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Numbers with a large prime factor

by

Hong-Quan Liu (Harbin) and Jie Wu (Nancy)

1. Introduction. Let P (x) be the greatest prime factor of the integer∏
x<n≤x+x1/2 n. It is expected that P (x) ≥ x for x ≥ 2. However, this in-

equality seems extremely difficult to verify. In 1969, Ramachandra [20, I]
obtained a non-trivial lower bound: P (x) ≥ x0.576 for sufficiently large x.
This result has been improved consecutively by many authors. The best es-
timate known to date is very far from the expected result. The historical
records are as follows:

P (x) ≥ x0.625 by Ramachandra [20, II],

P (x) ≥ x0.662 by Graham [8],

P (x) ≥ x0.692 by Jia [16, I],

P (x) ≥ x0.7 by Baker [1],

P (x) ≥ x0.71 by Jia [16, II],

P (x) ≥ x0.723 by Jia [16, III] and Liu [18],

P (x) ≥ x0.728 by Jia [16, IV],

P (x) ≥ x0.732 by Baker and Harman [2].

We note that the last two papers are independent. In both, the same es-
timates for exponential sums were used. But Baker and Harman [2] intro-
duced the alternative sieve procedure, developed by Harman [10] and by
Baker, Harman and Rivat [3], to get a better exponent. In this paper we
shall prove a sharper lower bound.

Theorem 1. We have P (x) ≥ x0.738 for sufficiently large x.

As Baker and Harman indicated in [2], it is very difficult to make any
progress without new exponential sum estimates. Naturally we first treat
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the corresponding exponential sums

SI :=
∑

h∼H

∑

m∼M

∑

n∼N
bne

(
xh

mn

)
,

SII :=
∑

h∼H

∑

m∼M

∑

n∼N
ambne

(
xh

mn

)
,

where e(t) := e2πit, |am| ≤ 1, |bn| ≤ 1 and m ∼ M means cM < m ≤ c′M
with some positive unspecified constants c, c′. The improvement in The-
orem 1 comes principally from our new bound for SI (§2, Corollary 2),
where we extend the condition N ≤ x3/8−ε of Jia [16, III] and Liu [18]
to N ≤ x2/5−ε (ε is an arbitrarily small positive number). It is noteworthy
that we prove this as an immediate consequence of a new estimate on special
bilinear exponential sums (§2, Theorem 2). This estimate has other applica-
tions, which will be taken up elsewhere. Our results on SII (§3, Theorem 3)
improve Theorem 6 of [7] (or [18], Lemma 2) and Lemma 14 of [1]. We need
Lemma 9 of [1] only in a very short interval (3/5 ≤ θ ≤ 11/18).

If the interval (x, x + x1/2] is replaced by (x, x + x1/2+ε], one can do
much better. In 1973, Jutila [17] proved that the largest prime factor of∏
x<n≤x+x1/2+ε n is at least x2/3−ε for x ≥ x0(ε). The exponent 2/3 was

improved successively to 0.73 by Balog [4, I], to 0.772 by Balog [4, II], to
0.82 by Balog, Harman and Pintz [5], to 11/12 by Heath-Brown [12] and to
17/18 by Heath-Brown and Jia [13]. It should be noted that their methods
cannot be applied to treat P (x), and this leads to the comparative weakness
of the results on P (x) (cf. [5]).

Throughout this paper, we put L := log x, y := x1/2, N(d) := |{x < n ≤
x + y : d |n}| and v := xθ. From [16, III], [18] and [2], in order to prove
Theorem 1 it is sufficient to show

(1.1)
∑

x0.6−ε<p≤x0.738

N(p) log p < 0.4 yL,

where p denotes a prime number. For this we shall need an upper bound for
the quantity S(θ) :=

∑
xθ<p≤exθ N(p) (0.6 ≤ θ ≤ 0.738). We write

(1.2) S(θ) =
∑

xθ<p≤exθ

∑

x<mp≤x+y

1 =
∑

p∈A
1 = S(A, (ev)1/2),

where A = A(θ) := {n : xθ < n ≤ exθ, N(n) = 1}, S(A, z) := |{n ∈ A :
P−(n) ≥ z}| and P−(n) := minp|n p (P−(1) = ∞). We would like to give
an upper bound for S(θ) of the form

(1.3) S(θ) ≤ {1 +O(ε)}u(θ)y
θL ,

where u(θ) is as small as possible. Thus in order to prove (1.1), it suffices to
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show (1.3) and

(1.4)
0.738\
0.6

u(θ) dθ < 0.4.

As in [2], we shall prove (1.3) by the alternative sieve for 0.6 ≤ θ ≤ 0.661
and by the Rosser–Iwaniec sieve for 0.661 ≤ θ ≤ 0.738. Thanks to our new
estimates for exponential sums, our u(θ) is strictly smaller than that of
Baker and Harman [2].

In the sequel, we use ε0 to denote a suitably small positive number,
ε an arbitrarily small positive number, ε′ an unspecified constant multiple
of ε and put η := e−3/ε.

2. Estimates for bilinear exponential sums and for SI . First we
investigate a special bilinear sum of type II:

S(M,N) :=
∑

m∼M

∑

n∼N
ambne

(
X
m1/2nβ

M1/2Nβ

)
.

Here the exponent 1/2 is important in our method. We have the following
result.

Theorem 2. Let β ∈ R with β(β − 1) 6= 0, X > 0, M ≥ 1, N ≥ 1,
L0 := log(2 +XMN), |am| ≤ 1 and |bn| ≤ 1. Then

S(M,N)� {(X4M10N11)1/16 + (X2M8N9)1/12 + (X2M4N3)1/6

+ (XM2N3)1/4 +MN1/2 +M1/2N +X−1/2MN}L0.

P r o o f. In view of Theorem 2 of [7] (or Lemma 3.1 below), we can
suppose X ≥ N . In addition we may also assume β > 0. Let Q ∈ (0, ε0N ]
be a parameter to be chosen later. By the Cauchy–Schwarz inequality and
Lemma 2.5 of [9], we have

|S|2 � (MN)2

Q

+
M3/2N

Q

∑

1≤|q1|<Q

(
1− |q1|

Q

) ∑

n∼N
bn+q1bn

∑

m∼M
m−1/2e(Am1/2t),

where t = t(n, q1) := (n + q1)β − nβ and A := X/(M1/2Nβ). Splitting
the range of q1 into dyadic intervals and removing 1 − q1/Q by partial
summation, we get

(2.1) |S|2 � (MN)2Q−1 + L0M
3/2NQ−1 max

1≤Q1≤Q
|S(Q1)|,

where
S(Q1) :=

∑

q1∼Q1

∑

n∼N
bn+q1bn

∑

m∼M
m−1/2 e(Am1/2t).



