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1. Introduction. Let α be an algebraic number. Roth’s celebrated the-
orem [13] says that for any δ > 0 there are only a finite number of rational
approximations x/y of α with

(1.1) |α− x/y| < 1/y2+δ, y > 0.

In this paper we consider approximations of α by algebraic numbers of
bounded degree. More precisely, let d ∈ N and suppose µ > 2. We look for
solutions in algebraic numbers β of degree ≤ d of the inequality

(1.2) |α− β| < H0(β)−µ,

where H0(β) denotes the maximum modulus of the coefficients of the mini-
mal defining polynomial of α over Z. For rational β, say β = x/y, we have
H0(β) = max{|x|, |y|} and hence for d = 1 the inequality (1.2) is essentially
equivalent to (1.1).

Wirsing [19] proved that (1.2) has for

(1.3) µ > 2d

only a finite number of solutions.
As a consequence of his famous subspace theorem W. M. Schmidt [15]

was able to prove the best possible result ([16], p. 278): (1.2) has for

(1.4) µ > d+ 1

only a finite number of solutions.
Unfortunately, the underlying method of Thue–Siegel–Roth is ineffective

in the sense that it does not provide upper bounds for y or H0(β) respec-
tively. However, it allows giving an explicit upper bound for the number of
x/y ∈ Q satisfying (1.1). A first result was proved by Davenport and Roth
([3], 1955). This bound was improved by Bombieri and van der Poorten ([1],
1987) and independently by Luckhardt ([10], 1989) using the modified proof
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of Roth’s Theorem presented by Esnault and Viehweg ([4], 1984). The latest
results are due to Evertse ([7], 1996, [8], 1998).

It is the purpose of this paper to prove such a quantitative result of
Wirsing’s theorem.

To state our theorems we have to define the height of an algebraic num-
ber. Let K be a number field and M(K) its set of places. For v ∈ M(K)
denote by | · |v the associated absolute value, normalized so that on Q we
have | · |v = | · | (standard absolute value) if v is archimedean, whereas for v
non-archimedean |p|v = p−1 if v lies above the rational prime p. We put

‖ · ‖v = | · |[Kv:Qp]/[K:Q]
v ,

where Kv denotes the completion of (K, |·|v) and Qp denotes the completion
of (Q, | · |p). We also denote the unique extensions of | · |v and ‖ · ‖v to Kv
by | · |v and ‖ · ‖v respectively. For x ∈ K we define the height of x by

(1.5) H(x) =
∏

v∈M(K)

max{1, ‖x‖v}.

Let | · | denote the standard absolute value of the complex numbers C,
and Q the algebraic closure of Q in C. For any positive number x we define
log+ x = log x if x ≥ e and 1 otherwise.

The following is a quantitative version of the result (1.3) of Wirsing ([19],
Theorem 1).

Theorem 1. Let 0 < δ ≤ 1, d ∈ N and α be an algebraic number of
degree f . Consider the inequality

(1.6) |α− β| < H(β)−2d2−δ

to be solved in elements β ∈ Q with

(1.7) deg β ≤ d.
(i) There are at most

e26 · d
15 log(6f)

δ5 log
d log(6f)

δ

solutions β ∈ Q of (1.6) and (1.7) with H(β) ≥ max{44d2/δ,H(α)}.
(ii) There are at most

log+ logH(α)
log(1 + δ/(4d2))

+
215d2

δ

solutions β ∈ Q of (1.6) and (1.7) with H(β) < max{44d2/δ,H(α)}.
We suppose every number field to be embedded in Q and every valuation

of the number field to be extended to Q. The following generalizes Theorem
1 to include non-archimedean primes.
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Theorem 2. Let 0 < δ ≤ 1, d ∈ N and F/K be an extension of number
fields of degree f . Let S be a finite set of places of K of cardinality s.
Suppose that for each v ∈ S we are given a fixed element αv ∈ F . Let H be
a real number with H ≥ H(αv) for all v ∈ S. Consider the inequality

(1.8)
∏

v∈S
min{1, ‖αv − β‖v} < H(β)−2d2−δ

to be solved in elements β ∈ Q with

(1.9) [K(β) : K] ≤ d.
Then there are at most

e7s+19 · d
2s+13 log(6f)

δs+4 log
d log(6f)

δ

solutions β ∈ Q of (1.8) and (1.9) with

(1.10) H(β) ≥ max{H, 44d2/δ}.
We have claimed above that Theorems 1 and 2 are quantitative versions

of Wirsing’s result (1.3). But in our theorems we have the exponent 2d2

instead of 2d. The reason is that our height H(·) as defined in (1.5) is
normalized in a different way than the height H0(·) in (1.2). For algebraic
numbers β of degree ≤ d we have ([17], Chapter I, Lemma 7B)

H(β)d �d H0(β)�d H(β)d.

Therefore we get an additional factor d in the exponent. For the height H(·)
the best possible exponent in (1.6) and (1.8) would be d(d+ 1).

To prove the best possible result Schmidt uses an induction argument
which depends upon his subspace theorem. It is not clear how this argument
can be used to obtain a quantitative result.

Independently, J.-H. Evertse [8] also proved a quantitative version of
Wirsing’s theorem (1.3). Moreover, he gave an explicit upper bound for the
number of solutions of a more general problem considered by Wirsing [19].
His upper bounds for (1.3) are similar to ours.

2. The auxiliary polynomial

2.1. A generalization of the index. Let P be a non-zero polynomial in
m variables X1, . . . , Xm with complex coefficients. Roth [13] introduced the
index of a polynomial at a certain point to measure to what extent the
polynomial vanishes at that point. In this section we will define a different
measure for this need. It was introduced by W. M. Schmidt ([18], p. 139).

Let α ∈ Cm and r ∈ Nm. We write P in the form

P (X1, . . . , Xm) =
∑

i

ai(α)(X1 − α1)i1 . . . (Xm − αm)im
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with i = (i1, . . . , im) and unique coefficients ai(α). Let M be a subset of
Rm and put

kα,r(P ) = {(i1/r1, . . . , im/rm) : ai(α) 6= 0}.
We say P is M-centered at α with respect to r if kα,r(P ) ⊆M .

2.2. Estimation of volumes. Suppose 0 ≤ γ ≤ 1 and ε > 0. Let m ∈ N.
We put

ξγ(x) = |{h ∈ {1, . . . ,m} : 0 ≤ xh ≤ γ}| =
m∑

h=1

χ[0,γ](xh),

where χ[0,γ] denotes the characteristic function of the closed interval [0, γ].
The sets

Mε(m, γ) = {x ∈ [0, 1]m : ξγ(x) ≤ m(γ + ε)}, Mε(m) =
⋂

γ∈[0,1]

Mε(m, γ)

are the main objects of this section. We always consider the complement of
Mε(m, γ) and Mε(m) with respect to [0, 1]m. More precisely, we put

M c
ε (m, γ) = [0, 1]m −Mε(m, γ) and M c

ε (m) = [0, 1]m −Mε(m).

Lemma 2.1. Suppose 0 ≤ γ ≤ 1, ε > 0 and let m ∈ N. Then

(2.1)
\

Mc
ε(m,γ)

dx ≤ e−γ(1−γ)ε2m.

The line of the proof is the same as the proof of [16], Chapter V, Lemma
4C.

