r}, b / a\right)-\sum_{\bar{\alpha} \in \mathbb{X}_{1}} S\left(\mathcal{A}_{p q r s}, s\right)-\sum_{\bar{\alpha} \in \mathbb{X}_{2}} S\left(\mathcal{A}_{p q r s}, s\right) \\
& =: S_{10}-S_{11}-S_{12}
\end{aligned}
$$

with $\mathbb{X}_{1}:=\left\{\left(\alpha_{1}, \ldots, \alpha_{4}\right) \in \mathbb{G}_{4}:\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in \mathbb{V}\right\}, \mathbb{X}_{2}:=\left\{\left(\alpha_{1}, \ldots, \alpha_{4}\right) \in\right.$ $\left.\mathbb{B}_{4}:\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in \mathbb{V}\right\}$.

If $\bar{\alpha} \in \mathbb{V}$, then $q r=v^{\alpha_{2}+\alpha_{3}}<v^{\theta_{4}-\varepsilon^{\prime}} \leq x^{2 / 5-\varepsilon^{\prime}} /(2 a)$. Hence Lemma 5.5 allows us to get the desired asymptotic formula for S_{10}. In addition, the definition of \mathbb{X}_{1} shows that S_{11} may be evaluated asymptotically. For S_{12}, we again apply the Buchstab identity to write

$$
\begin{aligned}
S_{12} & =\sum_{\bar{\alpha} \in \mathbb{X}_{2}} S\left(\mathcal{A}_{p q r s}, b / a\right)-\sum_{\bar{\alpha} \in \mathbb{Y}_{1}} S\left(\mathcal{A}_{p q r s t}, t\right)-\sum_{\bar{\alpha} \in \mathbb{Y}_{2}} S\left(\mathcal{A}_{p q r s t}, t\right) \\
& =: S_{13}-S_{14}-S_{15}
\end{aligned}
$$

where

$$
\begin{aligned}
\mathbb{Y}_{1} & :=\left\{\left(\alpha_{1}, \ldots, \alpha_{5}\right) \in \mathbb{G}_{5}:\left(\alpha_{1}, \ldots, \alpha_{4}\right) \in \mathbb{X}_{2}\right\} \\
\mathbb{Y}_{2} & :=\left\{\left(\alpha_{1}, \ldots, \alpha_{5}\right) \in \mathbb{B}_{5}:\left(\alpha_{1}, \ldots, \alpha_{4}\right) \in \mathbb{X}_{2}\right\}
\end{aligned}
$$

When $\bar{\alpha} \in \mathbb{X}_{2}$, we find that $q r s=v^{\alpha_{2}+\alpha_{3}+\alpha_{4}} \leq v^{\alpha_{2}+2 \alpha_{3}} \leq v^{\theta_{4}-\varepsilon^{\prime}} \leq$ $x^{2 / 5-\varepsilon^{\prime}} /(2 a)$. Thus we have the desired asymptotic formula for \bar{S}_{13} by Lemma 5.5.

Inserting these into (6.11), we obtain

$$
\begin{aligned}
S\left(\mathcal{A},(e v)^{1 / 2}\right)= & S_{1}-S_{2}+S_{3}-S_{5}-S_{6}-S_{7}-S_{9}-S_{10} \\
& +S_{11}+S_{13}+S_{14}-S_{15}
\end{aligned}
$$

We have the desired asymptotic formulae for S_{j}, except for $j=6,7,15$.

