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Strong arithmetic properties of the integral solutions
of X3 +DY 3 +D2Z3 − 3DXY Z = 1,

where D = M3 ± 1, M ∈ Z∗

by

Christian Ballot (Caen)

0. Introduction. Lucas sequences have many number-theoretic appli-
cations. Not surprisingly, several generalizations have been made and exam-
ined. It is the purpose of this paper to show that under certain conditions
two, a priori unrelated, generalizations of Lucas sequences merge into one.
When this occurs the generalized sequences we obtain truly have very rich
arithmetic properties.

The first of these generalizations, although encountered by earlier au-
thors, was studied in detail by H. Williams in his doctoral thesis [Wi1]. This
generalization is natural in several respects. As D. H. Lehmer [Le1] once
noted Lucas sequences Vn, Un are the integral solutions, up to constants,
of the Fermat–Pell equation X2 − DY 2 = 1. The Williams sequences, as
we shall name them here, Wn, Vn, Un are, up to constants, the integral
solutions of the cubic norm equation X3 + DY 3 + D2Z3 − 3DXY Z = 1
that we will call the Mathews equation [Ma]. These sequences satisfy many
Lucas-like identities [Wi1], [Wi2]. Also they were auxiliary tools in primality
tests for certain types of numbers (cf. [Wi1], Ch. 5, or [Wi2], pp. 49–50).

The second generalization of interest here was examined by the author in
[Ba1]. This generalization is intricately linked to properties of prime divisors
in Lucas sequences (we say that a prime p divides a sequence of integers if
it divides a number in the sequence). These are group, rank and density
properties.

Indeed, Lucas sequences are torsion elements of a group structure, rel-
evant to divisibility by primes (see Laxton’s paper [Lax]), of which Vn, Un
form a cyclic subgroup of order 2. This group is infinite, of infinite rank,
but finite torsion. Secondly, there is coincidence between the prime divi-
sors p of the Lucas Vn-sequence and the primes of even rank r = r(p).
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Here, r is the first positive term number n for which p |Un. Thirdly, Hasse’s
method, an algebraic method that can be used to compute exactly the
Dirichlet density of the set of prime divisors of certain sequences, applies
successfully to the Lucas Vn-sequences. But sequences for which we know
how to apply the method are few and exceptional. Consequently, such se-
quences have aroused interest, particularly the Lucas Vn-sequences, which
are among the exceptional ones (see [Ha], [Lag1], [Ba1], Chapter 3, [Mo]
and [M-S]).

In Chapter 5 of [Ba1] a general group structure, the Laxton–Ballot group,
is defined on the set of recurring sequences having a characteristic polyno-
mial f ∈ Z[X], where f has arbitrary degree. This group is related to the
notion of maximal prime division, a notion which generalizes the usual divi-
sion for quadratic recurring sequences. Also, a notion of rank of a prime with
respect to maximal division is defined which includes the former notion as
a particular case. Moreover, the density of maximal divisors of some of the
few torsion sequences in the group is computed using an extended version of
Hasse’s method. Also, the set of primes whose rank of maximal division is a
multiple of a given prime q is assessed a density through the same method.
Thus, in this context, the author’s generalized Lucas sequences were pre-
cisely those torsion sequences of the Laxton–Ballot group.

This paper shows that for certain values of D in the Mathews equation,
the integral solutions are generalizations of ordinary Lucas sequences from
both points of view. More precisely, these solutions, the Williams sequences
Wn, Vn, Un, are also torsion elements of the Laxton–Ballot group (they form
a 3-cyclic group). It is almost true that the maximal divisors of the Wn, Vn-
sequences are the primes whose rank of maximal division is divisible by 3.
The adverb “almost” will be attributed a precise meaning. Also, density
results about prime maximal divisors and primes of rank divisible by 3 are
established.

Hence, whenever D = M3±1 in the Mathews equation, the Williams se-
quences represent an extraordinarily rich arithmetic realm in which a great
deal of the number theory of the usual Lucas sequences is preserved, and
perhaps some applications of interest are to be expected. Throughout the pa-
per, the Williams sequences will be referred to as WB-sequences (Williams–
Ballot) whenever D = M3 ± 1 in the Mathews equation.