P r o o f. The integral on the left-hand side of (2.1) exists, since the bound-
ary of M c

ε (m, γ) lies in a finite union of hyperplanes. For all x ∈ M c
ε (m, γ)

we have ξγ(x)−mγ > mε. Therefore

(2.2) eγε
2m

\
Mc
ε(m,γ)

dx

≤
\

Mc
ε(m,γ)

eγε(ξγ(x)−mγ) dx =
\

Mc
ε(m,γ)

eγε((
∑m
h=1 χ[0,γ](xh))−mγ) dx

=
\

Mc
ε(m,γ)

eγε
∑m
h=1(χ[0,γ](xh)−γ) dx ≤

\
[0,1]m

m∏

h=1

eγε(χ[0,γ](xh)−γ) dx

=
( 1\

0

eγε(χ[0,γ](x)−γ) dx
)m

.
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Note that ey ≤ 1 + y + y2 for |y| ≤ 1. Hence we get

(2.3)
1\
0

eγε(χ[0,γ](x)−γ) dx

≤
1\
0

(1 + γε(χ[0,γ](x)− γ) + γ2ε2(χ[0,γ](x)− γ)2) dx

≤ 1 + γε

1\
0

(χ[0,γ](x)− γ) dx+ γ2ε2 = 1 + γ2ε2.

(2.2) and (2.3) together give

eγε
2m

\
Mc
ε(m,γ)

dx ≤ (1 + γ2ε2)m ≤ eγ2ε2m

and the lemma follows.

Lemma 2.2. Suppose 0 < ε ≤ 2/3 and let m ∈ N. Then\
Mc
ε(m)

dx < 2e−(mε3/16+log ε).

P r o o f. In analogy to Lemma 2.1 the integral on the left-hand side exists
since the boundary lies in a finite union of hyperplanes. We put

n =

{
2
ε (1− ε) if 2

ε (1− ε) ∈ N,[
2
ε (1− ε)]+ 1 otherwise;

γi = i · ε
2

(
1 ≤ i ≤

[
2
ε

(1− ε)
])
, γn = 1− ε.

For every γ ∈ [0, 1− ε] there exists an i ∈ {1, . . . , n} with

(2.4) γi − ε/2 ≤ γ ≤ γi.
Next we show that

(2.5) Mε(m) ⊇
n⋂

i=1

Mε/2(m, γi).

Trivially, ξγ(x) ≤ m, and so we have

Mε(m) =
⋂

γ∈[0,1]

Mε(m, γ) =
⋂

γ∈[0,1−ε]
Mε(m, γ).

Now let γ ∈ [0, 1 − ε]. Take i ∈ {1, . . . , n} satisfying (2.4). Since ξγ(x) is
non-decreasing in γ, for all x ∈ ⋂nj=1Mε/2(m, γj) we get

ξγ(x) ≤ ξγi(x) ≤ m(γi + ε/2) ≤ m(γ + ε/2 + ε/2) = m(γ + ε)

and hence x ∈Mε(m, γ). Thus we have verified (2.5).
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From (2.5) we get by De Morgan’s formulae M c
ε (m) ⊆ ⋃ni=1M

c
ε/2(m, γi).

We now apply Lemma 2.1 to get

\
Mc
ε(m)

dx ≤
\

⋃n
i=1 M

c
ε/2(m,γi)

dx ≤
n∑

i=1

e−γi(1−γi)ε
2m/4.

Since

min
1≤i≤n

γi(1−γi) =
ε

2

(
1− ε

2

)
≥ ε

4
and n ≤

[
2
ε

(1−ε)
]

+1 ≤
[

2
ε

]
−1 ≤ 2

ε

we conclude \
Mc
ε(m)

dx ≤ ne−ε3m/16 ≤ 2
ε
e−ε

3m/16 ≤ 2e−(ε3m/16+log ε).

The following lemma is one of the main reasons for the exponent 2d2.

Lemma 2.3 ([18], Lemma 7.2.1). Let I1, . . . , ID be subsets of {1, . . . ,m}
and let d̃ ∈ N with

∑D
k=1 |Ik| ≥ Dm/d̃. Then

D∑

k=1

inf
{ ∑

h∈Ik
xh : x ∈Mε(m)

}
≥ Dm

2d̃2
(1− 2εd̃2).

Lemma 2.4. Let r1, . . . , rm ∈ N. The number of tuples i ∈ Zm with
0 ≤ ih ≤ rh (1 ≤ h ≤ m) and (i1/r1, . . . , im/rm) 6∈Mε(m) is

r1 . . . rm
\

Mc
ε(m)

dx+Om

(
r1 . . . rm

min1≤h≤m rh

)
.

P r o o f. We put ξγ,r(x) = |{h ∈ {1, . . . ,m} : xh/rh ≤ γ}| and

M = {x ∈ [0, r1]× . . .× [0, rm] : ξγ,r(x) ≤ m(γ + ε), ∀γ ∈ [0, 1]},
Mc = {x ∈ [0, r1]× . . .× [0, rm] : ∃γ ∈ [0, 1] : ξγ,r(x) > m(γ + ε)}.

Observe that
T
Mc dx = r1 . . . rm

T
Mc
ε(m) dx. We denote by Gc the set of

integer points of Mc, thus

Gc = {i ∈ Zm : (i1/r1, . . . , im/rm) 6∈Mε(m), 0 ≤ ih ≤ rh, 1 ≤ h ≤ m}.
For i ∈ Zm we put

Qi = [i1, i1 + 1]× . . .× [im, im + 1].

Now we can write the assertion as\
⋃
i∈Gc Qi

dx =
\
Mc

dx+Om

(
r1 . . . rm

min1≤h≤m rh

)
.
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For x ∈ Mc it follows that ([x1], . . . , [xm]) ∈ Mc and hence x ∈ ⋃i∈Gc Qi.
In other words, Mc ⊆ ⋃i∈Gc Qi. Therefore it suffices to show

(2.6)
\

⋃
i∈GcQi−Mc

dx = Om

(
r1 . . . rm

min1≤h≤m rh

)
.

We have⋃

i∈Gc

Qi −Mc = {x ∈ [0, r1]× . . .× [0, rm] :

∃γ ∈ [0, 1] : ξγ,r(([x1], . . . , [xm])) > m(γ + ε)} ∩M.

Let x ∈ ⋃i∈Gc Qi −Mc. There exists some γ̃ ∈ [0, 1] with

(2.7) |{h ∈ {1, . . . ,m} : [xh]/rh ≤ γ̃}| > m(γ̃ + ε).

On the other hand, for all γ ∈ [0, 1] we have

(2.8) |{h ∈ {1, . . . ,m} : xh/rh ≤ γ}| ≤ m(γ + ε).

Observe that for all permutations π of {1, . . . ,m},
(2.9) (xπ(1), . . . , xπ(m)) ∈

⋃

i∈Gc

Qi −Mc.

Thus additionally we can assume

(2.10) x1/r1 ≤ . . . ≤ xm/rm
and therefore we also have

(2.11) [x1]/r1 ≤ . . . ≤ [xm]/rm.

We put h̃ = |{h ∈ {1, . . . ,m} : [xh]/rh ≤ γ̃}|. Then (2.7) and (2.11) together
give

(2.12) h̃ > m(γ̃ + ε) ≥ m([xh̃]/rh̃ + ε).