Obviously the same decomposition also holds for $S\left(\mathcal{B},(e v)^{1 / 2}\right)$, i.e.

$$
\begin{aligned}
S\left(\mathcal{B},(e v)^{1 / 2}\right)= & S_{1}^{\prime}-S_{2}^{\prime}+S_{3}^{\prime}-S_{5}^{\prime}-S_{6}^{\prime}-S_{7}^{\prime}-S_{9}^{\prime}-S_{10}^{\prime} \\
& +S_{11}^{\prime}+S_{13}^{\prime}+S_{14}^{\prime}-S_{15}^{\prime}
\end{aligned}
$$

where S_{j}^{\prime} is defined similarly to S_{j} with the only difference that \mathcal{A} is replaced by \mathcal{B}. Since $S_{j}=\{1+O(\varepsilon)\} S_{j}^{\prime}$ except for $j=6,7,15$, we can obtain

$$
\begin{equation*}
S\left(\mathcal{A},(e v)^{1 / 2}\right)=\{1+O(\varepsilon)\}\left\{S\left(\mathcal{B},(e v)^{1 / 2}\right)+S_{6}^{\prime}+S_{7}^{\prime}+S_{15}^{\prime}\right\} \tag{6.12}
\end{equation*}
$$

$$
-S_{6}-S_{7}-S_{15}
$$

By Lemma 8 of [2] and by using the standard procedure for replacing sums over primes by integrals, we can deduce

$$
\begin{gather*}
S\left(\mathcal{B},(e v)^{1 / 2}\right)+S_{6}^{\prime}=\{1+O(\varepsilon)\} \frac{1}{\theta_{2}} \omega\left(\frac{1}{\theta_{2}}\right) \frac{y}{\theta \mathcal{L}}, \tag{6.13}\\
S_{7}^{\prime}=\{1+O(\varepsilon)\} \frac{K(\theta) y}{\theta \mathcal{L}}, \quad S_{15}^{\prime}=\{1+O(\varepsilon)\} \frac{R(\theta) y}{\theta \mathcal{L}}, \tag{6.14}
\end{gather*}
$$

where

$$
\left\{\begin{align*}
K(\theta) & :=\int_{\mathbb{U}} \omega\left(\frac{1-\alpha_{1}-\alpha_{2}-\alpha_{3}}{\alpha_{3}}\right) \frac{d \alpha_{1} d \alpha_{2} d \alpha_{3}}{\alpha_{1} \alpha_{2} \alpha_{3}^{2}} \tag{6.15}\\
R(\theta) & :=\int_{\mathbb{Y}_{2}} \omega\left(\frac{1-\alpha_{1}-\ldots-\alpha_{5}}{\alpha_{5}}\right) \frac{d \alpha_{1} \ldots d \alpha_{5}}{\alpha_{1} \ldots \alpha_{4} \alpha_{5}^{2}} .
\end{align*}\right.
$$

Finally, we give a non-trivial lower bound for S_{6} when $\phi_{1} \leq \theta \leq \phi_{2}$. In this case, we have $b \leq e v / b^{2}<x^{-\varepsilon^{\prime}} v / a^{3} \leq(e v)^{1 / 2}$. Thus by the Buchstab identity, we can write

$$
\begin{aligned}
S_{6} & \geq \sum_{e v / b^{2}<p<x^{-\varepsilon^{\prime}} v / a^{3}} S\left(\mathcal{A}_{p}, p\right) \\
& =\sum_{e v / b^{2}<p<x^{-\varepsilon^{\prime}} v / a^{3}} S\left(\mathcal{A}_{p}, b / a\right)-\sum_{\substack{e v / b^{2}<p<x^{-\varepsilon^{\prime}} v / a^{3} \\
b / a \leq q<\min \left\{p,(e v / p)^{1 / 2}\right\}}} S\left(\mathcal{A}_{p q}, q\right) .
\end{aligned}
$$

Since $x^{-\varepsilon^{\prime}} v / a^{3} \leq x^{2 / 5-\varepsilon^{\prime}} /(2 a)$, we have an asymptotic formula for the first term on the right-hand side from Lemma 5.5. In addition, we note that $p>e v / b^{2}$ implies $(e v / p)^{1 / 2} \leq b$. Thus the second term may be evaluated asymptotically via Lemma 5.6. Hence

$$
\begin{align*}
S_{6} & \geq\{1+O(\varepsilon)\} \sum_{e v / b^{2}<p<x^{-\varepsilon^{\prime}} v / a^{3}} S\left(\mathcal{B}_{p}, p\right) \tag{6.16}\\
& =\{1+O(\varepsilon)\} \frac{y}{\theta \mathcal{L}} \log \left(\frac{3-4 \theta}{6 \theta-3} \cdot \frac{4-6 \theta}{7 \theta-4}\right) .
\end{align*}
$$

Inserting (6.13), (6.14) and (6.16) into (6.12) and using $S_{7}, S_{15} \geq 0$, we get the following result.

