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1. Introduction and notation. In 1929 W. Tartakowsky [T] proved
a remarkable result which stated that all forms in a genus of positive def-
inite integral quadratic forms in five or more variables represent the same
sufficiently large numbers. Namely

Theorem 1.1. Let f(x) = f(x1, . . . , xm), m ≥ 5, be a positive definite
integral quadratic form. Let N be a natural number such that N is p-adically
represented by f(x) for all prime numbers p. Then there exists a constant
C such that if N ≥ C the equation f(x) = N is soluble in Z.

Tartakowsky’s work does not lead to any estimate for the size of C.
Effectiveness of this result was first addressed by G. L. Watson in 1960 [W].
Watson proved, using a combination of analytic and arithmetic methods,
that if N satisfies the conditions in Tartakowsky’s Theorem but f(x) = N
is not soluble in Z then N � |d|5/(m−4)+1/m if 5 ≤ m ≤ 9, and N � |d|
when m ≥ 10. Here d denotes the determinant det f .

In Watson’s work the implied constants were not explicitly given. In
fact, the question of estimating them was posed in Kitaoka’s book [Ki3]
(Problem 2, p. 254), and this seems not to have been addressed before. The
aim of this paper is to present an explicit estimate for the size of the constant
C in Tartakowsky’s Theorem (see Theorem 3.1 and Corollary 3.1), thereby
answering the case n = 1 of Kitaoka’s question. This is done by using purely
arithmetic arguments as opposed to Tartakowsky’s and Watson’s previous
work which rely on analytic results.
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Although the basic approach is to follow the arithmetic proof in [Kn] (see
also [HKK]), exploiting the particular case at hand of representing numbers
(instead of forms), it still requires substantial effort (for us) to actually bear
down the numerous details. For the local integral representations we use
O’Meara’s results in [OM1], [OM2]. Keeping careful tracks of the detailed
estimates occurring at various stages we produce the needed global estimate.
Once we have obtained this initial global estimate we go further on refining
some of the local arguments involved to improve them (see table (16) below).
These new improvements involve rather non-trivial and necessarily tedious
arguments. However, they allow us on the one hand to obtain a better value
for the exponent of the determinant in Watson’s work for m = 5, 6 and on
the other hand, for those forms whose determinants do not involve primes
with too large exponents, our improved results yield still better estimates.
As Kitaoka pointed out to us, our main result already can be applied to
his Theorem in [Ki2] (see also [Ki3], Problem 2 (C2), p. 254) to obtain
for n = 2 an exponent of 25 instead of the value 32.2 stated there. Our
refinement applied to the case m = 5 further improves this value to 21.4.

We took particular care in the proofs in these sections so that the results
remain valid over any dyadic unramified prime. It follows then that our main
theorem and the refinement arguments also remain valid for any totally
real algebraic number field whose absolute discriminant is an odd integer.
This is an added advantage of the present approach whereas the analytic
component of Watson’s does not as easily render this extension without
more measurable effort.

In general we follow the terminology and notations from [OM2]. It is
convenient to introduce the following notations. Since we are concerned with
positive definite spaces we always use p to refer to a finite prime. By 〈α〉
we mean either a rank one local or a global free lattice (depending on the
context) with a basis vector u such that Q(u) = α, and by [α] we mean a
corresponding local or global space. Similarly, if X is a subset of a lattice
then 〈X〉, resp. [X], denotes the sublattice, resp. subspace generated by X.
If α and β are two non-zero scalars, then α ∼= β means that 〈α〉 ∼= 〈β〉.

Let O be the ring of integers in an unramified dyadic local field F (i.e.,
the element 2 is a prime element of O), and let A be an ideal of O. Then
an A-modular O-lattice L is proper if its norm nL equals A; otherwise, it is
improper . For convenience, we shall also refer to L as ν-modular if the order
ordp A is ν. When ν = 0 it is called unimodular .

Recall from [OM2] that A(α, β) denotes the inner product matrix of a
free binary unimodular lattice J = Ox + Oy where Q(x) = α, Q(y) = β,
B(x, y) = 1. Denote by H the hyperbolic plane A(0, 0) and by A the
anisotropic 2O-maximal lattice A(2, 2%). If a lattice L has an inner prod-
uct matrix A, then the scaled lattice Lα has αA for its inner product ma-
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trix. A binary unimodular O-lattice is of one of three types: (i) A(1, 0) and
A(1, 4%) are even, (ii) H and A are odd , and (iii) A(ε, 2δ) is mixed .

2. Some lemmas. We give in this section some lemmas which are needed
for the proof of the main result. Unless otherwise stated, all lattices are
non-degenerate and are defined over Z and their scales are contained in Z.

Lemma 2.1. Let L be a positive definite lattice of rank l ≥ 3, and q
a prime such that Lq is isotropic. There is a positive integer r such that
L represents every lattice N which is representable by some member in the
spinor genus spn qrL. If l ≥ 4 then spn qrL may be replaced by gen qrL.

P r o o f. The first part is Lemma 1.2 of [HKK]. The second assertion is
because in the extra condition on the dimension of L, every integer repre-
sentable by the genus is automatically representable by every spinor genus.

Lemma 2.2. Let M be a positive definite lattice of rank m ≥ 4 and
determinant D. For each prime p, we have

Q(Mp) ⊇ p[ordpD/(m−3)]Zp if p 6= 2,

Q(Mp) ⊇ 2[ord2 D/(m−3)]+1Z2 if p = 2.

P r o o f. If p 6= 2 then Mp
∼= 〈ps1µ1〉 ⊥ . . . ⊥ 〈psmµm〉 where s1 ≤ . . . ≤

sm and µj ’s ∈ Z×p . By the theory of non-dyadic integral local representa-
tions (see [OM1]) we conclude that Q(〈ps1µ1〉 ⊥ . . . ⊥ 〈ps4µ4〉) contains
p[ordpD/(m−3)]Zp.

The case p = 2 is quite a bit more complicated and we leave it for
Section 5.

Lemma 2.3. Let K be a sublattice of L of index t on a space V of dimen-
sion greater than one. There is a class number relation h(K) ≤ λ(t)h(L),
where λ(t) is the number of sublattices of L of index t.