If we choose γ = xh̃/rh̃, then (2.10) and (2.8) imply

(2.13) h̃ ≤ |{h ∈ {1, . . . ,m} : xh/rh ≤ xh̃/rh̃}| ≤ m(xh̃/rh̃ + ε).

The combination of (2.13) and (2.12) gives

(2.14) rh̃(h̃/m− ε) ≤ xh̃ < rh̃(h̃/m− ε) + 1.

The value h̃ depends on x, but the possible values of h̃ range between 1 and
m, since h̃ is positive. As

⋃
i∈Gc Qi −Mc ⊆ [0, r1]× . . .× [0, rm] we finally

conclude from (2.14) that\
{x∈⋃

i∈GcQi−Mc:x1/r1≤...≤xm/rm}
dx ≤

m∑

h̃=1

r1 . . . rm
rh̃

= Om

(
r1 . . . rm

min1≤h≤m rh

)
.

Now (2.6) follows immediately using (2.9).
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Lemma 2.5. Suppose ε > 0. Let P ∈ C[X1, . . . , Xm], α ∈ Cm and r ∈
Nm. Let j ∈ Zm with 0 ≤ jh ≤ rh (1 ≤ h ≤ m) and j1/r1 + . . .+ jm/rm ≤ ε.
Suppose P is Mε(m)-centered at α with respect to r. Then

∂j1+...+jm

∂Xj1
1 . . . ∂Xjm

m

P

is M2ε(m)-centered at α with respect to r.

P r o o f. Since jh/rh ≤ ε for all h ∈ {1, . . . ,m} the lemma is an easy
consequence of the definition of the set Mε(m) .

2.3. Heights and Siegel’s Lemma. Let K be a number field and M(K)
its set of places. Let n ∈ N. For x ∈ Kn and v ∈M(K) we put

|x|v = max{|x1|v, . . . , |xn|v} and ‖x‖v = |x|[Kv :Qp]/[K:Q]
v .

If v is archimedean we put

|x|v,E = (|x1|2v + . . .+ |xn|2v)1/2 and ‖x‖v,E = |x|[Kv :Qp]/[K:Q]
v,E .

The height and the euclidean height of x ∈ Kn are defined by

H(x) =
∏

v∈M(K)

‖x‖v, HE(x) =
( ∏

v∈M(K)
v|∞

‖x‖v,E
) ∏

v∈M(K)
v -∞

‖x‖v.

We have H(x) ≤ HE(x) ≤ √nH(x). The height of a polynomial is defined
as the height of its coefficient vector. We use the notation

∆i =
1

i1! . . . im!
∂i1+...+im

∂Xi1
1 . . . ∂Xim

m

.

Let P ∈ Q[X1, . . . , Xm] have degree ≤ rh in Xh (1 ≤ h ≤ m). Let j ∈ Zm
with jh ≥ 0 (1 ≤ h ≤ m). We have

(2.15) H(∆jP ) ≤ 2r1+...+rmH(P ).

Finally, we are able to construct the auxiliary polynomial.

Lemma 2.6. Suppose 0 < ε < 1. Let F/K be an extension of number
fields of degree f , let α1, . . . , αs ∈ F and m ∈ N. Suppose

m ≥ 16
ε3 (log(6sf) + log ε−1).

There is a constant R = R(m) such that for all r = (r1, . . . , rm) ∈ Nm with
rh ≥ R (1 ≤ h ≤ m) there exists a non-zero polynomial P ∈ K[X1, . . . , Xm]
such that

(i) degXh P ≤ rh (1 ≤ h ≤ m);
(ii) P is Mε(m)-centered at the points αk = (αk, . . . , αk) (1 ≤ k ≤ s)

with respect to r;
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(iii) H(P ) ≤ C(F )(4H)r1+...+rm , where H = max{H(α1), . . . , H(αs)}
and C(F ) denotes a constant depending only on F .

P r o o f. We put N = (r1 + 1) . . . (rm + 1) and

M = |{i ∈ Zm : (i1/r1, . . . , im/rm) 6∈Mε(m), 0 ≤ ih ≤ rh, 1 ≤ h ≤ m}|.
Let P ∈ K[X1, . . . , Xm] with (i). We need to determine the coefficients of
P such that (ii) and (iii) hold. (ii) says that

(2.16) ∆iP (αk) = 0

for all i ∈ Zm with (i1/r1, . . . , im/rm) 6∈ Mε(m), 0 ≤ ih ≤ rh, 1 ≤ h ≤ m
and 1 ≤ k ≤ s. (2.16) is a system of linear equations, where the unknowns
are the coefficients of P . To solve (2.16) we will apply Siegel’s Lemma in the
form given by Bombieri and Vaaler [2].

Lemma 2.4 says

M = r1 . . . rm
\

Mc
ε(m)

dx+Om

(
r1 . . . rm

min1≤h≤m rh

)

and therefore it follows from Lemma 2.2 that
M

N
=

\
Mc
ε(m)

dx+
1

(r1 + 1) . . . (rm + 1)
·Om

(
r1 . . . rm

min1≤h≤m rh

)

< 2e−(mε3/16+log ε) +
1

(r1 + 1) . . . (rm + 1)
·Om

(
r1 . . . rm

min1≤h≤m rh

)
.

Hence for large r1, . . . , rm we get

(2.17) M/N < 3e−(mε3/16+log ε).

By assumption,

m ≥ 16
ε3 (log(6sf) + log ε−1) =

16
ε3 log(6sf/ε).

This is equivalent to

(2.18) 3sfe−(mε3/16+log ε) ≤ 1/2.

The inequalities (2.17) and (2.18) together give

(2.19) sfM < Nsf3e−(mε3/16+log ε) ≤ N/2.
If we denote by A the matrix corresponding to (2.16), then by [2], Theorem
12 and (2.19) we get a non-zero polynomial P ∈ K[X1, . . . , Xm] satisfying
(i), (2.16) and

H(P ) ≤ C(F )( max
a row of A

HE(a))sfM/(N−sfM) ≤ C(F ) max
a row of A

HE(a),

where C(F ) denotes a constant only depending on F . By standard estimates
we know that HE(a) ≤ (4H)r1+...+rm and the lemma follows.
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3. Roth’s Lemma. The essential ingredient to Roth’s Theorem in [13]
is the so-called Roth’s Lemma. We quote its version proved by J. H. Evertse
[6], which is a quantitative improvement on the original. J. H. Evertse proved
this result by using Faltings’ Product Theorem [9].

Let P be a non-zero polynomial in unknowns X1, . . . , Xm with complex
coefficients. Let α ∈ Cm and r ∈ Nm. We define, as in [13],

Indα,rP

= min{i1/r1 + . . .+ im/rm : ∆iP (α) 6= 0, i ∈ Zm, ih ≥ 0, 1 ≤ h ≤ m}
and say that P has index Indα,rP at α with respect to r.

Proposition 3.1 ([6], Theorem 3). Let m be an integer ≥ 2, let r =
(r1, . . . , rm) be a tuple of positive integers, let P ∈ Q[X1, . . . , Xm] be a non-
zero polynomial of degree ≤ rh in Xh for h = 1, . . . ,m and let 0 < ε ≤ m+1
be such that

(3.1) rh/rh+1 ≥ 2m3/ε for h = 1, . . . ,m− 1.

Further , let β1, . . . , βm be algebraic numbers with

(3.2) HE((1, βh))rh > {er1+...+rmHE(P )}(3m3/ε)m (1 ≤ h ≤ m).