Section 1 is preliminary. Notation and former results are presented. In
Section 2, a brief presentation of the Laxton–Ballot group is made and it is
shown that the WB-sequences are torsion sequences of the group. Section 3
is concerned with the special rank property of the maximal prime divisors
of WB-sequences, while Section 4 is devoted to computing the density of
these maximal divisors and the density of primes having a rank multiple of
3. Some final remarks are given in the fifth section.
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The density calculation of Section 4 is an interesting addition to ear-
lier work, and particularly to the author’s work. For cubic linear recurring
sequences (i.e. linear recurring sequences having a degree three character-
istic polynomial f), maximal division means division of two consecutive
terms. The density of maximal prime divisors of some such sequences was
computed in [Ba1], Chap. 4, but always in the case of a non-degenerate f
having only rational roots. (A polynomial f is non-degenerate if the ratio
of any two roots is not a root of unity.) Thus, for instance, (5n + 2 · 3n − 1)
has a 2/7 density of maximal divisors. In [Ba2], a simple class of degener-
ate cubic characteristic polynomials is treated, but their roots are still all
rational. As an example, we know that maximal prime divisors of (n2n− 1)
have density 17/24. A first instance of a sequence associated with a cubic
polynomial with irrational roots is studied in [Ba3]. It is (1 + Fn), with a
2/3 density of maximal divisors (where Fn is the nth Fibonacci number).
However, the characteristic polynomial (X − 1)(X2 −X − 1) has one ratio-
nal and two irrational roots. Here, the roots of the polynomial associated
with the WB-sequences are all irrational. Hence, this paper, among other
results, demonstrates the existence of non-trivial integral linear recurring
sequences with irreducible characteristic polynomial for which the Dirich-
let density of prime maximal divisors is computable and computed exactly.
For instance, the sequence (αn + βn + (β)n), where α = 4 + 2 3

√
7 + 3
√

49,
β = 4 + 2ω2 3

√
7 + ω 3

√
49, β is the complex conjugate of β and ω = e2πi/3,

has an asymptotic proportion of prime maximal divisors of 51 to 104.
For the definition of the Lucas Vn and Un-sequences, we refer the reader

to Lucas’s famous original work [Lu] as well as to the recent fine book [Wi3],
Chapter 4.

1. Notation and preliminaries. Let ω = e2πi/3 ∈ C. Let D ∈ Z∗ and
δ = 3
√
D.

Definition 1.1 (Williams sequences). Let f(X) = X3−PX2 +QX−R
∈ Z[X], R 6= 0, where the highest common factor of P, Q and R is 1. If
(α, β, γ) is a permutation of the roots of f(X) such that




wn = αn + βn + γn,
vn = δ−1(αn + ωβn + ω2γn),
un = δ−2(αn + ω2βn + ωγn)

are integers for all n ∈ N, then the sequences W = (wn), V = (vn) and U =
(un) are called Williams sequences. H. Williams called them the extended
Lucas functions of order 3 associated with the polynomial f(X) (see [Wi1],
p. 62). A set of extended Lucas functions of order q was further defined and
studied for any prime q ≥ 2; see [Wi2].



262 C. Ballot

We now assume that D is not a cube in Z. Let G be the Galois group of
the Galois extension Q(δ, ω) over Q. Let σ be the automorphism in G such
that σ(δ) = δω2 and σ(ω) = ω, and let τ represent complex conjugation.
Let α = x+yδ+zδ2 ∈ Z[δ], α 6∈ Z. The two conjugates of α are β = σ(α) =
x+yδω2 +zδ2ω and γ = σ2(α) = x+yδω+zδ2ω2. Note that γ = β = τ(β).
Let f(X) = (X−α)(X−β)(X−γ) = X3−PX2 +QX−R be the minimal
polynomial of α. Then the root field of f , Q(α, β, γ), is Q(δ, ω). The ring of
integers of Q(δ, ω) is denoted by O.