P r o o f. Let K = K1, . . . ,Kg be lattices from the distinct classes in the
genus of K. Then Kj = ΛjK for some Λj ∈ JV . Set Lj := ΛjL. Upon
replacing Λj by σΛj for a suitable σ ∈ PV = O+(V ), we may suppose that
Li ∼= Lj if and only if Li = Lj .

We observe that if [L : K] = t, then clearly [Lj : Kj ] = t for all j. On
the other hand, should Ki ⊆ Lj then still [Lj : Ki] = t. To see this, note
that

Ki ⊆ Lj ⊆ L#
j ⊆ K#

i .

We also have

Kj ⊆ Lj ⊆ L#
j ⊆ K#

j .
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It follows that

detKj = detLj · [Lj : Kj ][K
#
j : L#

j ] = detLj · t2
and

detKi = detLj · [Lj : Ki][K
#
i : L#

j ] = detLj · [Lj : Ki]2.

Since detKj = detKi, the claim follows, and hence also the assertion of the
lemma.

Lemma 2.4. Let M be an integral Z-lattice, N a sublattice and K = N⊥

in M . Then detK divides detM · detN .

P r o o f. This is well known. See Lemma 2.26 of [Ki1].

Lemma 2.5. Let p 6= 2 and Mp be a Zp-lattice of rank m ≥ 5 and
determinant D. Assume the scale sMp equals Zp. Then:

(i) if ordpD ≤ m− 2 then Q(Mp) = Zp;
(ii) if ordpD ≤ m − 4 and v is a primitive vector in Mp with αp :=

ordpQ(v) = 0, 1 then Q(〈v〉⊥) = Zp.

P r o o f. (i) If ordpD ≤ m − 3, then Mp contains a ternary unimodular
component so that Q(Mp) = Zp. If ordpD = m− 2, then Mp = Mp(0) ⊥ X
where Mp(0) denotes the first (unimodular) Jordan component of Mp of
rank m0 ≥ 2. The assertion is clear if m0 ≥ 3. Should m0 = 2 then X is a
pZp-modular lattice of rank m− 2 and Q(X) ⊇ pZ×p .

(ii) The assertion is clear if m0 = rank(Mp(0)) ≥ 5. So, assume that
ordpD = m − 4,m0 = 4 and rank(X) = m − 4. Set K(v) := 〈v〉⊥ in Mp.
For m ≥ 6, we have K(v) ⊇ (binary unimodular) ⊥ (binary pZp-modular)
and then Q(K(v)) = Zp.

For m = 5, the assertion is easy to see if the Witt index of Mp(0) is 2.
But, if Mp(0) ∼= A(0, 0) ⊥ 〈1,−∆〉 then X ∼= 〈pε〉 for some ε ∈ Z×p . Here ∆
is a non-square unit in the notation of [OM2]. Write v = u+ z, u ∈Mp(0),
z ∈ X. If u is a primitive vector then we may assume that v = u by a suitable
basis change and then by the hypothesis on Q(v), the conclusion is clear. If u
is imprimitive then z must be primitive and so αp = ordpQ(z) = 1. A change
of basis allows us to assume that v ∈ A(0, 0) and then K(v) ∼= 〈−Q(v)〉 ⊥
〈1,−∆〉 ⊥ 〈pε〉 and we have the desired conclusion.

Lemma 2.6. Let M2 = M2(0) ⊥ X, where M2(0) is an initial (unimodu-
lar) Jordan component of a 2-adic lattice M2. Assume that nM2(0) = 2Z2.
Then:

(i) if M2(0) ⊇ A and v ∈ M2 has ord2(Q(v)) = 1 then Q(M2) =
Q(〈v〉 ⊥ 〈v〉⊥);

(ii) if M2(0) = H and nX = 2Z2 then the same conclusion as in (i)
holds;
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(iii) if vj ∈ H (j = 1, 2) and ord2Q(vj) = j then Q(〈v1〉 ⊥ 〈v1〉⊥) ∪
Q(〈v2〉 ⊥ 〈v2〉⊥) = Q(H) = 2Z2.

P r o o f. (i) Select v ∈M2 such that B(v, v) = 1 and Z2v+Z2v ∼= A. This
is possible because the orthogonal group O(M2) acts transitively on the set
of vectors whose lengths have order 1. The assertion follows from the fact
that Q(A) = Q(〈v〉 ⊥ 〈v −Q(v)v〉).

(ii) This follows from the equivalence of H ⊥ 〈2ε〉 and A ⊥ 〈2ε∆〉, for
ε ∈ Z×2 and ∆ = detA by Theorem 93.29 of [OM2].

(iii) Let {ξ, η} be a hyperbolic pair representing H. Since ord2Q(vj) = j,
j = 1, 2, we see that vj is primitive in H, and 〈vj〉 ⊥ 〈vj〉⊥ is isometric
to 2jA(1, 0). Now, Q(〈v1〉 ⊥ 〈v1〉⊥) = 2Z×2 ∪ 8Z2 and Q(〈v2〉 ⊥ 〈v2〉⊥)
contains 4Z×2 , yielding the assertion.

3. The main result. Let

f(x1, . . . , xm) =
∑

1≤i≤j≤m
ai,jxiyj , ai,j ∈ Z,

be a positive definite primitive integral quadratic form; i.e., gcd(ai,j) = 1.
If f is classic (i.e., ai,j ∈ 2Z for i 6= j) the associated inner product matrix
is certainly a primitive integer matrix. If f is non-classic then the matrix
corresponding to 2f is primitive. Consider therefore a positive Z-lattice M
of rank m ≥ 5 which is primitive in the sense that its scale sM is Z. This
implies that at every prime p the initial component Mp(0) of each Jordan
decomposition of Mp is unimodular. Let D = detM . We fix a prime q not
dividing 2D and let T := {p | 2D : ordpD ≥ m− 3} ∪ {q}. From Lemma 2.2
we have

Q(Mp) ⊇ p[ordpD/(m−3)]Zp for p 6= 2,

Q(Mq) = Zq for p = q,

Q(M2) ⊇ 2[ord2 D/(m−3)]+1Z2 for p = 2.