Then Indβ,rP < ε.

4. A quantitative result. Suppose 0 < ε < 1. Let F/K be an extension
of number fields of degree f . Let S be a finite subset of M(K) of cardinality
s. Suppose that for each v ∈ S we are given fixed elements αv ∈ F . Suppose
H(αv) ≤ H (v ∈ S). Let m ∈ N with m ≥ (16/ε3)(log(6sf) + log ε−1).

Under these assumptions the hypotheses of Lemma 2.6 are satisfied.
Let R = R(m) be the constant given by Lemma 2.6. Suppose rh ≥ R
(1 ≤ h ≤ m). Then there is a polynomial P with

(4.1) P ∈ K[X1, . . . , Xm], P 6= 0;

(4.2) degXh P ≤ rh (1 ≤ h ≤ m);

(4.3) P is Mε(m)-centered with respect to r

at the points αv = (αv, . . . , αv) (v ∈ S);

(4.4) H(P ) ≤ C(4H)r1+...+rm ,

where C = C(F ) is a constant just depending on F .

Lemma 4.1. Suppose 0 < δ ≤ 1, d ∈ N and 0 < ε ≤ δ/(20d4). Let Γ be
a tuple of non-negative integers with

∑

v∈S
Γv = 1− δ/(24d2).
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Suppose there are elements β1, . . . , βm ∈ Q satisfying

[K(βh) : K] ≤ d,
H(β1)r1 ≤ H(βh)rh ≤ H(β1)(1+ε)r1 (1 ≤ h ≤ m),(4.5)

‖αv − βh‖v < H(βh)−Γv(2d2+δ) (1 ≤ h ≤ m, v ∈ S)(4.6)

and

(4.7) H(βh)ε/2 ≥ max{C1/r1 , 27H3fs} (1 ≤ h ≤ m).

Then Indβ,rP > ε.

P r o o f. Let j ∈ Zm with 0 ≤ jh ≤ rh, 1 ≤ h ≤ m and

(4.8) j1/r1 + . . .+ jm/rm ≤ ε.
Put

(4.9) T (X) =
∑

i

aiX
i1
1 . . . Xim

m = ∆jP (X).

We have to show

(4.10) T (β) = 0.

First we establish an inequality for the height of T . From (2.15), (4.2),
(4.4) and (4.7) we get

(16H2fs)r1+...+rmH(T ) ≤ (25H2fs)r1+...+rmH(P ) ≤ C(27H3fs)r1+...+rm

≤ C
( m∏

h=1

H(βh)rh
)ε/2

.

By (4.7) we have C ≤ H(β1)r1ε/2 ≤∏m
h=1H(βh)rhε/2 and therefore

(4.11) (16H2fs)r1+...+rmH(T ) ≤
( m∏

h=1

H(βh)rh
)ε
.

We will need (4.11) later on.

Put E = K(β1, . . . , βm). We denote by E
K
↪→ Kv the set of K-embeddings

of E intoKv, i.e. the homomorphisms of E inKv which are the identity onK.
For each place w of E which lies over v of K, there exists a λ ∈ E K

↪→ Kv with
|a|w = |λ(a)|v for all a ∈ E. There are in fact [Ew : Kv] such embeddings.
With these notations the product formula reads

∏

p∈M(Q)

∏

w∈M(E)
w|p

|x|[Ew:Qp]
w =

∏

p∈M(Q)

∏

v∈M(K)
v|p

∏

λ∈E K
↪→Kv

|λ(x)|[Kv :Qp]
v = 1
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for all x ∈ E∗. From (4.1) and (4.9) we know that T has coefficients in K
and hence T (β) ∈ E. Therefore to prove (4.10) it suffices to show

(4.12)
∏

p∈M(Q)

∏

v∈M(K)
v|p

∏

λ∈E K
↪→Kv

|T (λ(β))|[Kv:Qp]
v < 1.

Let v ∈M(K). In the sequel we estimate
∏
λ∈E K

↪→Kv
|T (λ(β))|v. Put

(4.13) κv =
{

1 if v |∞,
0 if v -∞

and r = r1 + . . .+ rm. For v 6∈ S, by trivial estimates of (4.9) we get

∏

λ∈E K
↪→Kv

|T (λ(β))|v ≤
∏

λ∈E K
↪→Kv

(
2κvr max

i
|ai|v

m∏

h=1

|(1, λ(βh))|rhv
)

(4.14)

= 2κv[E:K]r max
i
|ai|[E:K]

v

∏

λ∈E K
↪→Kv

1≤h≤m

|(1, λ(βh))|rhv .

Now, let v ∈ S. We can write (4.6) as

(4.15) |µv(αv)− µv(βh)|v
< H(βh)−Γv(2d2+δ)[K:Q]/[Kv:Qp] (1 ≤ h ≤ m, v ∈ S),

where µv denotes a fixed K-embedding of Q in Kv. Let λ ∈ E K
↪→ Kv. We

expand T (X) around the point µv(αv) = (µv(αv), . . . , µv(αv)) in a Taylor
series to get

(4.16) |T (λ(β))|v ≤ 2κvr max
i

∣∣∣∆iT (µv(αv))
m∏

h=1

(λ(βh)− µv(αv))ih
∣∣∣
v
.

By trivial estimates we get

(4.17) |∆iT (µv(αv))|v ≤ 4κvr max
ĩ
|aĩ|v|(1, µv(αv))|rv.

The main term we have to look at is max∗i
∏m
h=1 |λ(βh) − µv(αv)|ihv ,

where the maximum is taken over all i with ∆iT (µv(αv))v 6= 0. By (4.3),
(4.8), Lemma 2.5 and µv(∆iT (αv)) = ∆iT (µv(αv)), for tuples i satisfy-
ing ∆iT (µv(αv))v 6= 0 we have (i1/r1, . . . , im/rm) ∈ M2ε(m). Therefore it
suffices to consider the term supx∈M2ε(m)

∏m
h=1 |λ(βh)− µv(αv)|xhrhv .

If λ(βh) = µv(βh), we can estimate the factor satisfying (4.15) non-
trivially. Hence we treat the cases λ(βh) = µv(βh) and λ(βh) 6= µv(βh)
separately. Put

Iλ = {h ∈ {1, . . . ,m} : λ(βh) = µv(βh)}.
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We have

(4.18) sup
x∈M2ε(m)

m∏

h=1

|λ(βh)− µv(αv)|xhrhv

≤
(

sup
x∈M2ε(m)

∏

h6∈Iλ
|λ(βh)− µv(αv)|xhrhv

)

×
(

sup
x∈M2ε(m)

∏

h∈Iλ
|λ(βh)− µv(αv)|xhrhv

)
.

We estimate the first factor of (4.18) trivially and get

(4.19) sup
x∈M2ε(m)

∏

h6∈Iλ
|λ(βh)− µv(αv)|xhrhv

≤
m∏

h=1

2κvrh |(1, λ(βh))|rhv |(1, µv(αv))|rhv .

For the second factor of (4.18) we use (4.15) and (4.5) to get

sup
x∈M2ε(m)

∏

h∈Iλ
|λ(βh)− µv(αv)|xhrhv

= sup
x∈M2ε(m)

∏

h∈Iλ
|µv(αv)− µv(βh)|xhrhv

< sup
x∈M2ε(m)

∏

h∈Iλ
H(βh)−xhrhΓv(2d2+δ)[K:Q]/[Kv:Qp]

≤ sup
x∈M2ε(m)

H(β1)−r1Γv(2d2+δ) [K:Q]
[Kv :Qp]

∑
h∈Iλxh

= H(β1)−r1Γv(2d2+δ) [K:Q]
[Kv :Qp] infx∈M2ε(m)

∑
h∈Iλxh .