Proposition 1.2. The sequences X = (xn)n≥0, Y = (yn)n≥0 and Z =
(zn)n≥0 of rational integers defined by

(1.1) xn + ynδ + znδ
2 = (x+ yδ + zδ2)n = αn, ∀n ≥ 0,

are linear recurring sequences with characteristic polynomial f(X).

P r o o f. Apply σ and σ2 to equation (1.1) and thus get two more equa-
tions. Linear combinations of these three equations yield





xn =
1
3

(αn + βn + γn),

yn =
1
3δ

(αn + ωβn + ω2γn),

zn =
1

3δ2 (αn + ω2βn + ωγn).

Now, α, β and γ being the roots of f(X), the proposition follows.

Remarks 1.3. (1) The sequences X, Y and Z of Proposition 1.2 are up
to a factor of 3 equal to a set of Williams sequences.

(2) For any n ≥ 0, (xn, yn, zn) is a solution of the Mathews equation
X3 +DY 3 +D2Z3− 3DXY Z = Rn, since x3

n +Dy3
n +D2z3

n− 3Dxnynzn =
norm(xn + ynδ + znδ

2) = norm(αn) = Rn.
(3) The recurring sequences X, Y and Z may be defined for negative

indices by running the recursion backward. The computing of x−1, y−1 and
z−1 can be done using (1.1) and expressing βγ in the basis (1, δ, δ2) of the
Z-module Z[δ], since x−1 + y−1δ + z−1δ

2 = α−1 = βγ/R. This yields

(1.2)
x−1 = R−1(x2 −Dyz), y−1 = R−1(Dz2 − xy),

z−1 = R−1(y2 − xz).

(4) Let the R3-vector
(
xn
yn
zn

)
be denoted by An. Now the side-step for-

mulas expressing xn+1, yn+1 and zn+1 in terms of xn, yn and zn can easily
be computed since (1.1) implies

(1.3) xn+1 + yn+1δ + zn+1δ
2 = (xn + ynδ + znδ

2)(x+ yδ + zδ2).
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One can then check that (1.3) corresponds to the matrix equation

(1.4) An+1 = BAn, where B =



x Dz Dy
y x Dz
z y x


 .

Definition 1.4 (WB-sequences). Let M ∈ Z∗, ε ∈ {±1} and D =
M3 + ε 6= 0. The fundamental unit α (α > 1) of Q(δ) is well known to be
α = M2 +Mδ + δ2 (see [Na], pp. 24–25). In fact, α−1 = ε(δ −M). Hence,
all units in the ring of integers of Q(δ) are of the form ±αn, n ∈ Z. And the
units of norm 1 are the αn, n ∈ Z. So the integral solutions of the Mathews
equation

(1.5) X3 +DY 3 +D2Z3 − 3DXY Z = 1, D = M3 + ε,

are all triples (xn, yn, zn) ∈ Z3 such that xn+ynδ+znδ
2 = αn for all n ∈ Z.

We define the WB-sequences associated with (1.5) to be the sequences X ′ =
(x′n)n≥0, Y

′ = (y′n)n≥0 and Z ′ = (z′n)n≥0, where x′n = xn−1, y
′
n = yn−1 and

z′n = zn−1. By extension, the X, Y and Z sequences and the corresponding
Williams sequences W = 3X, V = 3Y and U = 3Z will also be referred
to as WB-sequences. Actually, these recurring sequences all have the same
characteristic polynomial f(X).

Lemma 1.5. The WB-sequences associated with equation (1.5) have char-
acteristic polynomial f(X) = X3 − 3M2X2 − 3εMX − 1.

P r o o f. The coefficients P, Q and R of f(X) = X3 − PX2 + QX − R
are the symmetric functions of the roots α, β and γ. So we immediately
get P = 3M2 and R = norm(α) = 1, while Q = βγ + σ(βγ) + σ2(βγ) =
α−1 + σ(α−1) + σ2(α−1) = ε(δ −M) + ε(δω2 −M) + ε(δω −M) = −3εM .
One may also find f(X) by computing the characteristic polynomial of the
matrix B in (1.4), which is, up to sign, f(X).