For each p ∈ T \ {2, q} select a primitive vector v(p) ∈ Mp such that
Q(v(p)) ∈ Z×p . At q, choose v(q) ∈Mq to be one of the four vectors so that
ordq Q(v(q)) ≤ 1 and Q(v(q)) spans Z×q ∪ qZ×q mod Z×2

q . If nM2 = Z2 then
we may also select v(2) with Q(v(2)) ∈ Z×2 . Otherwise, the initial Jordan
component M2(0) of M2 is improper unimodular. There are two cases to
distinguish. First, whenever M2(0) ⊇ A, we select a vector v(2) ∈ M2 with
Q(v(2)) = 2. Lemma 2.6(i) shows that Q(〈v(2)〉 ⊥ 〈v(2)〉⊥) = Q(M2).
Lemma 2.6(ii) says this case also includes the set-up where M2(0) ∼= H and
n(M2(0)⊥) = 2Z2. On the other hand, when n(M2(0)⊥) ⊆ 4Z2 the isometry
class of M2(0) is uniquely determined by Theorem 93.29 of [OM2]. Then
there are two choices for the vector v(2) := vj(2) ∈ H (j = 1, 2) according
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to Lemma 2.6(iii). Hence, for p ∈ T we see that

(1) ord2Q(v(2)) =





0 if nM2 = Z2,
1 if M2(0) ⊇ A,
1, 2 if M2(0) = H, n(M2(0)⊥) ⊆ 4Z2.

Let p ∈ T . By the Chinese Remainder Theorem, select v ∈M such that

(2) v ≡





v(p) (mod pMp) if p 6= 2, q,
v(q) (mod q2Mq) if p = q,
v(2) (mod 2M2) if p = 2, M2(0) 6∼= H,
vj(2) (mod 2jM2) if p = 2, M2(0) ∼= H, n(M2(0)⊥) ⊆ 4Z2.

Note that ordpQ(v) = ordpQ(v(p)) for all p ∈ T .
Let M := Ze1 + . . . + Zem be expressed in a Minkowski reduced basis

(Chap. XII of [C], §1.3 of [Ki1]). Write v =
∑
biei, bi ∈ Z. The requirements

from (2) on v are such that we can choose v so that

(3) 0 ≤ bi < 2q2(RadD)

for each i, where RadD :=
∏
p|D, p∈T p. We have

Q(v) =
∑

i,j

B(ei, ej)bibj .

From reduction theory (Lemma 1.3.3 of [Ki1]), one sees that

(B(ei, ej)) ≤ m diag(Q(e1), . . . , Q(em)) ≤ mQ(em)Im.

Therefore,

Q(v) ≤ m2Q(em) max
i
b2i .

Since Q(em) ≤ Γ ′mD, where

(4) Γ ′m :=
(

2
π

)m{
Γ

(
2 +

m

2

)}2(5
4

)m−4

,

it follows that

(5) Q(v) ≤ m2Γ ′m22q4D(RadD)2.

Let K(v) = 〈v〉⊥ and define for this vector v ∈M the sublattice Ñ(v) :=
qr(v)K(v) ⊥ 〈v〉 where r(v) satisfies the conditions of Lemma 2.1. (Note that
at most eight vectors v ∈M are used! See also the remark at the end of this
section.) We claim that

Q(genM) =
⋃
v

Q(gen Ñ(v)).

To see this, let a ∈ Q(genM). If p 6∈ T then 0 = ordpD ≤ m − 4 and
qr(v)K(v)p = K(v)p and then from Lemma 2.5(ii) we have Q(K(v)p) = Zp.
If p ∈ T \ {2, q} then Q(Mp) = Q(Ñ(v)p) by the construction of v close to
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v(p). At p = q, any element from Zq belongs to the square-class of one of
the four values Q(v(q)) constructed above. At p = 2, the claim follows from
Lemma 2.6.

Next, we want to show that for each vector v so constructed, one has
Q(gen Ñ(v)) ⊆ Q(M) apart from finitely many exceptions.

By Lemma 2.4, we have ordp detK(v) ≤ ordpD + ordpQ(v) for all p.
Applying Lemma 2.2 to K(v) we have for p ∈ T the following:

(6)

Q(qr(v)K(v)p) ⊇ p[ordpD/(m−4)]Zp, p 6= 2, q,

Q(qr(v)K(v)q) = q2rZq, p = q,

Q(qr(v)K(v)2) ⊇ 2[(2+ord2 D)/(m−4)]+1Z2, p = 2.

For p 6∈ T , (qr(v)K(v))p = K(v)p contains at least a ternary unimodular
component so that Q(qr(v)K(v)p) = Zp.

Since Q(qr(v)K(v)p) contains an ideal according to Lemma 2.2, each
element of Q(Ñ(v)p) belongs to a finite number of sets of the form

Q(qr(v)K(v)p) +Q(v)c2p, 0 6= cp ∈ Zp.
For each p define hp to be the least integer such that phpZp ⊆ Q(qr(v)K(v)p).
It follows from Lemma 2.2 that

(7)





hp = 0 if p 6∈ T ,
hp ≤ [ordpD/(m− 4)] if p ∈ T \ {2, q},
hq = 2r if p = q,
h2 ≤ [(2 + ord2D)/(m− 4)] + 1 if p = 2.

Select x ∈ Z such that x ≡ cp (mod php), p ∈ T except when p = 2 and
nM2 = Z2 in which case we require that x ≡ c2 (mod 2h2+1). Then

(8) Q(v)x2 < Rm(r, q,D),

where

(9) Rm(r, q,D) := 24m2Γ ′mq
4r+4D(RadD)2

∏

p∈T\{q}
p2hp .

Here r is the maximum value of the r(v)’s.
Suppose next that A ∈ Q(genM). Then there exists a v such that A

belongs to Q(qr(v)K(v)p) + Q(v)c2p for some 0 6= cp ∈ Zp at each p ∈ T .
Suppose further that A > Rm(r, q,D). We have

(10) 0 < A−Q(v)x2 = A−Q(v)c2p +Q(v)(c2p − x2),

which belongs to Q(qrK(v)p) for p ∈ T \ {2, q} by the choice of x and
Hensel’s lemma.
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Consider p = 2. Suppose first that nM2 = Z2. Then ord2(Q(v(2))) = 0
and h2 ≤ [ord2D/(m − 4)]. If A − Q(v)c22 6∈ 2h2Z2 then from (9) and
c22−x2 = (c2−x)(c2−x+2x) ≡ 0 (mod 2h2+2) when x ≡ c2 (mod 2h2+1), we
see that A−Q(v)x2 is represented by (qr(v)K(v))2. A similar argument goes
through when nM2 ⊆ 2Z2, needing only that x ∼= c2 (mod 2h2). Therefore,
we see that A−Q(v)x2 is always represented by the genus gen(qr(v)K(v)),
and hence by spn(qr(v)K(v)) since m ≥ 5. It follows that K(v) represents
A − Q(v)x2 by Lemma 2.1, and A is represented by K(v) ⊥ 〈v〉 ⊆ M as
long as A > Rm(r, q,D).