Taking the product over all K-embeddings of E into Kv gives

(4.20)
∏

λ∈E K
↪→Kv

sup
x∈M2ε(m)

∏

h∈Iλ
|λ(βh)− µv(αv)|xhrhv

< H(β1)
−r1Γv(2d2+δ) [K:Q]

[Kv :Qp]

∑
λ∈E

K
↪→Kv

infx∈M2ε(m)
∑
h∈Iλxh .

To apply Lemma 2.3 we need a lower bound for
∑
λ∈E K

↪→Kv
|Iλ|. Let δx,y

denote the Kronecker symbol. We have∑

λ∈E K
↪→Kv

|Iλ| =
∑

λ∈E K
↪→Kv

|{h ∈ {1, . . . ,m} : λ(βh) = µv(βh)}|

=
∑

λ∈E K
↪→Kv

∑

1≤h≤m
δλ(βh),µv(βh) =

∑

1≤h≤m

∑

λ∈E K
↪→Kv

δλ(βh),µv(βh)

=
∑

1≤h≤m
[E : K(βh)] ≥

∑

1≤h≤m

[E : K]
d

=
m[E : K]

d
.
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Now we apply Lemma 2.3 to (4.20) with [E : K] in place of D and 2ε in
place of ε to get

(4.21)
∏

λ∈E K
↪→Kv

sup
x∈M2ε(m)

∏

h∈Iλ
|λ(βh)− µv(αv)|xhrhv

< H(β1)−
[E:Q]

[Kv :Qp]mr1(1−4εd2)(1+ δ
2d2 )Γv .

The combination of (4.18), (4.19) and (4.21) gives

(4.22)
∏

λ∈E K
↪→Kv

sup
x∈M2ε(m)

m∏

h=1

|λ(βh)− µv(αv)|xhrhv

<
( ∏

λ∈E K
↪→Kv

1≤h≤m

2κvrh |(1, µv(αv))|rhv |(1, λ(βh))|rhv
)

×H(β1)−
[E:Q]

[Kv :Qp]mr1(1−4εd2)(1+ δ
2d2 )Γv

< (2κv |(1, µv(αv))|v)r[E:K]
( ∏

λ∈E K
↪→Kv

1≤h≤m

|(1, λ(βh))|rhv
)

×H(β1)−
[E:Q]

[Kv :Qp]mr1(1−4εd2)(1+ δ
2d2 )Γv

and the combination of (4.16), (4.17) and (4.22) gives

(4.23)
∏

λ∈E K
↪→Kv

|T (λ(β))|v

<
∏

λ∈E K
↪→Kv

2κvr max
i
|∆iT (µv(αv))|v

m∏

h=1

|λ(βh)− µv(αv)|ihv

≤ 8κv[E:K]r max
ĩ
|aĩ|[E:K]

v |(1, µv(αv))|[E:K]r
v

×
∏

λ∈E K
↪→Kv

max∗
i

m∏

h=1

|λ(βh)− µv(αv)|ihv

< 16κv[E:K]r max
i
|ai|[E:K]

v |(1, µv(αv))|2[E:K]r
v

×
( ∏

λ∈E K
↪→Kv

1≤h≤m

|(1, λ(βh))|rhv
)
H(β1)−

[E:Q]
[Kv :Qp]mr1(1−4εd2)(1+ δ

2d2 )Γv .

Finally, if we take the product over all valuations of E, then (4.14) and
(4.23) together lead to
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(4.24)
∏

p∈M(Q)

∏

v∈M(K)
v|p

( ∏

λ∈E K
↪→Kv

|T (λ(β))|v
)[Kv:Qp]

<
( ∏

p∈M(Q)

(
16[E:K]r

∑
v∈M(K),v|p κv[Kv:Qp]

∏

v∈S, v|p
|(1, µv(αv))|2[E:K]r[Kv :Qp]

v

))

×
( ∏

p∈M(Q)

( ∏

v∈M(K)
v|p

max
i
|ai|[Kv:Qp]

v

)[E:K])

×
( ∏

p∈M(Q)

∏

v∈M(K)
v|p

( ∏

λ∈E K
↪→Kv

1≤h≤m

|(1, λ(βh))|rhv
)[Kv :Qp])

×H(β1)−[E:Q]mr1(1−4εd2)(1+ δ
2d2 )

∑
v∈S Γv.

For the middle term of the right-hand side of (4.24) we have

(4.25)
( ∏

p∈M(Q)
v∈M(K),v|p

max
i
|ai|[Kv :Qp]

v

)[E:K]

×
∏

p∈M(Q)
v∈M(K),v|p

( ∏

λ∈E K
↪→Kv

1≤h≤m

|(1, λ(βh))|rhv
)[Kv :Qp]

=
( ∏

p∈M(Q)
v∈M(K),v|p

max
i
|ai|[Kv :Qp]/[K:Q]

v

)[E:Q]

×
∏

p∈M(Q)
v∈M(K),v|p

( ∏

w∈M(E),w|v
1≤h≤m

|(1, βh)|rh[Ew:Kv]
w

)[Kv:Qp]

=
( ∏

v∈M(K)

max
i
‖ai‖v

)[E:Q]( m∏

h=1

∏

w∈M(E)

‖(1, βh)‖rhw
)[E:Q]

= H(T )[E:Q]
( m∏

h=1

H(βh)rh
)[E:Q]

.

Before we estimate the first term of the right-hand side of (4.24) we
make some remarks: For each v ∈ S there exists some wv ∈M(F ) such that
|µv(x)|v = |x|wv for all x ∈ F , hence |(1, µv(αv))|v ≤ H(αv)[F :Q]/[Fwv :Qp].
Further from (4.13) we have

∏

p∈M(Q)

16[E:K]r
∑
v∈M(K),v|p κv[Kv:Qp] = 16[E:Q]r.
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Therefore for the first term of (4.24) we get

(4.26)
∏

p∈M(Q)

(
16[E:K]r

∑
v∈M(K) κv [Kv :Qp]

∏

v∈S, v|p
|(1, µv(αv))|2[E:K]r[Kv:Qp]

v

)

≤
(

16[E:Q]
∏

p∈M(Q)

∏

v∈S, v|p
H(αv)2[E:K][Kv :Qp][F :Q]/[Fwv :Qp]

)r

=
(

16[E:Q]
∏

v∈S
H(αv)2[E:K][F :Q]/[Fwv :Kv]

)r

=
(

16[E:Q]
∏

v∈S
H(αv)2[E:Q][F :K]/[Fwv :Kv]

)r

≤
(

16
∏

v∈S
H(αv)2f

)[E:Q]r
≤ (16H2fs)[E:Q]r.