Lemma 6.3. For $\phi_{1} \leq \theta<7 / 10$, we have (1.3) with $u(\theta)=M(\theta)+$ $K(\theta)+R(\theta)$, where $K(\theta)$ and $R(\theta)$ are defined as in (6.15) and

$$
M(\theta)= \begin{cases}\frac{1}{\theta_{2}} \omega\left(\frac{1}{\theta_{2}}\right)-\log \left(\frac{3-4 \theta}{6 \theta-3} \cdot \frac{4-6 \theta}{7 \theta-4}\right) & \text { if } \phi_{1} \leq \theta<\phi_{2}, \\ \frac{1}{\theta_{2}} \omega\left(\frac{1}{\theta_{2}}\right) & \text { if } \phi_{2} \leq \theta<7 / 10 .\end{cases}
$$

Remark. The functions $M(\theta), K(\theta)$ and $R(\theta)$ are each θ times the corresponding functions in Baker and Harman [2].
7. The proof of (1.4). We recall the notation: $\theta_{0}:=\varrho(\theta) /(3 \theta), \theta_{1}:=$ $(\theta-1 / 2) / \theta$ and $\theta_{2}:=\tau(\theta) / \theta$.
A. The interval $\phi_{1} \leq \theta \leq 0.661$. In this case we use Lemma 6.3. Noticing $3 \leq 1 / \theta_{2} \leq 4$, we have

$$
\frac{1}{\theta_{2}} \omega\left(\frac{1}{\theta_{2}}\right)=1+\log 2+\int_{2}^{1 / \theta_{2}-1} \frac{1+\log (t-1)}{t} d t
$$

and $\int_{\phi_{1}}^{0.661} M(\theta) d \theta<0.123182$. Clearly (7.3) of [2] implies $\int_{\phi_{1}}^{0.661}\{K(\theta)+$ $R(\theta)\} d \theta<0.0125$ (see the final remark). Hence

$$
\begin{equation*}
\int_{\phi_{1}}^{0.661} u(\theta) d \theta<0.135682 . \tag{7.1}
\end{equation*}
$$

B. The interval $0.661 \leq \theta \leq \phi_{8}$. In this case we apply Lemma 6.2 . We have $2 \leq(1-\alpha) / \alpha \leq 4$ for $\theta_{1} \leq \alpha \leq \theta_{2}$. By using $t \omega(t) \geq 1+\log (t-1)$ for $2 \leq t \leq 4$, we can deduce

$$
\int_{\theta_{1}}^{\theta_{2}} \omega\left(\frac{1-\alpha}{\alpha}\right) \frac{d \alpha}{\alpha^{2}} \geq \log \frac{1 / \theta_{1}-1}{1 / \theta_{2}-1}+\int_{1 / \theta_{2}-1}^{1 / \theta_{1}-1} \frac{\log (\alpha-1)}{\alpha} d \alpha
$$

Similarly noticing $1 \leq\left(1-\alpha_{1}-\alpha_{2}\right) / \alpha_{2} \leq 3$ for $\theta_{0} \leq \alpha_{1} \leq \theta_{1} \leq \alpha_{2} \leq \theta_{2}$ and $t \omega(t) \geq 1$ for $1 \leq t \leq 3$, we see that

$$
\int_{\theta_{0}}^{\theta_{1}} \frac{d \alpha_{1}}{\alpha_{1}} \int_{\theta_{1}}^{\theta_{2}} \omega\left(\frac{1-\alpha_{1}-\alpha_{2}}{\alpha_{2}}\right) \frac{d \alpha_{2}}{\alpha_{2}^{2}} \geq \int_{\theta_{0}}^{\theta_{1}} \log \left(\frac{1-\theta_{1}-\alpha}{1-\theta_{2}-\alpha} \cdot \frac{\theta_{2}}{\theta_{1}}\right) \frac{d \alpha}{\alpha(1-\alpha)} .
$$