Definition 1.6 (WB-recursion). A polynomial f(X) = X3−3M2X2−
3εMX − 1, where M ∈ Z∗, ε ∈ {±1} and M3 + ε 6= 0 is called a WB-
recursion.

Remark. We will assume throughout that M ≥ 1 in (1.5). There is
no loss of generality in making this assumption because if D′ = (M ′)3 + ε′

and δ′ = (D′)1/3, where M ′ < 0 and ε′ = ±1, then Q(δ) = Q(δ′), with
D = M3 + ε, M = −M ′ and ε = −ε′.

2. The WB-sequences are torsion sequences. First we briefly de-
scribe the main features of the Laxton–Ballot group for a polynomial of
degree m with distinct roots. (See [Lax] for the case m = 2; [Ba1], Chapter
4, for the case m = 3 and [Ba1], Chapter 5, for the general case m ≥ 2.)
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Definition 2.1 (The Laxton–Ballot group). Let f(X) ∈ Z[X] be monic,
of degree m ≥ 2, and having m distinct non-zero roots α1, . . . , αm ∈ C. Let
S(f) be the set of recurring sequences with integral terms and characteristic
polynomial f(X), which satisfy no recursion of order < m. If U = (un)n≥0 ∈
S(f), then U is fully determined by its first m values and we write U =
[u0, u1, . . . , um−1]. Now un can be expressed as

(2.1) un =
m∑

i=1

Ai
αni

f ′(αi)
, ∀n ∈ N,

where Ai is an algebraic integer depending only on u0, u1, . . . , um−1 and
α1, . . . , αm. (Expression (2.1) appears in M. Ward’s article [Wa1] in which
the notion of maximal divisor is first introduced.) Hence the sequence U ∈
S(f) is determined by the m-tuple (A1, . . . , Am). And we write U in standard
form as

U = 〈A1, . . . , Am〉.
A product U ∗ V of U = 〈A1, . . . , Am〉 and V = 〈B1, . . . , Bm〉 in S(f)
is defined via component-wise multiplication of the m-tuples (A1, . . . , Am)
and (B1, . . . , Bm). This product makes (S(f), ∗) a semi-group with identity
I = 〈1, . . . , 1〉, where I = [0, 0, . . . , 0, 1] (with m− 1 zeros).

If p is a rational prime number, then p is said to be a maximal divisor
of U ∈ S(f) (we write p |U), if p divides m− 1 consecutive terms of U , but
never m consecutive terms. The product ∗ in S(f) preserves division by any
prime p, i.e. p |U and p |V ⇒ p |U ∗ V .

The density d(U) of primes dividing U , if it exists, is the limit

d(U) = lim
log x
x
· |{p |U : p ≤ x}|.

We then define E(f) = S(f)/ ∼, where ∼ is the equivalence relation defined
on S(f) by

(2.2) U ∼ V ⇔ ∃s ∈ Z, ∃λ, λ′ ∈ Z, λun+s = λ′vn, ∀n ∈ N.
If U ∈ E(f), then we say that a prime p divides U if there exists U ∈ U such
that p |U . We know that for all U ∈ U , the sets P (U) and P (U) of primes
dividing respectively U and U differ by at most finitely many primes, so that,
if d(U) exists, then we define d(U), the density of primes dividing U , as d(U).
The product ∗ defined on S(f) is well-defined on E(f) and the structure
(E(f), ∗) forms a group, in which the inverse of the class of 〈A1, . . . , Am〉 is
the class of 〈∏i6=1Ai,

∏
i6=2Ai, . . . ,

∏
i 6=mAi〉. Finally, if p is a prime, then

the set E(f, p) of classes divisible by p forms a subgroup of (E(f), ∗).
As the reader will check for himself the WB-sequences could have been

defined without reference to the Mathews equation or to equation (1.1). We
do this in the following paragraph.
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Definition 2.2 (Alternative definition of WB-sequences). Let f(X) =
X3− 3M2X2− 3εMX − 1 be a WB-recursion. Then the WB-sequences are
the sequences in S(f) defined by their initial values

(2.3)




X ′ = [−εM, 1,M2],
Y ′ = [ε, 0,M ],
Z ′ = [0, 0, 1].