Now we simplify (4.24) using (4.25), (4.26),
∑
v∈S Γv = 1 − δ/(24d2),

(4.11) and (4.5) to

(4.27)
∏

p∈M(Q)

∏

v∈M(K)
v|p

( ∏

λ∈E K
↪→Kv

|T (λ(β))|v
)[Kv:Qp]

< (16H2fs)[E:Q]rH(T )[E:Q]
( m∏

h=1

H(βh)rh
)[E:Q]

×H(β1)−[E:Q]mr1(1−4εd2)(1+ δ
2d2 )

∑
v∈S Γv

≤
( m∏

h=1

H(βh)rh
)ε[E:Q]( m∏

h=1

H(βh)rh
)[E:Q]

×H(β1)−[E:Q]mr1(1−4εd2)(1+ δ
2d2 )(1− δ

24d2 )

≤
( m∏

h=1

H(βh)rh
)[E:Q](1+ε)( m∏

h=1

H(βh)rh
)−[E:Q](1+ε)−1(1−4εd2)(1+ δ

2d2 )(1− δ
24d2 )

≤
( m∏

h=1

H(βh)rh
)[E:Q](1+ε)−1((1+ε)2−(1−4εd2)(1+ δ

2d2 )(1− δ
24d2 ))

.

Since ε ≤ δ/(20d4) and δ ≤ 1, by elementary estimates we get

(1 + ε)2 − (1− 4εd2)
(

1 +
δ

2d2

)(
1− δ

24d2

)
< 0.

Therefore the exponent in (4.27) is negative, hence (4.10) holds true and
the lemma follows.

Proposition 4.1. Suppose 0 < δ ≤ 1. Let d ∈ N. Let F/K be an
extension of number fields of degree f and let S be a finite subset of M(K)
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of cardinality s. Suppose that for each v ∈ S we are given fixed elements
αv ∈ F . Suppose H(αv) ≤ H and

m ≥ e14d13 log(6sf)/δ4.

Let E = 42d4m3/δ and let Γ be a tuple of non-negative reals with
∑

v∈S
Γv = 1− δ

24d2 .

Then the heights of algebraic numbers β ∈ Q with

[K(β) : K] ≤ d,(4.28)

H(β) > (16H)2m(60d4m3/δ)m(4.29)

and

(4.30) ‖αv − β‖v < H(β)−Γv(2d2+δ) (v ∈ S)

lie in at most m− 1 intervals of the type

Hh ≤ H(β) ≤ HE
h+1 (1 ≤ h ≤ m− 1).

P r o o f. Suppose the proposition were false. Let H1 be the infimum of the
heights of β ∈ Q satisfying (4.28)–(4.30). If all the heights of the numbers
β ∈ Q satisfying (4.28)–(4.30) were in the interval H1 ≤ H(β) ≤ HE

1 , the
assertion would be correct. Hence there are β ∈ Q satisfying (4.28), (4.30)
and H(β) > HE

1 . Let H2 be their infimum. Hence HE
1 ≤ H2.

Continuing in this way we find H1, . . . , Hm which are defined as follows:

H1 = inf{H(β) : β ∈ Q satisfying (4.28)–(4.30)},
Hh+1 = inf{H(β) : β ∈ Q satisfying HE

h < H(β), (4.28), (4.30)}
for 1 ≤ h ≤ m − 1. Let βm ∈ Q satisfy (4.28), (4.30) and HE

m−1 < H(βm).
By the definition of Hm−1 there exists a βm−1 ∈ Q satisfying (4.28), (4.30)
and

H(βm−1)E < H(βm), HE
m−2 < H(βm−1).

After m−2 analogous steps we have β1, . . . , βm ∈ Q satisfying (4.28), (4.30),

(4.31) H(βh)E < H(βh+1) (1 ≤ h ≤ m− 1)

and

(4.32) H(β1) > (16H)2m(60d4m3/δ)m .

Put ε = δ/(20d4). By trivial estimates we get

(4.33)
16
ε3 (log(6sf) + log ε−1) ≤ m.
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Hence the hypotheses of Lemma 2.6 are satisfied. Let R = R(m) be the
constant given by Lemma 2.6. Now let r1 ∈ N be so large that

H(β1)εr1 ≥ H(βm),(4.34)

H(β1)r1 ≥ H(βm)R,(4.35)

H(β1)r1/2 ≥ C(60d4m3/δ)m ,(4.36)

where C is the constant of (4.4). For h = 2, . . . ,m put

(4.37) rh =
[
r1 logH(β1)
logH(βh)

]
+ 1.

From (4.34) it follows that

(4.38) H(β1)r1 ≤ H(βh)rh ≤ H(β1)r1(1+ε) (1 ≤ h ≤ m).

Moreover, from (4.38) and (4.35) we get H(βm)rm ≥ H(β1)r1 ≥ H(βm)R,
hence rm ≥ R. By (4.31) and (4.37) the sequence r1, . . . , rm is decreasing
and therefore rh ≥ R (1 ≤ h ≤ m). Lemma 2.6 gives us a polynomial
P satisfying (4.1)–(4.4). The inequalities (4.38) are identical with (4.5) of
Lemma 4.1. Hence the hypotheses of Lemma 4.1 are satisfied apart from
(4.7). But by (4.32), (4.36) and (4.31) also (4.7) holds true. It follows that

(4.39) Indβ,rP > ε.

Now we verify the hypotheses of Proposition 3.1. From (4.38) and (4.31)
we get

rh
rh+1

≥ 1
rh+1

(
rh+1 logH(βh+1)
(1 + ε) logH(βh)

)
=

logH(βh+1)
(1 + ε) logH(βh)

>
E logH(βh)

(1 + ε) logH(βh)
=

E

1 + ε
.

Using ε = δ/(20d4), d ≥ 1, δ ≤ 1 and the definition of E yields

(4.40)
rh
rh+1

≥ E

1 + δ
20d4

≥ 20E
21

=
42m3

21 · δ
20d4

=
2m3

ε
.

Therefore (3.1) holds true. Put Ẽ = (3m3/ε), thus Ẽ = (60d4m3/δ)m. Since
r1 ≥ . . . ≥ rm we have mr1 ≥ r1 + . . .+rm. Additionally, from (4.32), (4.36)
and (4.31) we get

(er1+...+rmHE(P ))(3m3/ε)m = (er1+...+rmHE(P ))Ẽ ≤ (emr12mr1/2H(P ))Ẽ

≤ (4mr1C(4H)mr1)Ẽ ≤ CẼ(16H)mr1Ẽ

< H(β1)r1/2H(β1)r1/2 = H(β1)r1

≤ H(βh)rh ≤ HE((1, βh))rh (1 ≤ h ≤ m).
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Hence we have also verified (3.2). Therefore the hypotheses of Proposition
3.1 are satisfied and we get Indβ,rP < ε. This contradicts (4.39) and the
proposition follows.

5. Gap principles

5.1. A gap principle for big solutions

Lemma 5.1. Let δ, F,K, S, s, d and αv be as in Theorem 2. Suppose
44d2/δ ≤ A < B and γ ≥ 1 − δ/(6d2). Let Γ be a tuple of non-negative
reals with

∑
v∈S Γv = γ. There are at most

1 +
log(log(B)/ logA)
log(1 + δ/(4d2))

elements β ∈ Q such that

(i) [K(β) : K] ≤ d;
(ii) A ≤ H(β) ≤ B;

(iii) ‖αv − β‖v < H(β)−Γv(2d2+δ) (v ∈ S).

P r o o f. Suppose H ≥ A. First we show that in an interval of the type

(5.1) H ≤ H(β) ≤ H1+δ/(4d2)

lies at most one β ∈ Q satisfying (i) and (iii).
Let β0, β1 ∈ Q satisfy β0 6= β1, (i), (iii) and H(βi) ≥ A (i = 0, 1).