Using the notations of hp, r, q, Γ ′m, Rm(r, q,D) explained in this section,
our main result is the following:

Theorem 3.1. Let M be a positive definite primitive integral quadratic
Z-lattice of rank m ≥ 5 and determinant D, and A a positive integer rep-
resentable by Mp for every prime p. There is a constant Rm(r, q,D) from
(9) in the notation of this section such that if A > Rm(r, q,D) then A is
represented by M .

Remarks. (i) Consider the quantity

P (m,D) := (RadD)2
∏

q 6=p∈T
p2hp

appearing in the definition of Rm(r, q,D). From (7) and the fact that
ordpD ≥ m− 3 we have

(11) P (m,D) ≤ 2(2m−4)/(m−4)D2/(m−4)+2/(m−3).

(ii) We may take r(v) to be the number of steps in the q-neighborhood
constructions of all the classes in the spinor genus of K(v) from a single ver-
tex. While r(v) ≤ hs(K(v))− 1, where hs(K(v)) is the number of classes in
the spn(K(v)), in practice r(v) is often significantly smaller than hs(K(v)).
Since the rank of K(v) ≥ 4, any number which is representable by gen(K(v))
is representable by every spinor genus. This means that we can use hs(K(v))
to be h(K(v))/g, where g is the number of (proper) spinor genera within
the genus of K(v), a number which is readily computable in practice. Us-
ing the estimate of Q(v) from (5) the index t = [M : 〈v〉 ⊥ K(v)] can be
estimated, and then Lemma 2.3 provides an estimate for r(v), hence for r
in terms of factors only from M . It is unnecessary to give such an explicit
r since, as mentioned above, the determination of r in practice can be com-
puted either directly from the graph-neighbor method or from the upper
bound h(K(v))/g cited. See the example given at the end of Section 4. In
fact, we may take r = 1 if q is sufficiently large (see [BH]). But, this latter
method, although still effective in principle, involves estimates from density
theorems of class field theory which may be regarded as not purely algebraic
or arithmetic, in addition to being not very explicit.
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(iii) When M2(0) ∼= H and n(M2(0)⊥) ⊆ 4Z2, instead of using the two
vectors vj(2), j = 1, 2, one may select a single vector v(2) ∈ M2(0)⊥ such
that Q(v(2))Z2 = n(M2(0)⊥). (Of course, ord2(Q(v(2))) can then exceed 2.)
In this situation one needs just four vectors v instead of eight.

(iv) When ordpD ≤ m− 4 for all p | 2D, i.e. T = {q}, then the proof of
Theorem 3.1 shows that the constant Rm(r, q,D) = m2Γ ′mq

4r+4D(RadD)2

may be used.

Using the previous remarks we may state our main theorem in

Corollary 3.1. Let M be a positive definite primitive integral quadratic
Z-lattice of rank m ≥ 5 and determinant D, and A a positive integer repre-
sentable by Mp for every prime p. Let r, q and Γ ′m be as stated in the previous
theorem. Then A is represented by M provided that

A > 4(3m−10)/(m−4)m2Γ ′mq
4r+4D1+2/(m−4)+2/(m−3).

Finally we note here that for m = 5 our exponent of the determinant
in the constant Rm(r, q,D) yields D4 while Watson gives D5.2. For m = 6
both Watson’s and ours give the value D2.67. For larger m, Watson’s values
are better. We can make some refinements which improve these values. See
Section 4. A main point here is that our arithmetic estimate for the constant
Rm(r, q,D) can be given explicitly while the implied constant in [W] does
not. We shall look at an example in the next section.

4. Refining estimates on hp and an example. In this section even
though references are to the rings Zp all the local arguments at primes p
apply to any local field in which p is either a unit or p = 2 is an unramified
dyadic prime. In other words, we do not use at all the property that the
residue class field at 2 has just two elements, a property which could have
simplified some of the proofs below. This is aimed at making the results of
this paper applicable to more general number fields (see Appendix). The
refined estimates will be useful, especially at the smaller dimensions where
our exponents of the determinants of the quadratic forms will be sharper
than those of Watson’s. Furthermore, for those forms whose determinants do
not involve primes with too large an exponent, our improved estimates yield
still better estimates. As mentioned in the Introduction, Kitaoka pointed
out to us that these improvements, particularly for dimension 5, give the
better value of 21.4 instead of 32.2 in his Theorem in [Ki2]. We also note that
our theorem by itself improves this value only down to 25. The refinements
make it necessary to get into rather technical and non-trivial structure and
classification results for lattices over local rings.

Recall that hp is defined as the smallest integer such that Q(qr(v)K(v)p)
contains the ideal phpZp, and (7) provides an estimate. Some further im-
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provements can be made. We still write Mp = Mp(0) ⊥ X where Mp(0) is
the initial component of a Jordan decomposition of Mp with rank m0.

(I) Consider first the case when ordpD = m− 3. If p 6= 2, q, then by the
choice of v(p) and the construction of v in (2) one sees that Q(〈v〉⊥p ) = Zp
so that we may use hp = 0 instead of [(m− 3)/(m− 4)] from (7).