166 H. Q. Liu and J. Wu

If X(MN)−1Q1 ≥ ε0, by Lemma 1.4 of [18] we transform the innermost
sum to a sum over l and then by using Lemma 4 of [16, IV] with n = n we
estimate the corresponding error term. As a result, we obtain

S(Q1)�
∑

q1∼Q1

∑

n∼N
bn+q1bn

∑

l∈I(n,q1)

l−1/2 e(A0t
2) + {(XM−1N−1Q3

1)1/2

+M−1/2NQ1 + (X−1MNQ1)1/2 + (X−2MN4)1/2}L0,

where A0 := 1
4A

2l−1, I(n, q1) := [c1AM−1/2|t|, c2AM−1/2|t|] and cj are
some constants. Interchanging the order of summation and estimating the
sum over l trivially, we find, for some l � X(MN)−1Q1, the inequality

S(Q1)� (XM−1N−1Q1)1/2
∣∣∣
∑∑

(n,q1)∈D(l)

bn+q1bne(A0t
2)
∣∣∣(2.2)

+ {(XM−1N−1Q3
1)1/2

+M−1/2NQ1 + (X−1MNQ1)1/2 + (X−2MN4)1/2}L0,

where D(l) is a subregion of {(n, q1) : n ∼ N, q1 ∼ Q1}. Let S1(Q1) be the
double sums on the right-hand side of (2.2). Let Q2 ∈ (0, ε0 min{Q1, N

2/X}]
be another parameter to be chosen later. Using again the Cauchy–Schwarz
inequality and Lemma 2.5 of [9] yields

(2.3) |S1(Q1)|2 � (NQ1)2Q−1
2 +NQ1Q

−1
2

∑

1≤q2≤Q2

|S2(q1, q2)|,

where

S2(q1, q2) :=
∑

n∼N

∑

q1∈J1(n)

bn+q1+q2bn+q1e(t1(n, q1, q2)),

J1(n) is a subinterval of [Q1, 2Q1] and t1(n, q1, q2) := A0{t(n, q1 + q2)2 −
t(n, q1)2}. Putting n′ := n+ q1, we have

S2(q1, q2)�
∑

n′∼N

∣∣∣
∑

q1∈J2(n′)

e(t1(n′ − q1, q1, q2))
∣∣∣,

where J2(n′) is a subinterval of [Q1, 2Q1]. Noticing

t(n′ − q1, q1 + q2)− t(n′ − q1, q1) = t(n′, q2),

t(n′ − q1, q1 + q2) + t(n′ − q1, q1) = 2t(n′ − q1, q1) + t(n′, q2),

we have

t1(n′ − q1, q1, q2) = f(n′)q1 + r(n′, q1) +A0t(n′, q2)2,

where f(n′) := 2βA0t(n′, q2)n′β−1 and r(n′, q1) := 2A0t(n′−q1, q1)t(n′, q2)−
f(n′)q1. Since the last term on the right-hand side is independent of q1, it



Numbers with a large prime factor 167

follows that

S2(q1, q2)�
∑

n′∼N

∣∣∣
∑

q1∈J2(n′)

e(±‖f(n′)‖q1 + r(n′, q1))
∣∣∣,

where ‖a‖ := minn∈Z |a− n|. Since Q2 ≤ ε0N
2/X, we have

max
n′∼N

max
q1∈J2(n′)

|∂r/∂q1| ≤ c3XN−2q2 ≤ 1/4.

By Lemmas 4.8, 4.2 and 4.4 of [21], the innermost sum on the right-hand
side equals\

J2(n′)

e(±‖f(n′)‖s+ r(n′, s)) ds+O(1)

�
{
‖f(n′)‖−1 if ‖f(n′)‖ ≥ ε−1

0 XN−2q2,
(XN−2Q−1

1 q2)−1/2 if ‖f(n′)‖ < ε−1
0 XN−2q2,

which implies

S2(q1, q2)�
∑

‖f(n′)‖≥ε−1
0 XN−2q2

‖f(n′)‖−1

+
∑

‖f(n′)‖<ε−1
0 XN−2q2

(XN−2Q−1
1 q2)−1/2

=: S′2 + S′′2 .

As f ′(n′) � XN−2Q−1
1 q2, Lemma 3.1.2 of [14] yields

S′2 � L0 max
ε−1
0 XN−2q2≤∆≤1/2

∑

∆≤‖f(n′)‖<2∆

∆−1 � (N +X−1N2Q1q
−1
2 )L0,

S′′2 � (XQ1q2)1/2 + (X−1N2Q3
1q
−1
2 )1/2.

These imply, via (2.3),

|S1(Q1)|2 � {(XN2Q3
1Q2)1/2 + (NQ1)2Q−1

2 + (X−1N4Q5
1Q
−1
2 )1/2}L2

0,

where we have used the fact that

N2Q1 +X−1N3Q2
1Q
−1
2 � (NQ1)2Q−1

2 (X ≥ N and Q1 ≥ Q2).

Using Lemma 2.4 of [9] to optimise Q2 over (0, ε0 min{Q1, N
2/X}], we ob-

tain

|S1(Q1)|2 � {(XN4Q5
1)1/3 + (N3Q4

1)1/2 +N2Q1 +XQ2
1}L2

0,

where we have used the fact that (X−1N4Q4
1)1/2 and (N2Q5

1)1/2 can be
absorbed by (N3Q4

1)1/2 (since X ≥ N ≥ Q1). Inserting this inequality into
(2.2) yields

S(Q1)� {(X4M−3NQ8
1)1/6 + (X2M−2NQ6

1)1/4 + (XM−1NQ2
1)1/2

+ (X2M−1N−1Q3
1)1/2 + (X−1MNQ1)1/2 + (X−2MN4)1/2}L0,
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where we have eliminated two superfluous terms (XM−1N−1Q3
1)1/2 and

M−1/2NQ1. Replacing Q1 by Q and inserting the estimate obtained
into (2.1), we find

|S|2 � {(X4M6N7Q2)1/6 + (X2M4N5Q2)1/4(2.4)

+ (X2M2NQ)1/2 + (MN)2Q−1 + (XM2N3)1/2}L2
0,

where we have used the fact that (X−1M4N3Q−1)1/2 and X−1M2N3Q−1

can be absorbed by (MN)2Q−1 (since Q ≤ ε0N ≤ ε0X).
If X(MN)−1Q1 ≤ ε0, we first remove m−1/2 by partial summation and

then estimate the sum over m by the Kuz’min–Landau inequality ([9], The-
orem 2.1). Therefore (2.4) always holds for 0 < Q ≤ ε0N . Optimising Q
over (0, ε0N ] yields the desired result.

Next we consider a triple exponential sum

S∗I :=
∑

m1∼M1

∑

m2∼M2

∑

m3∼M3

am1bm2e

(
X
mα

1m2m
−1
3

Mα
1 M2M

−1
3

)
,

which is a general form of SI . We have the following result.

Corollary 1. Let α ∈ R with α(α−2) 6= 0, X > 0, Mj ≥ 1, |am1 | ≤ 1,
|bm2 | ≤ 1 and let Y := 2 +XM1M2M3. Then

S∗I � {(X6M11
1 M10

2 M6
3 )1/16 + (X4M9

1M
8
2M

4
3 )1/12

+ (X3M3
1M

4
2M

2
3 )1/6 + (XM3

1M
2
2M

2
3 )1/4 + (XM1)1/2M2

+M1(M2M3)1/2 +M1M2 +X−1M1M2M3}Y ε.
P r o o f. If M ′3 := X/M3 ≤ ε0, the Kuz’min–Landau inequality implies

S∗I � X−1M1M2M3. Next suppose M ′3 ≥ ε0. As before using Lemma 1.4
of [18] to the sum over m3 and estimating the corresponding error term by
Lemma 4 of [16, IV] with n = m1, we obtain

S∗I � X−1/2M3S + (X1/2M2 +M1M2 +X−1M1M2M3) log Y,

where

S :=
∑

m1∼M1

∑

m2∼M2

∑

m′3∼M ′3
ãm1 b̃m2ξm′3e

(
2X

m
α/2
1 m

1/2
2 m

′1/2
3

M
α/2
1 M

1/2
2 M

′1/2
3

)

and |ãm1 | ≤ 1, |̃bm2 | ≤ 1, |ξm′3 | ≤ 1. Let

M ′2 := M2M
′
3 and ξ̃m′2 :=

∑∑

m2m′3=m′2

b̃m2ξm′3 .



Numbers with a large prime factor 169

Then S can be written as a bilinear exponential sum S(M ′2,M1). Estimating
it by Theorem 2 with (M,N) = (M ′2,M1), we get the desired result.

Corollary 2. Let xθ ≤ MN ≤ exθ and |bn| ≤ 1. Then SI �ε x
θ−2ε

provided 1/2 ≤ θ < 1, H ≤ xθ−1/2+3ε, M ≤ x3/4−ε′ and N ≤ x2/5−ε′ .

P r o o f. We apply Corollary 1 with (X,M1,M2,M3) = (xH/(MN),
N,H,M).