We calculated that the discriminant ∆ of f(X) is −27D2, where D =
M3 + ε.

We now give the main result of Section 2.

Theorem 2.3. The WB-sequences X ′, Y ′ and Z ′ have standard forms

(2.4)




X ′ = 〈δ2, δ2ω, δ2ω2〉,
Y ′ = 〈δ, δω2, δω〉,
Z ′ = 〈1, 1, 1〉.

Hence, the classes of the WB-sequences form a cyclic subgroup of order three
of the Laxton–Ballot group E(f).

P r o o f. We show that X ′ = 〈δ2, δ2ω, δ2ω2〉. The standard forms for Y ′

and Z ′ can be obtained in a similar fashion. Now, if X ′ = 〈A1, A2, A3〉, then
(see [Ba1], p. 35) {

A1 = x′0βγ − x′1(β + γ) + x′2,
A2 = σ(A1), A3 = σ(A2).

But by (1.2), x′0 = x−1 = M4 − (M3 + ε)M = −εM . Now x′1 = x0 = 1
and x′2 = x1 = P/3 = M2. Also βγ = α−1 = ε(δ − M) and β + γ =
2M2−Mδ−δ2. Hence, A1 = −εM ·ε(δ−M)−(2M2−Mδ−δ2)+M2 = δ2!
But σ(δ) = δω2 ⇒ A2 = σ(A1) = σ(δ2) = δ2ω and A3 = σ(A2) = δ2ω2.
Thus X ′ = 〈δ2, δ2ω, δ2ω2〉 and (2.4) holds.

Now observe that Y ′ ∗ Y ′ = X ′ and Y ′ ∗ X ′ = D · Z ′ ∼ Z ′ = I, the
identity of S(f). Hence the class of Y ′ has order 1 or 3 in E(f). If it is
of order 1, then Y ′ ∼ I and there exist s, λ, λ′ ∈ Z such that λδαs = λ′.
(See Definition 2.2 and note that shifting Y ′ by s places transforms B1 into
αsB1, where Y ′ = 〈B1, B2, B3〉. Here B1 = δ.) Raising λδαs = λ′ to the
power 3, we see that the algebraic integer α3s is rational, and so belongs to
Z. But its norm is 1, so α3s = 1, contradicting α > 1. So the class of Y ′ has
order 3.

3. The rank of prime divisors of WB-sequences. For integers a
and b let (a, b) denote the greatest common divisor of a and b. Let

f(X) = X3−PX2 +QX −R = (X −α)(X − β)(X − γ) ∈ Z[X], R 6= 0.

We denote the discriminant of f(X) by ∆.
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First we recall some definitions and results.

Definition. Let U be a recurring sequence in S(f) and p be a prime.
Then we say that p is a maximal divisor of U at n if p | (un, un+1) and
p -un+2.

The definition of the rank of a prime relative to a polynomial f of degree
m = 3 is redefined here. It generalizes the usual rank introduced by Lucas
in the case m = 2 ([Lu], p. 290). The general definition, for f of arbitrary
degree m ≥ 2, is given on p. 457 of [Wa1] or p. 91 of [Ba1].

Definition. Let I = 〈1, 1, 1〉 = [0, 0, 1] ∈ S(f) and p be a prime. Then
we define the rank of p (relative to f) to be the smallest r > 0 such that
p | I at r (i.e. p is a maximal divisor of I at r). If p -R, then the rank r of p
exists.

Proposition 3.1. Let U = 〈A,B,C〉 ∈ S(f) and p be a prime. If
p -ABCR∆, then we have the equivalences

p | (un, un+1)⇔ p |U at n⇔ Aαn ≡ Bβn ≡ Cγn (mod (p)),

where (p) is the ideal generated by p in the ring of integers O of the root
field of f .

P r o o f. See Theorem 4.4.1 and its Corollary on pp. 39–40 of [Ba1].