Let p = 2. The condition ord2D = m − 3 assures that the initial rank
m0 ≥ 3. If m0 = 3, then Q(v(2)) ∈ Z×2 and X is a 2-modular component of
rank m− 3. Local theory tells us that M2(0) ∼= B ⊥ 〈ε〉 where B ∼= H or A.
We select v(2) ∈ M2(0) with Q(v(2)) = ε. By choosing the vector v ∈ M
with v ≡ v(2) (mod 2M2) from (2), one sees that Q(v(2)) ∼= Q(v) and
〈v〉⊥ ∼= 〈v(2)〉⊥ so that Q(qr(v)K(v)2) = 2Z2. Hence, h2 = 1. In (8) we
may select x ≡ c2 (mod 2) instead of (mod 4). When m0 = 4 we may
decompose M2 such that M2(0) is isotropic. If M2(0) is proper then we
select v(2) ∈ M2(0) so that Q(〈v(2)〉⊥) = Z2 and hence h2 = 0. Otherwise,
h2 = 1. In either case, any choice of x suffices in (8). When m0 ≥ 5 the same
conclusions as in the m0 = 4 case prevail. Summarizing, for ordpD = m− 3
we have:

(12)

hp = 0 for any x, p 6= 2,

h2 ≤ 1 for x ≡ c2 (mod 2), m0 = 3,

h2 = 0 for any x, m0 ≥ 4, nM2 = Z2,

h2 = 1 for any x, m0 ≥ 4, nM2 = 2Z2.

(II) Now consider ordpD = m − 2. Let p 6= 2. Clearly when m0 ≥ 4 we
have hp = 0. The same for m0 = 3 since we can select our v(p) ∈Mp so that
its orthogonal complement contains H. For m0 = 2, X must be a p-modular
component of rank m − 2 ≥ 3. We select v(p) ∈ X with Q(v(p)) ∈ pZ×p .
The choice of v in (2) is still valid since such a choice would still have 〈v〉
splitting Mp. It follows that Q(K(v)p) = Zp. Hence, hp = 0 and any choice
of x would do in (8).

At p = 2, we have m0 ≥ 2. Suppose first m0 = 2 and M2(0) is im-
proper. Then select a vector v(2) ∈ M2(0) with ord2Q(v(2)) = 1. This
means that 〈v(2)〉⊥ is a proper 2-modular lattice of rank m − 1 ≥ 4 and
therefore, Q(M2) = Q(〈v(2)〉⊥) = 2Z2 and h2 = 1. If M2(0) is proper
then Q(v(2)) ∈ Z×2 . Local theory shows that 〈v(2)〉⊥ contains an isotropic
(m − 2)-dimensional 2-modular component which may replace X. Hence,
Q(X) = 2Z2 (resp. 4Z2) if X is proper (resp. improper), implying that
h2 = 1 (resp. 2). However, even if X is improper we may simply take x ≡ c2
(mod 2) instead of (mod 4) in (8). This is because the right hand side of (10)
is represented by qr(v)K(v)2 since Q(v)(c22 − x2) ∈ 4Z2.

Consider next m0 = 3. Since the rank of X is m − 3 and ord2D =
m − 2, by the properties of a Jordan decomposition X must contain a
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2-modular component, say, M2(1). If M2(1) is proper (e.g., when its rank,
say, m1 is odd) then M2(0) can be assumed to be isotropic by a suitable
basis change and then v(2) may be selected so that its orthogonal com-
plement in M2(0) is H, which gives h2 = 1. On the other hand, if M2(1)
is improper then m1 is even, and v(2) may be chosen so that 〈v(2)〉⊥ ∼=
(binary improper unimodular)⊥ (binary improper 2-modular)⊥ . . . Hence,
h2 = 1.

Finally, when m0 ≥ 4 it is easy to see that h2 = 1 always suffices.
Summarizing, for ordpD = m− 2 we have:

(13)

hp = 0 for any x, p 6= 2,

h2 ≤ 2 for x ≡ c2 (mod 2), M2(0) binary proper,

h2 = 1 for any x, M2(0) binary improper,

h2 = 1 for x ≡ c2 (mod 2), m0 ≥ 3.

(III) Consider ordpD = m − 1. Let p 6= 2. If m0 ≥ 4, then clearly
hp = 0. If m0 = 3, one can select the vector v(p) so that its orthogonal
complement contains a copy of H, yielding hp = 0. If m0 = 2, then K(v)p
contains a sublattice which represents pZp, giving hp = 1. If m0 = 1, then
X is p-modular and represents pZp, giving hp = 1. So, hp = 1 always
suffices.

Let p = 2. If m0 = 1, then 〈v(2)〉⊥ = X is 2-modular of rank m1 ≥ 4 so
that h2 ≤ 2. Here the choice of x ≡ c2 (mod 2) suffices.

If m0 = 2 then m1 = m − 3 ≥ 2 and m2 = 1. Suppose M2(0) is
proper; then 〈v(2)〉⊥ contains a sublattice of the kind (binary 2-modular)
⊥ (a proper binary 4-modular) which represents at least 4Z2. It follows
that h2 ≤ 2. Otherwise, ord2Q(v(2)) = 1 and then 〈v〉⊥ contains at least
a proper ternary isotropic 2-modular component so that Q(〈v〉⊥) ⊇ 2Z2.
Hence, h2 = 1.

Let m0 = 3. Then M2(0) is either isometric to 〈ε〉 ⊥ A when anisotropic
or to 〈ε〉 ⊥ H when isotropic. If it is isotropic then h2 = 1 by selecting v(2)
with Q(v(2)) = ε. Consider the anisotropic case. Whenever m ≥ 6 we have
m1 = m − 5 and m2 = 2. Should m = 6, then nX = 2Z2 and a suitable
basis change will make M2(0) isotropic. When m > 6, Q(〈v(2)〉⊥) = 2Z2

and h2 = 1.
The case of m = 5 has the worst possible scenario. Here m1 = 0 and

m2 = 2. So, h2 = 3 occurs when X is improper 4-modular; otherwise, h2 = 2.
We may take x ≡ c2 (mod 4) in all these subcases.

For m0 ≥ 4 we can decompose M2 so that M2(0) is isotropic. Selecting
v(2) ∈M2(0) so that its orthogonal complement contains a copy of H implies
that h2 ≤ 1. Summarizing, for ord2D = m− 1 we have:
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(14)

hp ≤ 1 for x ≡ cp (mod p), p 6= 2,

h2 = 3 for x ≡ c2 (mod 4), m = 5, m0 = 3, ord2D = 4,

M2(0)⊥ improper,

h2 ≤ 2 for x ≡ c2 (mod 4), m0 = 2, M2(0) proper,

h2 = 1 for x ≡ c2 (mod 2), m0 = 2, M2(0) improper,

h2 ≤ 1 for x ≡ c2 (mod 4), m0 ≥ 3 otherwise.