3. Estimates for exponential sums SII . The main aim of this section
is to prove the next Theorem 3. The inequality (3.1) improves Theorem 6
of [7] (or [18], Lemma 2) and the estimate (3.2) sharpens Lemma 14 of [1].

Theorem 3. Let α ∈ R with α 6= 0, 1, x > 0, H ≥ 1, M ≥ 1, N ≥ 1,
X := xH/(MN), |am| ≤ 1 and |bn| ≤ 1. Let (κ, λ) be an exponent pair. If
H ≤ N and HN ≤ X1−ε, then

SII � {(X3H5M9N15)1/14 + (XH5M7N11)1/10 + (XH2M3N6)1/5(3.1)

+ (X2H5M9N17)1/14 + (H5M7N13)1/10 + (XH4M6N14)1/10

+ (HM2N)1/2 + (X−1HM2N3)1/2}xε,
SII � {(X1+2κH−1−2κ+4λM4λN3−2κ+4λ)1/(2+4λ) + (HM2N)1/2(3.2)

+ (X2κ−2λH−1−2κ+4λM4λN1−2κ+8λ)1/(2+4λ)

+ (X−1HM2N3)1/2}xε.
The following corollary will be needed in the proof of Theorem 1.

Corollary 3. Let xθ ≤ MN ≤ exθ, |am| ≤ 1 and |bn| ≤ 1. Then
SII �ε x

θ−2ε provided one of the following conditions holds:

1
2 ≤ θ < 5

8 , H ≤ xθ−1/2+3ε, xθ−1/2+3ε ≤ N ≤ x2−3θ−ε′ ;(3.3)
1
2 ≤ θ < 2

3 , H ≤ xθ−1/2+3ε, xθ−1/2+3ε ≤ N ≤ x1/6−ε′ ;(3.4)
1
2 ≤ θ < 11

16 , H ≤ xθ−1/2+3ε, xθ−1/2+3ε ≤ N ≤ x(9θ−3)/17−ε′ ;(3.5)
1
2 ≤ θ < 7

10 , H ≤ xθ−1/2+3ε, xθ−1/2+3ε ≤ N ≤ x(12θ−5)/17−ε′ ;(3.6)
1
2 ≤ θ < 17

24 , H ≤ xθ−1/2+3ε, xθ−1/2+3ε ≤ N ≤ x(55θ−25)/67−ε′ ;(3.7)
1
2 ≤ θ < 5

7 , H ≤ xθ−1/2+3ε, xθ−1/2+3ε ≤ N ≤ x(59θ−28)/66−ε′ ;(3.8)
1
2 ≤ θ < 23

32 , H ≤ xθ−1/2+3ε, xθ−1/2+3ε ≤ N ≤ x(245θ−119)/261−ε′ .(3.9)

P r o o f. We obtain (3.3) from Lemma 9 of [1]. The result (3.4) is an
immediate consequence of (3.1). Let A and B be the classical A-process and
B-process. Taking, in (3.2),
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(κ, λ) = BA
(

1
6 ,

4
6

)
=
(

2
7 ,

4
7

)
,

(κ, λ) = BA2
(

1
6 ,

4
6

)
=
(

11
30 ,

16
30

)
,

(κ, λ) = BA3
(

1
6 ,

4
6

)
=
(

13
31 ,

16
31

)
,

(κ, λ) = BA4
(

1
6 ,

4
6

)
=
(

57
126 ,

64
126

)
,

(κ, λ) = BA5
(

1
6 ,

4
6

)
=
(

60
127 ,

64
127

)
,

we obtain (3.5)–(3.9). This completes the proof.

In order to prove Theorem 3, we need the next lemma. The first inequal-
ity is essentially Theorem 2 of [7] with (M1,M2,M3,M4) = (H,M,N, 1),
and the second one is a simple generalisation of Proposition 1 of [22]. It
seems interesting that we prove (3.10) by an argument of Heath-Brown [11]
instead of the double large sieve inequality ([7], Proposition 1) as in [7].

Lemma 3.1. Let α, β ∈ R with αβ 6= 0, X > 0, H ≥ 1, M ≥ 1, N ≥ 1,
L0 := log(2 + XHMN), |ah| ≤ 1 and |bm,n| ≤ 1. Let f(h) ∈ C∞[H, 2H]
satisfy the condition of exponent pair with f (k)(h) � F/Hk (h ∼ H, k ∈ Z+)
and

S = S(H,M,N) :=
∑

h∼H

∑

m∼M

∑

n∼N
ahbm,ne

(
X
f(h)mαnβ

FMαNβ

)
.

If (κ, λ) is an exponent pair , then

S � {(XHMN)1/2+H1/2MN +H(MN)1/2+X−1/2HMN}L0,(3.10)

S � {(XκH1+κ+λM2+κN2+κ)1/(2+2κ) +H(MN)1/2 +H1/2MN(3.11)

+X−1/2HMN}L0.

P r o o f. Let Q ≥ 1 be a parameter to be chosen later and let M0 :=
CMαNβ where C is a suitable constant. Let Tq := {(m,n) : m ∼M, n ∼ N,
M0(q − 1) < mαnβQ ≤M0q}. Then we can write

S =
∑

h∼H
ah
∑

q≤Q

∑

(m,n)∈Tq
bm,ne

(
X
f(h)mαnβ

FMαNβ

)
.

By the Cauchy–Schwarz inequality, we have

|S|2 � HQ
∑

q≤Q

∑

(m,n)∈Tq
bm,n

∑

(m̃,ñ)∈Tq
bm̃,ñ

∑

h∼H
e(g(h))(3.12)

� HQ
∑

m,m̃∼M

∑

n,ñ∼N
|σ|≤M0/Q

∣∣∣
∑

h∼H
e(g(h))

∣∣∣ =: HQ(E0 + E1),

where σ := mαnβ − m̃αñβ , g(h) := Xσf(h)/(FMαNβ) and E0, E1 are the
contributions corresponding to the cases |σ| ≤M0/(MN), M0/(MN) < |σ|
≤M0/Q, respectively.
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Let D(M,N,∆) := |{(m, m̃, n, ñ) : m, m̃ ∼ M ; n, ñ ∼ N ; |σ| ≤ ∆M0}|.
By using Lemma 1 of [7], we find

(3.13) E0 � HD(M,N, 1/(MN))� HMNL0.

We prove (3.10) and (3.11) by using two different methods to esti-
mate E1. Take Q := max{1, X/(ε0H)}. Then maxh∼H |g′(h)| = XH−1∆ ≤
1/2. The Kuz’min–Landau inequality implies

(3.14) E1 � L0 max
Q≤1/∆≤MN

D(M,N ;∆)(XH−1∆)−1 � X−1H(MN)2L2
0.

Now the inequality (3.10) follows from (3.12)–(3.14).
In view of (3.10), we can suppose X≥MN . Splitting (M0/(MN),M0/Q]

into dyadic intervals (∆M0, 2∆M0] with Q ≤ 1/∆ ≤MN and applying the
exponent pair (κ, λ) yield

E1 � L0 max
Q≤1/∆≤MN

D(M,N ;∆){(XH−1∆)κHλ + (XH−1∆)−1}(3.15)

� (XκH−κ+λM2N2Q−1−κ +X−1HM2N2)L2
0.

Inserting (3.13) and (3.15) into (3.12) and noticing X−1(HMN)2Q ≤
H2MNQ, we get

|S|2 � {XκH1−κ+λM2N2Q−κ +H2MNQ}L2
0.

Using Lemma 2.4 of [9] to optimise Q over [1,∞) yields the required re-
sult (3.11).

Next we combine the methods of [1], [7] and [19] to prove Theorem 3.
Let Q1 := aH/(bN) ∈ [100,HN ] be a parameter to be chosen later with

a, b ∈ N and let Q∗1 := NQ1/(
√

10H). Introducing Tq1 := {(h, n) : h ∼ H,
n ∼ N, (q1 − 1)/Q∗1 ≤ hn−1 < q1/Q

∗
1}, we may write

SII =
∑

q1≤Q1

∑

m∼M

∑∑

(h,n)∈Tq1

ambne

(
xh

mn

)
.