Finally, using $\omega(t) \geq 1 / 2$ for $t \geq 1$ ([16, IV], p. 437), we deduce

$$
\int_{\theta_{0}}^{\theta_{1}} \frac{d \alpha_{1}}{\alpha_{1}} \int_{\alpha_{1}}^{\theta_{1}} \frac{d \alpha_{2}}{\alpha_{2}} \int_{\theta_{1}}^{\theta_{2}} \omega\left(\frac{1-\alpha_{1}-\alpha_{2}-\alpha_{3}}{\alpha_{3}}\right) \frac{d \alpha_{3}}{\alpha_{3}^{2}} \geq \frac{1}{4}\left(\frac{1}{\theta_{1}}-\frac{1}{\theta_{2}}\right) \log ^{2} \frac{\theta_{1}}{\theta_{0}} .
$$

Hence we have

$$
u(\theta) \leq f(\theta)-g(\theta),
$$

where

$$
\begin{aligned}
f(\theta) & :=\frac{2}{3 \theta_{0}}-\log \frac{1 / \theta_{1}-1}{1 / \theta_{2}-1}-\frac{1}{4}\left(\frac{1}{\theta_{1}}-\frac{1}{\theta_{2}}\right) \log ^{2} \frac{\theta_{1}}{\theta_{0}}, \\
g(\theta) & :=\int_{1 / \theta_{2}-1}^{1 / \theta_{1}-1} \frac{\log (\alpha-1)}{\alpha} d \alpha+\int_{\theta_{0}}^{\theta_{1}} \log \left(\frac{1-\theta_{1}-\alpha}{1-\theta_{2}-\alpha} \cdot \frac{\theta_{2}}{\theta_{1}}\right) \frac{d \alpha}{\alpha(1-\alpha)} .
\end{aligned}
$$

A numerical computation gives us

$[\alpha, \beta]$	$\left[0.661, \phi_{4}\right]$	$\left[\phi_{4}, \phi_{5}\right]$	$\left[\phi_{5}, \phi_{6}\right]$	$\left[\phi_{6}, \phi_{7}\right]$	$\left[\phi_{7}, \phi_{8}\right]$
$\int_{\alpha}^{\beta} f(\theta) d \theta<$	0.0177872	0.0666379	0.0433597	0.0296966	0.0376814
$\int_{\alpha}^{\beta} g(\theta) d \theta>$	0.0004544	0.0009964	0.0002399	0.0000643	0.0000231

$$
\begin{equation*}
\int_{0.661}^{\phi_{8}} u(\theta) d \theta<0.193385 . \tag{7.2}
\end{equation*}
$$

C. The interval $\phi_{8} \leq \theta \leq \phi_{9}$. From Lemma 6.1, we have

$$
\begin{equation*}
\int_{\phi_{8}}^{\phi_{9}} u(\theta) d \theta=2.5\left(\phi_{9}^{2}-\phi_{8}^{2}\right)<0.070107 . \tag{7.3}
\end{equation*}
$$

Now (1.4) follows from (7.1)-(7.3), completing the proof of Theorem 1.
Final remark. Since our estimates for exponential sums are better than those of Baker and Harman [2], our $\mathbb{U}, \mathbb{Y}_{2}$ are smaller than their corresponding $\mathbb{U}, \mathbb{Y}_{2}$. Therefore we can certainly obtain a smaller value in place of 0.0125 . This leads to a better exponent than 0.738 . It seems that we could not have arrived at 0.74 by computing precisely $\int_{\phi_{1}}^{0.661}\{K(\theta)+R(\theta)\} d \theta$.