Using the values of hp from (12)–(14) we can refine the estimates for

Pm(r,D) ≤
∏

q 6=p∈T
p2hp+2.

The exponent 2 comes from (RadD)2 in (5) whereas the exponent 2hp
comes from the selection of the scalar x in (8). Let Dp be the p-part of D
and Pm(r,D)p be the p-part of Pm(r,D).

Suppose ordpD = m−3. By (12), any x is permissible but for one excep-
tional case. This means that Pm(r,D)p is just (RadDp)2 = p2 but for one
exceptional case where an extra factor of 22 is needed. For ordpD = m−2 we
see from (13) that a factor of 24 is needed. Hence, Pm(r,D)p ≤ 24(RadDp)2.
When ordpD = m − 1 formulas from (14) show that Pm(r,D)p ≤ 24p4 al-
ways suffices. [Actually, the importance of x supercedes those of hp by virtue
of (8) so that a further small improvement can be made using the estimates
of x (instead of those of hp) from (12)–(14).] Finally, for ordpD ≥ m we use
the original estimates (7). Summarizing, we have:

(15) Pm(r,D)p ≤





22D
2/(m−3)
p when ordpD = m− 3,

24D
2/(m−2)
p when ordpD = m− 2,

24D
4/(m−1)
p when ordpD = m− 1,

24/(m−4)D
2/(m−4)+2/m
p when ordpD ≥ m.

The powers of 2 only enter when dealing with Pm(r,D)2. These refinements
improve the estimates for the exponents of D in the constant Rm(r, q,D),
especially, when ordpD ≤ m− 1 for p |D; namely, we have the table:

(16)

m any D ordpD ≤ m− 3 ordpD ≤ m− 2 ordpD ≤ m− 1 Watson
5 3.4 2 2 2 5.2
6 2.34 1.67 1.67 1.8 2.67
7 1.953 1.5 1.5 1.67 1.81
8 1.75 1.4 1.4 1.572 1.375
9 1.623 1.34 1.34 1.5 1.112

Since the local analysis is treated in a manner which remains valid for
the ring of integers of any local field in which the element 2 is either a unit
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or a prime, the general number field case (whose absolute discriminant is an
odd integer) can be treated similarly.

Let us look at an explicit example. This example is selected merely to
illustrate that the method discussed here is effective and that our refinements
do imply a substantial improvement in the exponent of the determinant. It
is a “simplest example” in the following sense. From the quaternary tables
([N], p. 23) pick the smallest genus (D = 24) with class number exceeding 1.
This gives the forms

f = X2 + Y 2 + Z2 + 2W 2 +XY,

g = X2 + Y 2 + Z2 + 3W 2 +XY +XZ.

Let the integral lattice associated with 2f be F and set M := F ⊥ 〈1〉.
Write M = 〈e1, e2〉 ⊥ 〈e3〉 ⊥ 〈e4〉 ⊥ 〈e5〉 where Q(e1) = Q(e2) = Q(e3) = 2,
Q(e4) = 4, Q(e5) = 1, B(e1, e2) = 1. Let T = {2, 5}. Here q = 5. Define the
following vectors of M : v1 := e5, v2 := e3, v3 := e4+e5, v4 := e3+e4+2e5. If
K(vi) := 〈vi〉⊥ and Ñ(vi) := 5r(vi)K(vi) ⊥ 〈vi〉, one easily sees the following
holds:

Q(genM) =
⋃
vi

Q(gen Ñ(vi)),

(17)

K(v1) = 〈e1, e2〉 ⊥ 〈e3〉 ⊥ 〈e4〉, det(K(v1)) = 24, h = 2,

K(v2) = 〈e1, e2〉 ⊥ 〈e4〉 ⊥ 〈e5〉, det(K(v2)) = 12, h = 1,

K(v3) = 〈e1, e2〉 ⊥ 〈e3〉 ⊥ 〈e4 − e5〉, det(K(v3)) = 120, h = 3,

K(v4) = 〈e1, e2〉 ⊥ 〈e3 − e5, e4 − 2e5〉, det(K(v4)) = 60, h = 4.

The last column in (17) gives the class number of the lattice. The first two
values can be read off directly from [N], and so is the third value after scaling
the lattice by 1/2. The fourth one is out of the range of these tables; we owe
it to Gordon Nipp who communicated to us its value and the class number
h(M) = 4. (The latter value does not play a direct role here.) Hence, we
have r := maxvi r(vi) = maxvi h(K(vi))− 1 = 3.

According to (9) and (15) we have

R5(3, 5, 24) = 24 · 52 · Γ ′5 · 516 · 24 · P5(5, 24)2 = 211 · 3 · 518 · Γ ′5,
and Γ ′5 ≈ 17.6847. So, R5(3, 5, 24) ≈ 7.33 · 1018.

On the other hand, from the proof of the main theorem, one sees that
the constant Rm(r, q,D) in (8) is built from two factors: sizes of Q(v) and
of the scalar x. The estimate in (5) is a general estimate which does not
exploit the particular nature of the approximating vector v. In practice, this
feature can be improved. For instance, in the present example, Q(vi) ≤ 10
for 1 ≤ i ≤ 4. As for x, we have h2 = 1 from (13). Since h5 = 2r = 6, we
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have x ≤ 2 · 56 and so in (8) we have Q(v)x2 ≤ 10 · 22 · 512 = 9.7656 · 109

which is clearly a more preferable bound.

5. Completion of proof of Lemma 2.2. The purpose here is to give
a proof for the second part of Lemma 2.2 in a slightly more general setting.
Throughout below we shall assume O is the ring of integers in a local field
F in which 2 is a prime element. We need the following extra notation.