As before by the Cauchy–Schwarz inequality, we have

(3.16) |SII |2 �
MQ1

∣∣∣∣
∑∑

n1,n2∼N

∑∑

h1,h2∼H
|h1/n1−h2/n2|<1/Q∗1

bn1bn2δ

(
h1

n1
,
h2

n2

) ∑

m∼M
e

(
x(h1n2 − h2n1)

mn1n2

)∣∣∣∣,

where δ(u1, u2) := |{q ∈ Z+ : Q∗1 max(u1, u2) < q ≤ Q∗1 min(u1, u2) + 1}|.
Without loss of generality, we can suppose h1/n1 ≥ h2/n2 in (3.16). Thus
we have, with ui := hi/ni,

δ(u1, u2) = [Q∗1u2 + 1]− [Q∗1u1] = 1 +Q∗1(u2 − u1)− ψ(Q∗1u2) + ψ(Q∗1u1)

=: δ1 + δ2 − δ3 + δ4,
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where ψ(t) := {t} − 1/2 and {t} is the fractional part of t. Inserting into
(3.16) yields

|SII |2 �MQ1(|S1|+ |S2|+ |S3|+ |S4|)
with

Sj :=
∑∑

n1,n2∼N

∑∑

h1,h2∼H
|h1/n1−h2/n2|<1/Q∗1

bn1bn2δj
∑

m∼M
e

(
x(h1n2 − h2n1)

mn1n2

)
.

We estimate MQ1|S3| only; the other terms can be treated similarly. We
write

MQ1|S3| �MQ1

∑∑

n1,n2∼N

∣∣∣∣
∑

0≤k�HN/Q1

∑∑

h1,h2∼H
h1n2−h2n1=k

δ3
∑

m∼M
e

(
xk

mn1n2

)∣∣∣∣.

Since |δ3| ≤ 1, the terms with k = 0 contribute trivially O(HM2NQ1L0).
After dyadic split, we see that for some K with 1 ≤ K � HN/Q1 and some
D with 1 ≤ D ≤ min{K,N},

MQ1|S3|L−2
0 �MQ1

∑

d∼D

∑∑

n1,n2∼N ′
(n1,n2)=1

∣∣∣∣
∑

r∼R
ωd(n1, n2; r)

∑

m∼M
e

(
xr

dmn1n2

)∣∣∣∣

+HM2NQ1,

where N ′ := N/D, R := K/D and

ωd(n1, n2; r) :=
∑∑

h1, h2∼H
h1n2−h2n1=r

ψ(Q∗1h2/(dn2)).

In view of H ≤ N , Lemma 4 of [19] gives

|ωd(n1, n2; r)| =
∣∣∣

1\
0

ω̂d(n1, n2;ϑ)e(rϑ) dϑ
∣∣∣(3.17)

≤
1\
0

|ω̂d(n1, n2;ϑ)| dϑ� DL3
0,

where

ω̂d(n1, n2;ϑ) :=
∑

|m|≤8HN

ωd(n1, n2;m)e(−mϑ).

If L := XK/(HMN) ≥ ε0, by Lemma 1.4 of [18] we transform the sum
over m into a sum over l, then we interchange the order of summations (r, l),
finally by Lemma 1.6 of [18] we relax the condition of summation of r. The
contribution of the main term of Lemma 1.4 of [18] is
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(X−1HM4NK−1Q2
1)1/2

×
∑

d∼D

∑∑

n1,n2∼N ′
(n1,n2)=1

∑

l∼L

∣∣∣
∑

r∼R
g(r)e(rt)ωd(n1, n2; r)e(W

√
r/R)

∣∣∣,

where g(r) = (r/R)1/4, W := 2(XK/(HN))(l/L)1/2(dn1n2/(DN ′2))−1/2,
t is a real number independent of variables. Let J := N2/D and τ3(j) :=∑
dn1n2=j 1. Let ci be some constants and

Ti(j) := min{(X−1HM2N−1jr−1)1/2, 1/‖ciXH−1M−1Nr/j‖}.
By Lemma 4 of [16, IV], the contribution of the error term of Lemma 1.4
of [18] is

�DL4
0MQ1

{
D−1N2R+X−1D−2HMN3+

∑

r∼R

∑

j∼J
τ3(j)(T1(j) + T2(j))

}

�(HMN3+X−1HM2N3Q1+X1/2HMNQ
−1/2
1 +X−1/2HM2NQ

1/2
1 )xε.

Combining these and noticing X−1/2HM2NQ
1/2
1 ≤ HM2NQ1, we obtain

MQ1|S3|x−ε � (X−1HM4NK−1Q2
1)1/2S3,1+HM2NQ1(3.18)

+X−1HM2N3Q1 +X1/2HMNQ
−1/2
1 +HMN3,

where

S3,1 :=
∑

d∼D

∑∑

n1,n2∼N ′
(n1,n2)=1

∑

l∼L

∣∣∣
∑

r∼R
g(r)e(rt)ωd(n1, n2; r)e(W

√
r/R)

∣∣∣.

Let S3,2 be the innermost sum. Using the Cauchy–Schwarz inequality and
(3.17), we deduce

|S3,2|2 � DL3
0

1\
0

|ω̂d(n1, n2;ϑ)|
∣∣∣
∑

r∼R
g(r)e(rt− rϑ)e(W

√
r/R)

∣∣∣
2
dϑ.

By Lemma 2 of [7], we have, for any Q2 ∈ (0, R1−ε],
∣∣∣
∑

r∼R
g(r)e(rt− rϑ)e(W

√
r/R)

∣∣∣
2

≤ C
{
R2Q−1

2 +RQ−1
2

∑

1≤q2≤Q2

η
∑

r∼R
ar,q2e

(
Wt(r, q2)√

R

)}
,

where C is a positive constant, η = ηq2,ϑ,t = e4πiq2(t−ϑ)(1−|q2|/Q2), aq2,r =
g(r + q2)g(r − q2), t(r, q2) := (r + q2)1/2 − (r − q2)1/2. Splitting the range
of q2 into dyadic intervals and inserting the preceding estimates into the
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definition of S3,1, we find, for some Q2,0 ≤ Q2,

|S3,1|2 � JL
∑

d∼D

∑∑

n1,n2∼N ′
(n1,n2)=1

∑

l∼L
|S3,2|2(3.19)

� D2L7
0{(JLR)2Q−1

2 + JLRQ−1
2 S3,3},

where Z := 2XK/(HN) and

S3,3 :=
∑

q2∼Q2,0

∑

j∼J
τ3(j)

∣∣∣∣
∑

l∼L

∑

r∼R
ar,q2e

(
Z

(l/j)1/2t(r, q2)
(LR/J)1/2

)∣∣∣∣.