Corollary 3.2. Let p -R∆ be a prime of rank r. Then p | I at n⇔ r |n.

P r o o f. ⇒ By Proposition 3.1, αn ≡ βn ≡ γn (mod (p)) and αr ≡
βr ≡ γr (mod (p)). But since p -R, we must have αn−r ≡ βn−r ≡ γn−r

(mod (p)) and by the same token we can get αg ≡ βg ≡ γg (mod (p)),
where g = (n, r). Now 1 ≤ g ≤ r ⇒ g = r, by the minimality of the rank.
Hence, r |n. For the converse use Proposition 3.1 and raise the congruences
αr ≡ βr ≡ γr (mod (p)) to the power n/r.

We now assume that f(X) = X3 − 3M2X2 − 3εMX − 1, where M ≥ 1,
ε = ±1 and D = M3 + ε 6= 0 and study some rank property of the maximal
divisors of the WB-sequences X ′ and Y ′.

Lemma 3.3. Suppose p - 3D is a prime of rank r. Then p |X ′ or p |Y ′ ⇒
3 | r.

P r o o f. Assume p |X ′ at n. Let X ′ = 〈A,B,C〉. Then by Theorem 2.3
we have ABC = (δ2)3 = D2. Moreover R = 1 and ∆ = −27D2 so that
p - 3D ⇔ p -ABCR∆. Thus by Proposition 3.1, we have

(3.1) δ2αn ≡ δ2ωβn ≡ δ2ω2γn (mod (p)).

Raising (3.1) to the power 3 and dividing out by D2 yields α3n ≡ β3n ≡ γ3n

(mod (p)). That is, p | I at 3n. So, by Corollary 3.2, r | 3n. But, (3.1) together
with p - 3D implies that the congruence αn ≡ βn ≡ γn (mod (p)) does not
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hold. So r -n. But r | 3n and r -n ⇒ 3 | r. The proof that p |Y ′ ⇒ 3 | r is
similar.

The study of the converse of Lemma 3.3 is more delicate. We have to
distinguish primes according to their splitting type in O.

Thus, let p - 3D be a rational prime. Then p is unramified in Q(δ, ω).
And the ideal (p) generated by p in O factorizes as

∏s
i=1 Pi where the Pi’s

are distinct prime ideals of O. We denote by P the set {Pi : 1 ≤ i ≤ s}. We
have three cases.

Case 1: p ∈ S1 = {p : p - 3D and p ≡ 2 (mod 3)}. For these primes we
have s = |P| = 3.

Case 2: p ∈ S2 = {p : p - 3D and p ≡ 1 (mod 3) and D is not a cube
modulo p}. Here s = 2.

Case 3: p ∈ S3 = {p : p - 3D and p ≡ 1 (mod 3) and D is a cube modulo
p}. Here s = 6.

The Dirichlet densities of the sets S1, S2 and S3 are respectively 1/2,
1/3 and 1/6.

First we need a lemma which will also be of use in Section 4.

Lemma 3.4. Let n ∈ N, ζ ∈ {1, ω, ω2}, p be a rational prime and P ∈ P.
Then the congruences αn ≡ ζβn ≡ ζ2γn hold modulo (p) if and only if they
hold modulo P .

P r o o f. ⇒ Clear since (p) ⊂ P .
⇐ We have

(3.2) αn ≡ ζβn ≡ ζ2γn (mod P ).

Now applying τ to (3.2) yields the same congruences, but modulo τ(P ). Also
applying σ to (3.2) and multiplying the resulting congruences through by ζ
yields again the same congruences but modulo σ(P ). But G is generated by
σ and τ and the action of G on P is transitive, so that (3.2) holds for all
P ∈ P. Therefore, (3.2) holds true modulo (p).

Theorem 3.5. Let p ∈ S1 or p ∈ S2 be a prime of rank r = 3n, where
n is an integer ≥ 1. Then p |X ′ at n or p |Y ′ at n.