Without loss of generality we assume H(β0) ≤ H(β1). Put E = K(β0, β1).
As in the proof of Proposition 4.1 we have

(5.2) |µv(αv)− µv(βi)|[Kv:Qp]/[K:Q]
v < H(βi)−Γv(2d2+δ) (v ∈ S, i = 0, 1)

for some fixed K-embedding µv of Q in Kv. Let v ∈ S, say v | p. Hence
|µv(·)|v is a valuation of E, which is identical to | · |p on Q. Therefore, there
exists some wv ∈M(E) such that | · |wv = |µv(·)|v. Put SE = {wv : v ∈ S}.
Thus it follows from (5.2) that
∏

w∈SE
‖β0 − β1‖w =

∏

v∈S
‖β0 − β1‖wv

=
∏

v∈S
|β0 − β1|[Ewv :Qp]/[E:Q]

wv

=
∏

v∈S
|µv(β0)− µv(β1)|[Ewv :Qp]/[E:Q]

v

≤
∏

v∈S
(|(1, 2)|[Ewv :Qp]/[E:Q]

v

× max
i=0,1
{|µv(βi)− µv(αv)|[Ewv :Qp]/[E:Q]

v })
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=
∏

v∈S
(|(1, 2)|[Ewv :Qp]/[E:Q]

wv

× max
i=0,1
{|µv(βi)− µv(αv)|[Kv:Qp]/[K:Q]

v }[Ewv :Kv]/[E:K])

<
∏

v∈S
(‖(1, 2)‖wv max

i=0,1
{H(βi)−Γv(2d2+δ)}[Ewv :Kv]/[E:K]).

Simplifying this further using H(β0)≤H(β1), the trivial estimate [Ewv : Kv]
≥ 1 and [E : K] ≤ d2 gives

∏

w∈SE
‖β0 − β1‖w <

∏

v∈S
‖(1, 2)‖wvH(β0)−Γv(2d2+δ)/[E:K](5.3)

≤ 2
∏

v∈S
H(β0)−Γv(2+δ/d2) = 2H(β0)−γ(2+δ/d2).

On the other hand, from the product formula we get
∏

w∈SE
‖β0 − β1‖w =

( ∏

w∈M(E)−SE
‖β0 − β1‖w

)−1
(5.4)

≥
( ∏

w∈M(E)−SE
‖(1, 2)‖w‖(1, β0)‖w‖(1, β1)‖w

)−1

≥ (2H(β0)H(β1))−1.

The inequalities (5.3) and (5.4) give H(β1) > 1
4H(β0)γ(2+δ/d2)−1. By

elementary estimates using γ ≥ 1− δ/(6d2), d ≥ 1 and δ ≤ 1 we see that

γ

(
2 +

δ

d2

)
− 1 ≥ 1 +

δ

2d2 .

Therefore

H(β1) > 1
4H(β0)1+δ/(2d2).

Since 44d2/δ ≤ A ≤ H(β0) we have 1/4 ≥ H(β0)−δ/(4d
2) and finally

H(β1) > H(β0)1+δ/(4d2).

This proves (5.1). The interval [A,B] can be covered by

1 +
log(log(B)/ logA)
log(1 + δ/(4d2))

intervals of the type (5.1) and hence the assertion follows.

5.2. A gap principle for small solutions. J. Mueller and W. M. Schmidt
[12] used the well-ordering of the rational numbers to prove a gap principle
for small solutions. In this section we follow this idea using a packing lemma
instead.
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Lemma 5.2. Suppose F > 1 and r > 0. Let x1, . . . , xµ ∈ C with

(5.5) |xi − xj | ≥ r (1 ≤ i < j ≤ µ)

and

(5.6) |xi − xj | ≤ Fr (1 ≤ i, j ≤ µ).

Then µ ≤ (2F + 1)2.

P r o o f. Without loss of generality we assume x1 = 0. The open discs
with center xi and radius r/2 are pairwise disjoint because of (5.5). By (5.6)
they also lie in the open disc with center 0 and radius Fr + r/2. Therefore
µπ(r/2)2 ≤ π(Fr + r/2)2 and the lemma follows.

The contraposition of Lemma 5.2 is:

Lemma 5.3. Suppose F > 1 and r > 0. Let x1, . . . , xµ ∈ C with |xi − xj |
≥ r (1 ≤ i < j ≤ µ). Let µ ∈ N with F < 1

2 (
√
µ−1). Then there exist xi, xj

with |xi − xj | > Fr.

Lemma 5.4. Suppose 0 < δ ≤ 1. Let d ∈ N and α ∈ Q. There are at
most 215d2

/δ elements β ∈ Q with

(i) deg β ≤ d;

(ii) H(β) ≤ 2(2d
2
+6)/δ;

(iii) |α− β| < H(β)−2d2−δ.

P r o o f. Let u ∈ Z with u ≥ 0. We denote by S(u) the set of all β ∈ Q
satisfying (i), (iii) and 2u ≤ H(β) < 2u+1.

First we estimate |S(u)|. Without loss of generality S(u) 6= ∅. The set
of algebraic numbers of bounded height is finite, hence S(u) is finite, say
S(u) = {β1, . . . , βµ(u)}. To make the notations less clumsy we write µ instead
of µ(u). We have

|βi − βj | ≤ 2 max{|βi − α|, |α− βj |}(5.7)

< 2 max{H(βi)−2d2−δ, H(βj)−2d2−δ}
≤ 2 · 2−2d2u−δu = 2−2d2u−δu+1

for all i, j ∈ {1, . . . , µ}. Let now i 6= j and put E = Q(βi, βj). Denote by
| · |w the valuation of E which is the restriction of the standard absolute
value of C on E. Using the product formula we get, in analogy to (5.4),

|βi − βj | = ‖βi − βj‖[E:Q]/[Ew:Q∞]
w ≥ (2H(βi)H(βj))−[E:Q]/[Ew:Q∞]

≥ (2 · 22(u+1))−[E:Q]/[Ew:Q∞] = 2−[E:Q](2u+3)/[Ew:Q∞].

By (i) we have [E : Q] ≤ d2 and therefore
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|βi − βj | ≥ 2−2d2u−3d2

for all distinct i, j ∈ {1, . . . , µ}.
Suppose µ > 16. Put F = 1

3 (
√
µ − 1) and r = 2−2d2u−3d2

. Then F > 1
and so we can apply Lemma 5.3 to the set S(u). Hence there exist i, j ∈
{1, . . . , µ} with

(5.8) |βi − βj | > 1
3 (
√
µ− 1)2−2d2u−3d2

> (
√
µ− 1)2−2d2u−3d2−2.

The inequalities (5.7) and (5.8) together give
√
µ < 2−δu+3d2+3 + 1. Con-

sidering our assumption µ > 16 we have in general

|S(u)| = µ(u) = µ ≤ max{16, 2−2δu+6d2+6 + 2−δu+3d2+4 + 1}(5.9)

≤ 2−δu+13d2
+ 16.

Note
[(2d

2
+6)/δ]∑
u=0

2−δu <
∞∑
u=0

2−δu = (1− 2−δ)−1 < 1 + 2/δ.