Applying (3.10) of Lemma 3.1 with (X,H,M,N) = (ZR−1q2, R, J, L) to
the inner triple sums and summing trivially over q2, we find

S3,3 � {(ZJLQ3
2,0)1/2 + (JL)1/2RQ2,0 + JLR1/2Q2,0

+ (Z−1J2L2R3Q2,0)1/2}xε.
Replacing Q2,0 by Q2 and inserting the estimate obtained into (3.19) yield

S3,1 � {(ZJ3L3R2Q2)1/4 + JLRQ
−1/2
2 + (Z−1J4L4R5Q−1

2 )1/4

+ (JL)3/4R+ JLR3/4}Dxε.
Using Lemma 2.4 of [9] to optimise Q2 over (0, R1−ε], we find

|S3,1| � {(ZJ5L5R4)1/6 + (JL)3/4R+ JLR3/4}Dxε,
where for simplifying we have used the fact that JLR1/2 ≤ JLR3/4,
(JLR)7/8 = {(JL)3/4R}1/2{JLR3/4}1/2, Z−1/4JLR ≤ JLR3/4. Inserting
J = D−1N2, L = XK/(HMN), R = D−1K, Z = 2XK/(HN), we ob-
tain an estimate for S3,1 in terms of (X,D,H,M,N,K). Noticing that all
exponents of D are negative, we can replace D by 1 to write

|S3,1| � {(X6H−6M−5N4K10)1/6 + (X3H−3M−3N3K7)1/4

+ (X4H−4M−4N4K7)1/4}xε.
Inserting into (3.18) and replacing K by HN/Q1 yield

MQ1|S3| � {(X3H4M7N14Q−1
1 )1/6 + (XH4M5N10Q−1

1 )1/4(3.20)

+ (X2H3M4N11Q−1
1 )1/4

+HM2NQ1 +X−1HM2N3Q1}xε
=: E(Q1)xε,

where we have used the fact that

X1/2HMNQ
−1/2
1 +HMN3 � (X2H3M4N11Q−1

1 )1/4.
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If L ≤ ε0, using the Kuz’min–Landau inequality and (3.17) yields

MQ1|S3|L−2
0 �MQ1D

−1N2RDL3
0/L� X−1HM2N3Q1L3

0 � E(Q1)L3
0.

Therefore the estimate (3.20) always holds. Similarly we can establish the
same bound for MQ1|Sj | (j = 1, 2, 4). Hence we obtain, for any Q1 ∈
[100,HN ],

|SII |2 � E(Q1)xε.
In view of the term HM2NQ1, this inequality is trivial when Q1 ≥ HN . By
using Lemma 2.4 of [9], we see that there exists some Q̃1 ∈ [100,∞) such
that

E(Q̃1)� (X3H5M9N15)1/7 + (XH5M7N11)1/5 + (X2H4M6N12)1/5

+ (X2H5M9N17)1/7 + (H5M7N13)1/5 + (XH4M6N14)1/5

+HM2N +X−1HM2N3.

Now taking Q1 := 100[Q̃1]H(1 + [N ])/((1 + [H])N) and noticing that
E(Q1)� E(Q̃1), we obtain the desired result (3.1).

In order to prove (3.2), we first write

S3,1 =
∑

d∼D

∑∑

n1,n2∼N ′
(n1,n2)=1

∑

l∼L

∣∣∣
1\
0

ω̂d(n1, n2;ϑ)Sd,n1,n2,l(ϑ) dϑ
∣∣∣,

where Sd,n1,n2,l(ϑ) =
∑
r∼R g(r)e(f(r)), f(r) = W

√
r/R + (t + ϑ)r

(t, ϑ ∈ [0, 1]). Since HN ≤ X1−ε, we have

f ′(r) �W/R+ t+ ϑ � LM/R+ t+ ϑ ≥ LM/K + t+ ϑ ≥ (HN)ε.

Removing the smooth coefficient g(r) by partial summation and using the
exponent pair (κ, λ) yield the inequality Sd,n1,n2,l(ϑ) � (W/R)κRλ uni-
formly for ϑ ∈ [0, 1]. Thus by (3.17), we find

S3,1 � JL(W/R)κRλDL3
0 � X1+κH−1−κM−1N1−κK1+λL3

0,

which implies, via (3.18),

MQ1|S3| � (X1/2+κHλ−κMN2−κ+λQ
−λ+1/2
1

+HM2NQ1 +X−1HM2N3Q1)xε,

where we have used the fact that

X1/2HMNQ
−1/2
1 +HMN3 � X1/2+κHλ−κMN2−κ+λQ

−λ+1/2
1 .

The same estimate holds also for MQ1|Sj | (j = 1, 2, 4). Thus we obtain, for
any Q1 ∈ [100, HN ],

|SII |2�(X1/2+κHλ−κMN2−κ+λQ
−λ+1/2
1 +HM2NQ1+X−1HM2N3Q1)xε.

This implies (3.2). The proof of Theorem 3 is finished.



176 H. Q. Liu and J. Wu

4. Rosser–Iwaniec’s sieve and bilinear forms. Let

Ad := {n ∈ A : d |n}, r(A, d) := |Ad| − y/d and P ∗(z) :=
∏
p<z

p.

We recall the formula of the Rosser–Iwaniec linear sieve [15] in the form
stated in [1], Lemma 10.

Lemma 4.1. Let 0 < ε < 1/8 and 2 ≤ z ≤ D1/2. Then

S(A, z) ≤ yV (z){F (logD/ log z) + E}+R(A, D),

where V (z) :=
∏
p<z(1 − 1/p), E = Cε + O(log−1/3D) with an absolute

constant C and F (t) := 2eγ/t for 1 ≤ t ≤ 3 (γ is the Euler constant).
Here

R(A, D) :=
∑

(D)

∑

ν<Dε

ν|P∗(Dε2 )

c(D)(ν, ε)
∑

Di≤pi<D1+ε7
i

pi|P∗(z)

r(A, νp1 . . . pt),

where |c(D)(ν, ε)| ≤ 1 and
∑

(D) runs over all subsequences D1 ≥ . . . ≥
Dt (including the empty subsequence) of {Dε2(1+ε7)n : n ≥ 0} for which
D1 . . . D2lD

3
2l+1 ≤ D (0 ≤ l ≤ (t− 1)/2).

Let r0(A, d) := ψ((x + y)/d) − ψ(x/d), where ψ(t) is defined as in Sec-
tion 3. Then

|Ad| =
∑

xθ<dk≤exθ
{y/(dk)+r0(A, dk)} = y/d+O(y/xθ)+

∑

xθ<dk≤exθ
r0(A, dk).

Thus r(A, d) = O(y/xθ) +
∑
xθ<dk≤exθ r0(A, dk) and

R(A, D)

=
∑

(D)

∑

ν<Dε

ν|P∗(Dε2 )

c(D)(ν, ε)
∑

Di≤pi<min{z,D1+ε7
i }

∑

xθ<νkp1...pt≤exθ
r0(A, νkp1 . . . pt)

+O(Dy/xθ).

We would like to find D = D(θ), as large as possible, such that R(A, D)�ε

y/L2. For this, it suffices to impose D ≤ xθ−ε′ and to prove

R∗(A, D) :=
∑

A1≤p1<B1

. . .
∑

At≤pt<Bt

∑

xθ<νkp1...pt≤exθ
r0(A, νkp1 . . . pt)(4.1)

� yx−ε
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for {
1 ≤ ν ≤ Dε, t� 1, Ai ≥ 1, Bi ≤ 2Ai, A1 ≥ . . . ≥ At,
A1 . . . A2lA

3
2l+1 ≤ D1+ε (0 ≤ l ≤ (t− 1)/2).

In order to prove (4.1), we need to treat the following bilinear forms:

RI(M,N ;xθ) :=
∑

m∼M

∑

n∼N
xθ<mn≤exθ

bnr0(A,mn),

RII(M,N ;xθ) :=
∑

m∼M

∑

n∼N
xθ<mn≤exθ

ambnr0(A,mn),

where |am| ≤ 1, |bn| ≤ 1. Using the Fourier expansion of ψ(t), we reduce
the estimation for RI , RII to the estimation for the exponential sums SI ,
SII (cf. [7], Lemma 9). Applying Corollaries 2 and 3 to these sums, we can
immediately get the desired results on RI and RII .