P r o o f. By hypothesis, p | I at 3n. So α3n ≡ β3n ≡ γ3n (mod (p)), or
equivalently α3n ≡ β3n ≡ γ3n (mod Pi) for 1 ≤ i ≤ s. In particular, we
have α3n ≡ β3n (mod P1), where P1 is arbitrary in P. Therefore, there
exists ζ ∈ {1, ω, ω2} such that

(3.3) αn ≡ ζβn (mod P1).

Using appropriately the actions of σ and τ on α, β, γ, ω and on P, we will
deduce that

(3.4) αn ≡ ζβn ≡ ζ2γn (mod P1).
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But, by Lemma 3.4, congruence (3.4) implies that

(3.5) αn ≡ ζβn ≡ ζ2γn (mod (p)).

This enables us to conclude the proof. Indeed, (3.5) ⇒ ζ 6= 1, since ζ = 1
would contradict r = 3n. So, either ζ = ω and p |X ′ at n, or ζ = ω2 and
p |Y ′ at n.

Thus we need to prove (3.4). This is done separately according as p ∈ S1

or p ∈ S2.

Case 1. Consider the action of τ on P. Here P is of size 3, so there
exists a P = P1 ∈ P such that τ(P1) = P1. Now applying τ to (3.3) gives
αn ≡ ζ2γn (mod P1), so that (3.4) holds.

Case 2. Since σ has order 3 in G, the orbits of the action of σ on P
are either of size 1 or 3. But here |P| = 2, so σ fixes both P1 and P2. Now
applying σ to (3.3) gives βn ≡ ζγn (mod P1), which yields (3.4).

Remark 3.6. The conclusion of Theorem 3.5 says that p |X ′ at n or
p |Y ′ at n. Note that if p - 3D, then p |X ′ at n⇒ p |Y ′ at 2n, and p |Y ′ at
n⇒ p |X ′ at 2n.

Remark 3.7. For primes in S3, Theorem 3.5 does not hold. For instance,
for D = 7 = 23−1, the smallest prime for which the theorem fails is p = 811.
(The rank of p = 811 is r = 135 which is a multiple of 3, but p -X ′, and
consequently p -Y ′.) However, the set of primes for which the theorem fails is
slim. The reader will see from the density results of Section 4 that Theorem
3.5 holds exactly 9 out of 10 times for primes in S3! That is, asymptotically,
out of ten primes in S3 of rank divisible by 3, nine do divide the X and Y
sequences. In fact, primes in S3 are either 1, 4 or 7 modulo 9 and Theorem
3.5 holds for all primes congruent to 4 or 7 modulo 9 provided their rank is
a multiple of 3.

Remark. As is often the case with number-theoretic facts linked to
Lucas sequences, two types of proofs coexist: proofs based upon algebraic
number-theoretic concepts and proofs based upon elementary Lucas arith-
metic identities. (Thus note the two proofs of the Lucas–Lehmer primality
test in [We] and [Le2]; or the two proofs that all primes ±2 (mod 5) are
maximal divisors of (1 + Fn), where Fn is the nth Fibonacci number in
[Ba3].) For our present subject, Hugh Williams showed me a very elemen-
tary proof of Theorem 3.5 based on the many Lucas-like identities that the
Williams sequences satisfy (private communication).

4. Density results. The purpose of this section is twofold. First we show
that the maximal prime divisors of the companion WB-sequences form a set
having a Dirichlet density. (The companion WB-sequences are the X ′ and
Y ′ sequences; their properties generalize those of the usual companion Lucas
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sequence, i.e. the Vn-sequence.) Secondly it is proved that the primes having
a rank multiple of 3 in a WB-recursion also have a Dirichlet density.

In ordinary Lucas theory, the set of prime divisors of the companion
Lucas sequence coincides with the set of primes of even rank (except possibly
for divisors of 2Q, where Q is the product of the two roots of the recursion).
And the Dirichlet density of this set is always computable (cf. [Lag1], pp.
450–451). Here, for WB-recursions, our two sets of primes differ slightly, but
remarkably both have a computable Dirichlet density.

We actually compute the density of these primes by calculating their
density within each of the three subsets S1, S2 and S3.