Let M be an integral O-lattice (i.e., sM ⊆ O) and rankM = m ≥ 5.
Suppose M = M1 ⊥ . . . ⊥Mt is a Jordan splitting of M with mj := rankMj

and σj := ord2(sMj). We write M ∼ (s1, s2, . . . , sm) where s1 = s2 = . . . =
sm1 = σ1, . . . , smt−1+1 = . . . = smt−1+mt = sm = σt. If a Jordan component
Mj is proper then we decompose Mj into an orthogonal basis. Otherwise,
Mj is an orthogonal sum of binary improper σj-modular sublattices. Let
M̃ be either a 4-dimensional or a 5-dimensional sublattice of M appearing
in the initial components of a Jordan decomposition of M . Since 2 is a
prime the norm ideals of a Jordan splitting of M are invariants. While M̃
depends on the choice of the Jordan decomposition, its rank is uniquely
determined. Note that rank M̃ = 5 occurs only when (s4, s5) is an improper
binary modular lattice. Hence, M̃ is either ∼ (s1, . . . , s4) or ∼ (s1, . . . , s5).
If rank M̃ = 5 then the last Jordan component of M̃ is improper and is
either (s4, s5) or (s2, s3, s4, s5).

We now assume that M is an integral O-lattice with sM = O. Then M̃
is either a 4- or 5-dimensional sublattice of M . Here σ1 = 0.

Suppose first that rank M̃ = 5. Since

s4 ≤
[
s4 + . . .+ sm

m− 3

]
≤
[

ord2D

m− 3

]
,

it suffices to prove that Q(M̃) ⊇ 2s4+1O. Now (s4, s5) is an improper binary
modular component which is either 2αH or 2αA where α = s4. In the former
case, we have Q((s4, s5)) ⊇ 2α+1O. If s2 = . . . = s5 then (s2, s3, s4, s5)
∼ 2s2 · (H ⊥ . . .). Therefore, we consider the case where s3 < s4 and (s4, s5)
∼= 2s4A.

Let L :∼ (s1, s2, s3). If L represents 2s4+1ε for some ε ∈ O× then a
suitable basis change for M̃ will convert (s4, s5) into 2s4H. We have three
cases.

(1) Suppose s1 < s2 < s3. If s1 ≡ s2 ≡ s3 (mod 2) then (s1, s2, s3) con-
tains a 3-dimensional 2s3 -modular lattice which surely represents an element
from 2s4+1O×. If exactly two such si have the same order parity then some
sj has the same order parity as s4 + 1 in which case (sj , s4, s5) ⊃ 2s4H.

(2) Suppose s1 < s2 = s3, s1 6≡ s4 +1 (mod 2) and s2 ≡ s4 +1 (mod 2).
If (s2, s3) is proper then it represents an element from 2s4+1O×. If on
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the other hand (s2, s3) ≈ 2s2A then (s2, s3, s4, s5) ⊇ 2s4−1A ⊥ 2s4A. But
Q(2s4−1A ⊥ 2s4A) = 2s4O.

(3) Finally, the case of s1 = s2 < s3, s3 6≡ s4 + 1 (mod 2) and s1 = s2 ≡
s4 + 1 (mod 2) goes through as case (2).

Consider next the case of rank M̃ = 4. We separate into two subcases
depending on M̃ being (I) diagonalizable or (II) non-diagonalizable. We shall
show that Q(M̃) contains 2s4O in subcase (I) and that it contains 2s4+1O
in subcase (II), which is sufficient for our purpose.

Consider now (I). If M̃ is unimodular, then s4 = σ1 = 0. An exami-
nation of Table II of [OM1] shows that M̃ represents 2O = 2s4+1O. If M̃
contains a 3-dimensional Jordan component, then either M̃ ∼ (0, 0, 0, s4) or
∼ (0, σ2, σ2, σ2). In the former case, M̃ contains a quaternary 2s4-modular
sublattice when s4 is even, and it contains a ternary isotropic 2s4−1-modular
sublattice by a suitable change of basis. In either situation, the assertion of
(I) holds. Next, in the latter case, σ2 = s4. Here M̃ contains a quaternary
2s4-modular sublattice when s4 is even, and it contains (after a suitable basis
change) a ternary isotropic 2s4-modular sublattice when s4 is odd, and again
we see that the assertion of (I) holds. A similar argument shows the same
when at least three of the si’s (i = 1, 2, 3, 4) have the same order parity.

Therefore, without loss of generality, we may assume that M̃ contains
a full sublattice J ∼= 2β−1 · 〈ε1, ε2〉 ⊥ 2β · 〈ε3, ε4〉. If J is anisotropic then
Q(J) = 2β−1O ⊇ 2s4−1O. So, we take J to be isotropic and consider the
various possibilities of 〈ε3, ε4〉.

(a) First, let 〈ε3, ε4〉 ∼= A(1, 0). One sees that Q(J) = 2β−1O ⊇ 2s4−1O
when 〈ε1, ε2〉 is not of the mixed type. Otherwise, J contains a ternary
proper isotropic 2βO ⊇ ss4O.

(b) Let 〈ε3, ε4〉 = A(1, 4%). The same conclusion as (a) prevails.
(c) Let 〈ε3, ε4〉 be mixed, say, isometric to A(ζ, 2η). The following claim

can be shown by using [OM1]:

Claim. Let N be isometric to either A(1, 0) ⊥ 2 ·A(ε, 2δ) or A(1, 4%) ⊥
2 ·A(ε, 2δ). Then Q(N) = O.

Returning to (c), in view of the claim we now need only consider the
subcase where 〈ε1, ε2〉 is also of the mixed type. So, J ∼= 2β−1A(γ, 2δ) ⊥
2βA(ζ, 2η), which contains a proper quaternary 2β-modular sublattice.
Hence, Q(J) ⊇ 2βO ⊇ 2s4O. This completes the diagonal case of (I).

Consider the case (II) of a non-diagonalizable M̃ . In view of what was
proved above, we may restrict ourselves to M̃ ∼= 2α1A ⊥ 2α2〈µ2〉 ⊥ 2α3〈µ3〉,
where max{α1, α2, α3} = s4.
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Suppose that α2 ≡ α3 (mod 2) and, say, α2 ≤ α3. Then M̃ ⊇ 2α1A ⊥
2α3〈µ2, µ3〉. If α1 ≡ α3 (mod 2) then M̃ contains 2s4(A ⊥ 〈µ2, µ3〉), which
is a proper 2s4 -modular lattice. Therefore, by part (I) it represents all of
2s4O.

Now, let α1 6≡ α3 (mod 2). One sees that if α1 > α3 then α1 = s4 and
M̃ ⊇ 2s4(A ⊥ 2〈µ2, µ3〉) ∼= 2s4(H ⊥ . . .). And if α1 < α3, then α3 = s4

and M̃ ⊇ 2s4−1(A ⊥ 2〈µ2, µ3〉) ∼= 2s4−1(H ⊥ . . .). In any case, assertion (II)
holds.