Before stating our results, it is necessary to introduce some notation. Let
φ1 := 3/5 = 0.6, φ2 := 11/18 ≈ 0.611, φ3 := 35/54 ≈ 0.648, φ4 := 2/3 ≈
0.666, φ5 := 90/131 ≈ 0.687, φ6 := 226/323 ≈ 0.699, φ7 := 546/771 ≈
0.708, φ8 := 23/32 ≈ 0.718 and φ9 := 0.738. For φ1 ≤ θ ≤ φ8, we de-
fine I = I(θ) := [axε

′
, bx−ε

′
] with a = a(θ) := xθ−1/2, b = b(θ) := xτ(θ)

and

τ(θ) :=





2− 3θ if φ1 ≤ θ ≤ φ2,
1/6 if φ2 ≤ θ ≤ φ3,
(9θ − 3)/17 if φ3 ≤ θ ≤ φ4,
(12θ − 5)/17 if φ4 ≤ θ ≤ φ5,
(55θ − 25)/67 if φ5 ≤ θ ≤ φ6,
(59θ − 28)/66 if φ6 ≤ θ ≤ φ7,
(245θ − 119)/261 if φ7 ≤ θ ≤ φ8.

For RI , we have the following result, which improves Corollary 1 of [2].

Lemma 4.2. Let 1/2 < θ < 3/4 and N ≤ x2/5−ε′ . Then RI(M,N ;xθ)
�ε yx

−3η.

For RII , we have the following result, which improves Lemmas 2
and 3 of [2].

Lemma 4.3. Let 1/2 < θ < φ8 and N ∈ I(θ). Then RII(M,N ;xθ)
�ε yx

−3η.

Let D = D(θ) := (b/a)x2/5−ε′ for φ1 ≤ θ ≤ φ8 and D := x2/5−ε′ for
φ8 ≤ θ ≤ φ9. We define %(θ) by D = x%(θ)−ε

′
, i.e.
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%(θ) =





(29− 40θ)/10 if φ1 ≤ θ ≤ φ2,
(16− 15θ)/15 if φ2 ≤ θ ≤ φ3,
(123− 80θ)/170 if φ3 ≤ θ ≤ φ4,
(103− 50θ)/170 if φ4 ≤ θ ≤ φ5,
(353− 120θ)/670 if φ5 ≤ θ ≤ φ6,
(157− 35θ)/330 if φ6 ≤ θ ≤ φ7,
(1159− 160θ)/2610 if φ7 ≤ θ ≤ φ8,
2/5 if φ8 ≤ θ ≤ φ9.

For our choice of D, it is easy to verify D ≤ xθ−ε′ . Next we prove (4.1).

Lemma 4.4. Let φ1 ≤ θ ≤ φ9 and let D be defined as before. Then (4.1)
holds.

P r o o f. If φ8 ≤ θ ≤ φ9, then A1 . . . At � D1+ε � x2/5−ε′ . Thus
Lemma 4.2 gives (4.1). When φ1 ≤ θ ≤ φ8, we have D = (b/a)x2/5−ε′ .
If there exists J ⊂ {1, . . . , t} satisfying

∏
j∈J Aj ∈ I(θ), we can apply

Lemma 4.3 with a suitable choice of am, bn to get (4.1). Otherwise Lemma 5
of [6] implies A1 . . . At ≤ D1+2εa/b < x2/5−ε′ . Thus Lemma 4.2 is applicable
to give (4.1).

Combining Lemmas 4.1 and 4.4, we immediately obtain the following
result.

Lemma 4.5. Let D1/3 ≤ z ≤D1/2. Then S(A, z)≤ {1+O(ε)}2y/(%(θ)L).

5. An alternative sieve. In this section, we insert our new results on
bilinear forms RI and RII into the alternative sieve of Baker and Harman
([2], Section 5). This allows us to improve all results there. Since the proof
is very similar, we just state our results and omit the details.

Let ω(t) be the Buchstab function, in particular,

tω(t) =





1 if 1 ≤ t ≤ 2,
1 + log(t− 1) if 2 ≤ t ≤ 3,
1 + log(t− 1) +

Tt−1
2 s−1 log(s− 1) ds if 3 ≤ t ≤ 4.

Let B = B(θ) := {n : xθ < n ≤ exθ}. For E = A or B, we write Em =
{n : mn ∈ E}. Define

S(Bm, z) :=
∑

mn∈B, P−(n)≥z
y/(mn).

Corresponding to Lemma 9 of [2], we have the following sharper result.

Lemma 5.1. Let |bn| ≤ 1. For N ≤ x2/5−ε′ , we have
∑

n≤N
bn|An| = y

∑

n≤N
bn/n+Oε(yx−3η).
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P r o o f. In the proof of Lemma 9 of [2], replace Corollary 1 there by our
Lemma 4.2.

The next lemma is an improvement of Lemma 10 of [2].

Lemma 5.2. Let N ≤ x2/5−ε′ , 0 ≤ bn ≤ 1, bn = 0 unless P−(n) ≥ xη

(1 ≤ n ≤ N). Then
∑

n≤N
bnS(An, xη) = {1 +O(G(ε/η))}

∑

n≤N
bnS(Bn, xη) +Oε(yx−3η),

where G(t) := exp{1 + (log t)/t} (t > 0).

P r o o f. In the proof of Lemma 10 of [2], replace Lemma 9 there by
Lemma 5.1 above.

We can improve Lemma 11 of [2] as follows.

Lemma 5.3. Let |am| ≤ 1 and |bn| ≤ 1. For φ1 ≤ θ ≤ φ8 and N ∈ I(θ),
we have ∑∑

mn∈A
m∼M,n∼N

ambn = y
∑∑

mn∈B
m∼M,n∼N

ambn/(mn) +Oε(yx−5η).

P r o o f. In the proof of Lemma 11 of [2], replace (4.1) of [2] by our Lemma
4.3.

Finally, similar to Lemmas 12, 13 and 15 of [2], we have the following
results.

Lemma 5.4. Let h ≥ 1 be given and suppose that J ⊂ {1, . . . , h}. For
φ1 ≤ θ ≤ φ8, N ∈ I(θ) and N1 < 2N , we have

∑
p1

. . .
∑∗

ph

S(Ap1...ph , p1) =
∑
p1

. . .
∑∗

ph

S(Bp1...ph , p1) +Oε(yx−5η).

Here ∗ indicates that p1, . . . , ph satisfy xη ≤ p1 < . . . < ph and

(5.1) N ≤
∏

j∈J
pj < N1

together with no more than ε−1 further conditions of the form

(5.2) R ≤
∏

j∈J ′
pj ≤ S.

Lemma 5.5. Let M ≤ a and N ≤ x2/5−ε′/(2a). Let M ≤M1 ≤ 2M and
N ≤ N1 ≤ 2N . Let xη ≤ z ≤ b/a. Suppose that {1, . . . , h} partitions into
two sets J and K. Then

∑
p1

. . .
∑∗

ph

S(Ap1...ph , z) = {1 +O(ε)}
∑
p1

. . .
∑∗

ph

S(Bp1...ph , z).
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Here ∗ indicates that p1, . . . , ph satisfy z ≤ p1 < . . . < ph and

(5.3) M ≤
∏

j∈J
pj < M1, N ≤

∏

j∈K
pj < N1

together with no more than ε−1 further conditions of the form (5.2). The
case h = 0, J and K empty is permitted.

Lemma 5.6. Let φ1 ≤ θ ≤ φ2, ev/b2 < P ≤ x−ε
′
v/a3 and b/a < Q ≤ b.

Then ∑

p∼P

∑

q∼Q
S(Apq, q) = {1 +O(ε)}

∑

p∼P

∑

q∼Q
S(Bpq, q).

P r o o f. In view of Lemma 5.4, we can suppose Q < a. By the Buchstab
identity, we write

(5.4)
∑

p∼P

∑

q∼Q
S(Apq, q)

=
∑

p∼P

∑

q∼Q
S(Apq, b/a)−

∑

p∼P

∑

q∼Q

∑

b/a≤r<q
S(Apqr, r).