References

[1] R. C. Baker, The greatest prime factor of the integers in an interval, Acta Arith. 47 (1986), 193-231.
[2] R. C. Baker and G. Harman, Numbers with a large prime factor, ibid. 73 (1995), 119-145.
[3] R. C. Baker, G. Harman and J. Rivat, Primes of the form [n^{c}], J. Number Theory 50 (1995), 261-277.
[4] A. Balog, Numbers with a large prime factor I, Studia Sci. Math. Hungar. 15 (1980), 139-146; II, in: Topics in Classical Number Theory, Colloq. Math. Soc. János Bolyai 34, North-Holland, 1984, 49-67.
[5] A. Balog, G. Harman and J. Pintz, Numbers with a large prime factor IV, J. London Math. Soc. (2) 28 (1983), 218-226.
[6] E. Fouvry, Sur le théorème de Brun-Titchmarsh, Acta Arith. 43 (1984), 417-424.
[7] E. Fouvry and H. Iwaniec, Exponential sums with monomials, J. Number Theory 33 (1989), 311-333.
[8] S. W. Graham, The greatest prime factor of the integers in an interval, J. London Math. Soc. (2) 24 (1981), 427-440.
[9] S. W. Graham and G. Kolesnik, Van der Corput's Method of Exponential Sums, Cambridge Univ. Press, 1991.
[10] G. Harman, On the distribution of αp modulo one, J. London Math. Soc. (2) 27 (1983), 9-13.
[11] D. R. Heath-Brown, The Pjateckiu-Šapiro prime number theorem, J. Number Theory 16 (1983), 242-266.
[12] -, The largest prime factor of the integers in an interval, Sci. China Ser. A 39 (1996), 449-476.
[13] D. R. Heath-Brown and C. H. Jia, The largest prime factor of the integers in an interval II, J. Reine Angew. Math. 498 (1998), 35-59.
[14] M. N. Huxley, Area, Lattice Points and Exponential Sums, Oxford Sci. Publ., Clarendon Press, Oxford, 1996.
[15] H. Iwaniec, A new form of the error term in the linear sieve, Acta Arith. 37 (1980), 307-320.
[16] C. H. Jia, The greatest prime factor of the integers in an interval I, Acta Math. Sinica 29 (1986), 815-825; II, ibid. 32 (1989), 188-199; III, ibid. (N.S.) 9 (1993), 321-336; IV, ibid. 12 (1996), 433-445.
[17] M. Jutila, On numbers with a large prime factor IV, J. Indian Math. Soc. (N.S.) 37 (1973), 43-53.
[18] H.-Q. Liu, The greatest prime factor of the integers in an interval, Acta Arith. 65 (1993), 301-328.
[19] -, A special triple exponential sum, Mathematika 42 (1995), 137-143.
[20] K. Ramachandra, A note on numbers with a large prime factor I, J. London Math. Soc. (2) 1 (1969), 303-306; II, J. Indian Math. Soc. 34 (1970), 39-48.
[21] E. C. Titchmarsh, The Theory of the Riemann Zeta-function, 2nd ed., revised by D. R. Heath-Brown, Clarendon Press, Oxford, 1986.
[22] J. Wu, Nombres \mathcal{B}-libres dans les petits intervalles, Acta Arith. 65 (1993), 97-116.

Department of Mathematics
Harbin Institute of Technology
Harbin 150006, P.R. China
Address for correspondence (H. Q. Liu):
206-10 Bao Guo Street
Harbin 150066, P.R. China

Institut Elie Cartan - CNRS UMR 9973
Université Henri Poincaré (Nancy 1) 54506 Vandœuvre-lès-Nancy, France E-mail: wujie@iecn.u-nancy.fr

[^0]: 1991 Mathematics Subject Classification: Primary 11N05; Secondary 11L07, 11N36.
 Research of H. Q. Liu supported by Harbin Institute of Technology and the natural science foundation of China.