Finally, consider the case where α2 6≡ α3. We can assume that α2 ≡ α1

(mod 2). Then M̃ ⊇ 2α(A ⊥ 〈µ2〉) ⊥ 2α3〈µ3〉 where α = max{α1, α2}.
If α > α3, then M̃ contains 2α−1(〈µ3〉 ⊥ 2(A ⊥ 〈µ2〉)) ∼= 2α−1(〈µ′3〉 ⊥
2(H ⊥ 〈µ2〉)), yielding Q(M̃) ⊇ 2α+1O = 2s4+1O. A similar argument goes
through for α < α3. This proves assertion (II).

Summarizing, we have proven the following:

Proposition 5.1. Let F be a local field in which 2 is a prime element , O
its ring of integers, and M an O-lattice of rank m ≥ 4. If M ∼ (s1, . . . , sm)
then Q(M) contains 2s4+1O. Furthermore, if M̃ is a quaternary diagonal-
izable sublattice, then Q(M) ⊇ 2s4O.

6. Appendix: The number field case. In order to study the number
field version of the main result in Section 3, we first make some observa-
tions. With the obvious changes, Lemmas 2.1 and 2.3 follow immediately.
Lemma 2.2 for non-dyadic local fields goes through with the same proof;
the unramified dyadic case follows from Proposition 5.1. Lemma 2.4 for
number fields F holds by replacing det with NF/Q vol. Lemmas 2.5 and 2.6
remain valid for non-dyadic and unramified dyadic local fields respectively.
When passing from the classical case to number fields, we need to replace
Minkowski reduction with Humbert reduction. Also, we make use of the fact
that any integral lattice defined over a number field is sandwiched between
two free lattices with indices bounded by constants depending only on the
field.

Throughout this section F will be a totally real number field in which 2
does not ramify, [F : Q] = l, O the ring of integers in F , and dF the absolute
discriminant of F . Let Σ := {σi}li=1 be the set of all real embeddings of F
into R, {εi}l−1

i=1 a system of fundamental units of F , and Ω the set of all
integral bases ω = {ωi} of F . We define

(18) % :=
l−1∏

i=1

max
σ∈Σ
|σ(ε2

i )|

and
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(19) β := min
ω∈Ω

max
1≤i≤l
σ∈Σ

|σ(ωi)|.

Let c1, c3 be two of the reduction constants defined in [Hu], p. 53. We have
the following number field version:

Theorem 6.1. Let M be a primitive positive definite integral O-lattice
of rank m ≥ 5 and A ∈ O a totally positive integer representable by Mp at
all p. There is a constant Nm(r, q, volM,F ) from (25) in the notation of this
section such that if NF/Q(A) > %lNm(r, q, volM,F ) then M represents A.

P r o o f. The proof is similar to the classical case. We make the following
adaptations.

The primes p, q, 2 are replaced by p, q, p2 where p2 is a generic (dyadic)
prime above 2. Next, T = {p : p | 2 volM, ordp(volM) ≥ m − 3} ∪ {q}.
The constructions of the local vectors v(p) and v(p2) are as before and in
formulas (1), (2) we only need to substitute Z2 by the corresponding local
dyadic rings Op2 .

Let L ⊆ M be a free lattice with [M : L] = t ≤ λF , where λF is
a constant depending only on the field F (one may take λF = d

1/2
F l!/ll).

Suppose {ei}mi=1 is a Humbert reduced basis for the lattice L. Then tv =∑m
i=1 biei with bi ∈ O. By classical reduction theory, we have, for each

σ ∈ Σ,

Q(tv)σ < (bσj )′mdiag(Q(e1), . . . , Q(em))σ(bσj )

and also

diag(Q(e1), . . . , Q(em))σ ≤ c1Q(em)σIm,

where c1 (depending only on F ) is one of the Humbert reduction constants.
Formula (3) is replaced by

(20) Q(tv)σ < m2c1Q(em)σ(max
j
bσj )2.

Now, bj is chosen modulo 2q2∏
p| volM p. Since {∑ aiωi : ai ∈ Z, 0≤ ai < p}

contains a full set of representatives for O/∏p|p p, by the definition of β in
(19) we have

(21) 0 ≤ (bσj )2 < 22β2q4
∏

p∩Z=(p)
p| volM

p2.

From Humbert reduction there is a constant c3 depending only on the
base field F such that

(22) NF/Q(Q(em)) ≤ cl3NF/Q(detL) ≤ cl3t2NF/Q(volM).
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Since we may take t = [λF ], putting γ := (22c1c3β
2m2[d1/2

F l!/ll]2(1−l)/l)l,
inequality (5) becomes

(23) NF/Q(Q(v)) ≤ γq4lNF/Q(volM)
∏

p∩Z=(p)
q 6=p∈T

p2l.

The discussions leading to (6) and (7) remain valid needing only to be
replaced by their natural number-theoretic assertions; in particular, (6) and
(7) have their p, q, p2 analogs.

Let

hp := max
p|p

hp = max
p|p

[
ordp(volM)

m− 4

]
.

We select the integer x ∈ O so that x ≡ cp (mod php), p ∈ T , p | p, and
x ≡ cp2 (mod 2h2+1) in the exceptional cases. If we let T0 be the set of
primes of Q lying below T , then in place of (8) and (9) we have

(24) NF/Q(Q(v)x2) < Nm(r, q, volM,F )

where

(25) Nm(r, q, volM,F ) := γq4l+4rNF/Q(volM)
∏

p∈T0\q
p2l+2hp .

Again r is the maximal value of the r(v)’s.

If NF/Q(A) > %lNm(r, q, volM,F ) > %lNF/Q(Q(v)x2) then by Proposi-
tion 3.4 of [BI] there exists a unit ε ∈ O× such that (ε2A)σ > (Q(v)x2)σ

for all σ ∈ Σ, i.e. ε2A −Q(v)x2 ∈ O is a totally positive integer. Then the
discussion from (10) to the end of the proof of Theorem 3.1 shows that ε2A,
and hence also A itself, is represented by K(v) ⊥ 〈v〉 ⊆M .
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