Therefore from (5.9) we get

[(2d
2
+6)/δ]∑
u=0

|S(u)| ≤
[(2d

2
+6)/δ]∑
u=0

(2−δu+13d2
+ 16)

≤ 213d2
[(2d

2
+6)/δ]∑
u=0

2−δu +
(

2d
2

+ 6
δ

+ 1
)
· 16

≤ 213d2
(

1 +
2
δ

)
+

16 · 2d2
+ 112
δ

<
215d2

δ

and this is the assertion.

6. Conclusion. The following lemma goes back to Mahler [11]. We state
it in the form of [14], Lemma 5.1, but we have used the estimate [5], (46)
instead of [14], (5.9).

Lemma 6.1. Let 1/2 ≤ γ < 1 and s ∈ N. Then there exists a subset S
of cardinality < (e/(1− γ))s−1 of {(Γ1, . . . , Γs) ∈ Rs≥0 : Γ1 + . . .+ Γs = γ}
with the following property : For every ξ = (ξ1, . . . , ξs) ∈ Rs having ξi ≥ 0
for each i (1 ≤ i ≤ s), there exists Γ ∈ S such that for each i (1 ≤ i ≤ s),
(6.1) ξi ≥ Γi(ξ1 + . . .+ ξs).

6.1. Proof of Theorem 2. Let β ∈ Q satisfy (1.8)–(1.10). For each v ∈ S
we define ξv(β) ≥ 0 through

(6.2) min{1, ‖αv − β‖v} = H(β)−ξv(β)(2d2+δ).
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Since

H(β)−(
∑
v∈S ξv(β))(2d2+δ) =

∏

v∈S
min{1, ‖αv − β‖v} < H(β)−(2d2+δ)

it follows immediately that

(6.3)
∑

v∈S
ξv(β) > 1.

Put γ = 1 − δ/(24d2). Lemma 6.1 says that there exists a subset S of
{(Γv)v∈S ⊆ Rs≥0 :

∑
v∈S Γv = γ} with

(6.4) |S| ≤
(

e

1− γ
)s−1

=
(

24ed2

δ

)s−1

<

(
66d2

δ

)s−1

and the following property: For each (ξv)v∈S ⊆ Rs≥0 there exists a tuple
Γ ∈ S with

(6.5) ξv ≥ Γv
(∑

w∈S
ξw

)
(v ∈ S).

Let (Γv(β))v∈S be such a tuple for (ξv(β))v∈S . We divide the elements β ∈ Q
satisfying (1.8)–(1.10) into classes as follows: β and β̃ are in the same class
if Γ (β) = Γ (β̃). By (6.4), there are at most

(6.6) (66d2/δ)s−1

such classes. We now fix one class, i.e. let Γ ∈ S be fixed and let B be
the set of all β ∈ Q satisfying (1.8)–(1.10) and Γ (β) = Γ . Put S̃ = {v ∈
S : Γv > 0} and s̃ = |S̃|. Observe that 1 ≤ s̃ ≤ s and

∑
v∈S̃ Γv = γ. Let

β ∈ B. If ξv(β) = 0 for some v ∈ S, we conclude from (6.5) and (6.3) that
Γv(β) = Γv = 0, and hence v 6∈ S̃. Therefore ξv(β) > 0 for all v ∈ S̃. Again
from (6.3) and (6.5) we get ξv(β) > Γv(β) = Γv (v ∈ S̃). By (6.2) this
implies

(6.7) ‖αv − β‖v < H(β)−Γv(2d2+δ) (v ∈ S̃).

Put

(6.8) m = [e14d13 log(6sf)/δ4] + 1.

Then m ≥ e14d13 log(6s̃f)/δ4 and we can apply Proposition 4.1: either

logH(β) ≤ 2m(60d4m3/δ)m log(16H)

or H(β) lies in a union of m− 1 intervals of the type

Hh ≤ H(β) ≤ H42d4m3/δ
h+1 (1 ≤ h ≤ m− 1).

In the latter case we count the using Lemma 5.1. In each one of the in-
tervals, the number of β ∈ Q satisfying (1.8)–(1.10) is bounded by 1 +
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log(42d4m3/δ)/log(1 + δ/(4d2)). By (6.8) and

(6.9) log
(

1 +
δ

4d2

)
>

δ

5d2

this is < 707d2

δ log d log(6sf)
δ . Therefore, the number of elements of β ∈ B with

logH(β) > 2m(60d4m3/δ)m log(16H)

is bounded by

(6.10) (m− 1)
707d2

δ
log

d log(6sf)
δ

<
e21d15 log(6sf)

δ5 log
d log(6sf)

δ
.

By Lemma 5.1 the number of elements β ∈ Q satisfying (1.9), (6.7) and

(6.11) max{H, 44d2/δ} ≤ H(β) ≤ (16H)2m(60d4m3/δ)m

is bounded by

(6.12) 1 +
log(2m(60d4m3/δ)m log(16H) log−1(max{H, 44d2/δ}))

log(1 + δ/(4d2))
.

Note that

log(16H) log−1 max{H, 44d2/δ} ≤ log(16H)
log max{162,H} ≤

1
2

+ 1 =
3
2
< 2.

This together with (6.9) and (6.8) implies that (6.12) is less than

(6.13) 1 +
5d2

δ
log
(

4m
(

60d4m3

δ

)m)

≤ 5d2

δ
log
((

dm

δ

)4m)

≤ 20e15d15 log(6sf)
δ5 log

e15d14 log(6sf)
δ5

<
e22d15 log(6sf)

δ5 log
d log(6sf)

δ
.

Therefore the number of elements β ∈ B satisfying (6.11) is bounded by
(6.13). The cardinality of B is bounded by the sum of (6.10) and (6.13). It
is less than

e23d15 log(6sf)
δ5 log

d log(6sf)
δ

.

Finally, we conclude from (6.6) that the number of β ∈ Q satisfying (1.8)–
(1.10) is less than
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(
66d2

δ

)s−1
e23d15 log(6sf)

δ5 log
d log(6sf)

δ

≤ e2366s−1s2d2s+13 log(6f)
δs+4 log

d log(6f)
δ

< e7s+19 · d
2s+13 log(6f)

δs+4 log
d log(6f)

δ
.

This is our assertion.

6.2. Proof of Theorem 1. We apply Theorem 2 with K = Q, F = Q(α),
H = H(α) and S = {∞}. Hence s = 1. In this situation the inequality (1.6)
is identical with (1.8). Therefore (1.6) has at most

(6.14) e26 · d
15 log(6f)

δ5 log
d log(6f)

δ
solutions in algebraic numbers β of degree ≤ d with

H(β) ≥ max{44d2/δ,H(α)}.
This proves (i). Since 44d2/δ ≤ 2(2d

2
+6)/δ, we can estimate the solutions with

H(β) ≤ 44d2/δ by Lemma 5.4: there are at most

(6.15) 215d2
/δ

such solutions. If max{44d2/δ,H(α)} = H(α) we have to count the solutions
β ∈ Q of (1.6), (1.7) and

2(2d
2
+6)/δ ≤ H(β) ≤ H(α).

By Lemma 5.1 the number of those solutions is bounded by

(6.16) 1 +
log(logH(α)/ log 2(2d

2
+6)/δ)

log(1 + δ/(4d2))
≤ log+ logH(α)

log(1 + δ/(4d2))
.

The estimates (6.15) and (6.16) show the claimed bound of (ii), and the
theorem is proved.
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