Since P ≤ x−ε
′
v/a3 ≤ x2/5−ε′/(2a) and Q ≤ a, Lemma 5.5 can be applied

to the first sum on the right-hand side of (5.4). When φ1 ≤ θ ≤ φ2, we have
(b/a)2 ≥ a. Thus the parts of the second sum with qr ≤ b may be evaluated
asymptotically via Lemma 5.4. For the remaining portion of the sum we note
that it counts numbers pqrs ∈ A where s < ev/(Pqr) ≤ ev/((ev/b2)b) = b
and s > v/(8PQ2) ≥ v/(8(x−ε

′
v/a3)a2) = xε

′
a/8 ≥ a. Hence Lemma 5.4 is

again applicable and this completes the proof.

6. The proof of (1.3). We establish (1.3) by three different methods
according to the size of θ. Our function u(θ) is better than that of Baker
and Harman [2]. We begin with the simplest case. Applying directly Lemma
4.5 with z = D1/3, we have the following result.

Lemma 6.1. If φ1 ≤ θ ≤ φ9, then (1.3) holds with u(θ) = 5θ.

This result is very rough. In fact S(A, D1/3) counts many numbers not
counted by S(θ). For some of these we can apply Lemma 4.3 and so obtain an
improved bound by removing the “deductible” terms. Similarly to Lemma 17
of [2], we have the following sharper result.

Lemma 6.2. Let θ0 := %(θ)/(3θ), θ1 := (θ − 1/2)/θ and θ2 := τ(θ)/θ. If
189/290 ≤ θ ≤ φ8, then (1.3) holds with
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u(θ) =
2

3θ0
−
θ2\
θ1

ω

(
1− α
α

)
dα

α2 −
θ1\
θ0

dα1

α1

θ2\
θ1

ω

(
1− α1 − α2

α2

)
dα2

α2
2

−
θ1\
θ0

dα1

α1

θ1\
α1

dα2

α2

θ2\
θ1

ω

(
1− α1 − α2 − α3

α3

)
dα3

α2
3
.

Remark. We have θ1 ≥ θ0 for θ ≥ 189/290. Therefore the last two
integrals are positive.

P r o o f (of Lemma 6.2). By using the Buchstab identity, we write, with
z = D1/3,

(6.1) S(A, (ev)1/2)

= S(A, z)−
∑

z≤p<a
S(Ap, p)−

∑

a≤p<b
S(Ap, p)−

∑

b≤p<(ev)1/2

S(Ap, p).

Applying again the Buchstab identity yields∑

z≤p<a
S(Ap, p) =

∑

z≤p<a
S(Ap, b) +

∑∑

z≤p≤q<a
S(Apq, q)(6.2)

+
∑∑

z≤p<a≤q<b
S(Apq, q),

∑∑

z≤p≤q<a
S(Apq, q) =

∑∑

z≤p≤q<a
S(Apq, b) +

∑∑∑

z≤p≤q≤r<a
S(Apqr, r)(6.3)

+
∑∑∑

z≤p≤q<a≤r<b
S(Apqr, r).

Inserting (6.2) and (6.3) into (6.1), we find

S(A, (ev)1/2) = S(A, z)−
∑

a≤p<b
S(Ap, p)−

∑∑

z≤p<a≤q<b
S(Apq, q)(6.4)

−
∑∑∑

z≤p≤q<a≤r<b
S(Apqr, r)

−
∑

z≤p<a
S(Ap, b)−

∑∑

z≤p≤q<a
S(Apq, b)

−
∑∑∑

z≤p≤q≤r<a
S(Apqr, r)−

∑

b≤p<(ev)1/2

S(Ap, p)

=: R1 −R2 −R3 −R4 − . . .−R8

≤ R1 −R2 −R3 −R4.

By Lemma 4.5, we have

(6.5) R1 ≤ {1 +O(ε)} 2y
%(θ)L .



182 H. Q. Liu and J. Wu

We may evaluate asymptotically R2, R3, R4 via Lemma 5.4. Applying Lem-
ma 8 of [2] and using the standard procedure for replacing sums over primes
by integrals, we can prove

R2 = {1 +O(ε)} y
θL

θ2\
θ1

ω

(
1− α
α

)
dα

α2 ,(6.6)

R3 = {1 +O(ε)} y
θL

θ1\
θ0

dα1

α1

θ2\
θ1

ω

(
1− α1 − α2

α2

)
dα2

α2
2
,(6.7)

R4 = {1 +O(ε)} y
θL

θ1\
θ0

dα1

α1

θ1\
α1

dα2

α2

θ2\
θ1

ω

(
1− α1 − α2 − α3

α3

)
dα3

α2
3
.(6.8)

Inserting (6.5)–(6.8) into (6.4), we obtain the required result.

Finally, we apply the alternative sieve of Baker and Harman to deduce
the desired upper bound u(θ) for φ1 ≤ θ < 7/10. By the Buchstab identity,
we can write

S(A, (ev)1/2) = S(A, b/a)−
∑

b/a≤p<a
S(Ap, p)(6.9)

−
∑

a≤p≤b
S(Ap, p)−

∑

b<p<(ev)1/2

S(Ap, p).

For the second term on the right-hand side, we apply again two times the
Buchstab identity∑

b/a≤p<a
S(Ap, p) =

∑

b/a≤p<a
S(Ap, b/a)−

∑∑

b/a≤q<p<a
S(Apq, b/a)(6.10)

+
∑∑∑

b/a≤r<q<p<a
S(Apqr, r).

Inserting (6.10) into (6.9) yields

S(A, (ev)1/2) = S(A, b/a)−
∑

b/a≤p<a
S(Ap, b/a)(6.11)

+
∑∑

b/a≤q<p<a
S(Apq, b/a)−

∑∑∑

b/a≤r<q<p<a
S(Apqr, r)

−
∑

a≤p≤b
S(Ap, p)−

∑

b<p<(ev)1/2

S(Ap, p)

=: S1 − S2 + S3 − S4 − S5 − S6.

Noticing a ≤ x2/5−ε′/(2a) for θ < 7/10, Lemma 5.5 allows us to get the
asymptotic formulae for Sj (1 ≤ j ≤ 3). In addition, by Lemma 5.4 we also
obtain the asymptotic formula for S5.
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In order to treat S4, it is necessary to introduce some notation. We write
p = vα1 , q = vα2 , r = vα3 , s = vα4 , t = vα5 and α := (α1, . . . , αn). Let
θ3 := θ2 − θ1 and

En := {(α1, . . . , αn) : θ3 ≤ αn < . . . < α1 < θ1,

α1 + . . .+ αn−1 + 2αn ≤ 1 + 1/(θL)}.
A point α of En is said to be bad if no sum

∑
j∈J αj lies in [θ1 + ε′, θ2 − ε′]

where J ⊂ {1, . . . , n}. The set of all bad points is denoted by Bn. The points
of Gn := En\Bn are called good . Let θ4 := (9/10−θ)/θ, U := {(α1, α2, α3) ∈
B3 : α2 +2α3 ≥ θ4−ε′}, V := B3\U and W := G3. We see that E3 partitions
into U,V,W. Thus

S4 =
∑

α∈U
S(Apqr, r) +

∑

α∈V
S(Apqr, r) +

∑

α∈W
S(Apqr, r) =: S7 + S8 + S9.

According to the definition of W, S9 can be evaluated asymptotically. For
S8, we use the Buchstab identity to write

S8 =
∑

α∈V
S(Apqr, b/a)−

∑

α∈X1

S(Apqrs, s)−
∑

α∈X2

S(Apqrs, s)

=: S10 − S11 − S12,

with X1 := {(α1, . . . , α4) ∈ G4 : (α1, α2, α3) ∈ V}, X2 := {(α1, . . . , α4) ∈
B4 : (α1, α2, α3) ∈ V}.

If α ∈ V, then qr = vα2+α3 < vθ4−ε
′ ≤ x2/5−ε′/(2a). Hence Lemma 5.5

allows us to get the desired asymptotic formula for S10. In addition, the
definition of X1 shows that S11 may be evaluated asymptotically. For S12,
we again apply the Buchstab identity to write

S12 =
∑

α∈X2

S(Apqrs, b/a)−
∑

α∈Y1

S(Apqrst, t)−
∑

α∈Y2

S(Apqrst, t)

=: S13 − S14 − S15,

where
Y1 := {(α1, . . . , α5) ∈ G5 : (α1, . . . , α4) ∈ X2},
Y2 := {(α1, . . . , α5) ∈ B5 : (α1, . . . , α4) ∈ X2}.

When α ∈ X2, we find that qrs = vα2+α3+α4 ≤ vα2+2α3 ≤ vθ4−ε
′ ≤

x2/5−ε′/(2a). Thus we have the desired asymptotic formula for S13 by Lem-
ma 5.5.

Inserting these into (6.11), we obtain

S(A, (ev)1/2) = S1 − S2 + S3 − S5 − S6 − S7 − S9 − S10

+ S11 + S13 + S14 − S15.

We have the desired asymptotic formulae for Sj , except for j = 6, 7, 15.
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Obviously the same decomposition also holds for S(B, (ev)1/2), i.e.

S(B, (ev)1/2) = S′1 − S′2 + S′3 − S′5 − S′6 − S′7 − S′9 − S′10

+ S′11 + S′13 + S′14 − S′15,

where S′j is defined similarly to Sj with the only difference that A is replaced
by B. Since Sj = {1 +O(ε)}S′j except for j = 6, 7, 15, we can obtain

S(A, (ev)1/2) = {1 +O(ε)}{S(B, (ev)1/2) + S′6 + S′7 + S′15}(6.12)

− S6 − S7 − S15.

By Lemma 8 of [2] and by using the standard procedure for replacing
sums over primes by integrals, we can deduce

(6.13) S(B, (ev)1/2) + S′6 = {1 +O(ε)} 1
θ2
ω

(
1
θ2

)
y

θL ,

(6.14) S′7 = {1 +O(ε)}K(θ)y
θL , S′15 = {1 +O(ε)}R(θ)y

θL ,

where

(6.15)





K(θ) :=
\
U
ω

(
1− α1 − α2 − α3

α3

)
dα1 dα2 dα3

α1α2α2
3

,

R(θ) :=
\
Y2

ω

(
1− α1 − . . .− α5

α5

)
dα1 . . . dα5

α1 . . . α4α2
5
.

Finally, we give a non-trivial lower bound for S6 when φ1 ≤ θ ≤ φ2. In
this case, we have b ≤ ev/b2 < x−ε

′
v/a3 ≤ (ev)1/2. Thus by the Buchstab

identity, we can write

S6 ≥
∑

ev/b2<p<x−ε′v/a3

S(Ap, p)

=
∑

ev/b2<p<x−ε′v/a3

S(Ap, b/a)−
∑

ev/b2<p<x−ε
′
v/a3

b/a≤q<min{p,(ev/p)1/2}

S(Apq, q).

Since x−ε
′
v/a3 ≤ x2/5−ε′/(2a), we have an asymptotic formula for the first

term on the right-hand side from Lemma 5.5. In addition, we note that
p > ev/b2 implies (ev/p)1/2 ≤ b. Thus the second term may be evaluated
asymptotically via Lemma 5.6. Hence

S6 ≥ {1 +O(ε)}
∑

ev/b2<p<x−ε′v/a3

S(Bp, p)(6.16)

= {1 +O(ε)} y
θL log

(
3− 4θ
6θ − 3

· 4− 6θ
7θ − 4

)
.
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Inserting (6.13), (6.14) and (6.16) into (6.12) and using S7, S15 ≥ 0, we get
the following result.

Lemma 6.3. For φ1 ≤ θ < 7/10, we have (1.3) with u(θ) = M(θ) +
K(θ) +R(θ), where K(θ) and R(θ) are defined as in (6.15) and

M(θ) =





1
θ2
ω

(
1
θ2

)
− log

(
3− 4θ
6θ − 3

· 4− 6θ
7θ − 4

)
if φ1 ≤ θ < φ2,

1
θ2
ω

(
1
θ2

)
if φ2 ≤ θ < 7/10.

Remark. The functions M(θ), K(θ) and R(θ) are each θ times the
corresponding functions in Baker and Harman [2].

7. The proof of (1.4). We recall the notation: θ0 := %(θ)/(3θ), θ1 :=
(θ − 1/2)/θ and θ2 := τ(θ)/θ.

A. The interval φ1 ≤ θ ≤ 0.661. In this case we use Lemma 6.3. Noticing
3 ≤ 1/θ2 ≤ 4, we have

1
θ2
ω

(
1
θ2

)
= 1 + log 2 +

1/θ2−1\
2

1 + log(t− 1)
t

dt

and
T0.661
φ1

M(θ) dθ < 0.123182. Clearly (7.3) of [2] implies
T0.661
φ1
{K(θ) +

R(θ)} dθ < 0.0125 (see the final remark). Hence

(7.1)
0.661\
φ1

u(θ) dθ < 0.135682.

B. The interval 0.661 ≤ θ ≤ φ8. In this case we apply Lemma 6.2. We
have 2 ≤ (1− α)/α ≤ 4 for θ1 ≤ α ≤ θ2. By using tω(t) ≥ 1 + log(t− 1) for
2 ≤ t ≤ 4, we can deduce

θ2\
θ1

ω

(
1− α
α

)
dα

α2 ≥ log
1/θ1 − 1
1/θ2 − 1

+
1/θ1−1\
1/θ2−1

log(α− 1)
α

dα.

Similarly noticing 1 ≤ (1 − α1 − α2)/α2 ≤ 3 for θ0 ≤ α1 ≤ θ1 ≤ α2 ≤ θ2

and tω(t) ≥ 1 for 1 ≤ t ≤ 3, we see that
θ1\
θ0

dα1

α1

θ2\
θ1

ω

(
1− α1 − α2

α2

)
dα2

α2
2
≥
θ1\
θ0

log
(

1− θ1 − α
1− θ2 − α ·

θ2

θ1

)
dα

α(1− α)
.

Finally, using ω(t) ≥ 1/2 for t ≥ 1 ([16, IV], p. 437), we deduce
θ1\
θ0

dα1

α1

θ1\
α1

dα2

α2

θ2\
θ1

ω

(
1− α1 − α2 − α3

α3

)
dα3

α2
3
≥ 1

4

(
1
θ1
− 1
θ2

)
log2 θ1

θ0
.
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Hence we have
u(θ) ≤ f(θ)− g(θ),

where

f(θ) :=
2

3θ0
− log

1/θ1 − 1
1/θ2 − 1

− 1
4

(
1
θ1
− 1
θ2

)
log2 θ1

θ0
,

g(θ) :=
1/θ1−1\
1/θ2−1

log(α− 1)
α

dα+
θ1\
θ0

log
(

1− θ1 − α
1− θ2 − α ·

θ2

θ1

)
dα

α(1− α)
.

A numerical computation gives us

[α, β] [0.661, φ4] [φ4, φ5] [φ5, φ6] [φ6, φ7] [φ7, φ8]Tβ
α
f(θ) dθ < 0.0177872 0.0666379 0.0433597 0.0296966 0.0376814Tβ

α
g(θ) dθ > 0.0004544 0.0009964 0.0002399 0.0000643 0.0000231

(7.2)
φ8\

0.661

u(θ) dθ < 0.193385.

C. The interval φ8 ≤ θ ≤ φ9. From Lemma 6.1, we have

(7.3)
φ9\
φ8

u(θ) dθ = 2.5(φ2
9 − φ2

8) < 0.070107.

Now (1.4) follows from (7.1)–(7.3), completing the proof of Theorem 1.

Final remark. Since our estimates for exponential sums are better
than those of Baker and Harman [2], our U, Y2 are smaller than their corre-
sponding U, Y2. Therefore we can certainly obtain a smaller value in place
of 0.0125. This leads to a better exponent than 0.738. It seems that we could
not have arrived at 0.74 by computing precisely

T0.661
φ1
{K(θ) +R(θ)} dθ.
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