Notation and definitions. The ratios α/β, α/γ, β/γ are denoted respec-
tively by Ψ1, Ψ2 and Ψ3. If j and k are fixed integers such that j ≥ k ≥ 0,
then, for i = 1, 2 and 3, we define ϕi to be 3j−k√Ψi.

Given P ∈ P, ei = ordPΨi is the order of Ψi (mod P ), 1 ≤ i ≤ 3.
The 3-adic valuation of an integer n is denoted by V3(n). If a is a positive

integer, then the symbol ζa represents the complex number e2πi/a.
We choose to write p |X to mean that p is a maximal divisor of the

companion WB-sequences. This is legitimate since the X,X ′, Y or Y ′ se-
quences share the same divisors, as long as p - 3D. To be precise, we state a
preliminary lemma.

Lemma 4.0. Let p be a prime not dividing 3D. Then

p |X ⇔ p |X ′ ⇔ p |Y ′ ⇔ p |Y.
P r o o f. The sequences X and X ′ share the same divisors and so do Y

and Y ′. Now, the fact that p |X ′ ⇔ p |Y ′, if p - 3D, was stated in Remark
3.6.

We define the sets Di and Ti for 1 ≤ i ≤ 3 as Di = {p ∈ Si : p |X} and
Ti = {p ∈ Si : 3 | r(p)}.

If S is a set of primes with Dirichlet density, then this density is denoted
by d(S).

Lemma 4.1. Let j and k be integers such that j ≥ k ≥ 0. The extension
F = Fj,k = Q(δ, ζ3j , ϕ1, ϕ2, ϕ3) is a normal extension of the rationals of
degree 2 · 33j−2k−1 if j > k, and of degree 2 · 3j if j = k ≥ 1.

P r o o f. The proof is left to the reader. Note that ϕ3 ∈ Q(δ, ζ3j , ϕ1, ϕ2)
and that Q(δ, ζ3j ,

3
√
Ψ1) is normal over Q, since 3

√
Ψ1 · 3

√
Ψ2 = 3

√
α3 ∈

Q(δ, ζ3j ).

Lemma 4.2. Let p - 3D. Then

(4.1) p |X ⇔ ∀P ∈ P : V3(e1) = V3(e2) = V3(e3) ≥ 1.
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P r o o f. ⇒ By Theorem 2.3 and Proposition 3.1

p |X ′ ⇒ ∃n ∈ N, ∀P ∈ P, αn ≡ ωβn ≡ ω2γn (mod P ).

So, P being arbitrary in P, there have to exist λ1, λ2, λ3 ∈ N such that

3n = λ1e1 = λ2e2 = λ3e3, where V3(λi) = 0, ∀i.
Hence, the conclusion follows.
⇐ Let P ∈ P. Then the hypothesis implies that there exist positive

integers λ1, λ2, λ3 such that


e1 = 3k · λ1,
e2 = 3k · λ2,
e3 = 3k · λ3, where k ≥ 1 and 3 -λ1λ2λ3.

Let n be equal to 3k−1 times the least common multiple of λ1, λ2 and λ3.
Then there exists ζ ∈ {ω, ω2} such that αn ≡ ζβn ≡ ζ2γn (mod P ). By
Lemma 3.4, the last congruences hold (mod (p)) so that if ζ = ω, then
p |X ′, and if ζ = ω2 then p |Y ′. So by Lemma 4.0 in either case p |X.

Lemma 4.3. Let p - 3D. Then

(4.2) 3 | r(p)⇔ ∃P ∈ P, ∃i ∈ {1, 2, 3}, V3(ei) ≥ 1.

P r o o f. ⇒ Let r = 3n. Then there exists P ∈ P such that αn ≡ βn ≡
γn (mod P ) does not hold. Hence, there exists Ψ ∈ {Ψ1, Ψ2, Ψ3} such that
Ψ3n ≡ 1, but Ψn 6≡ 1 (mod P ). Therefore, 3 | ordPΨ .
⇐ By definition of r, we have αr ≡ βr ≡ γr (mod P ). So ei | r. And

3 | ei ⇒ 3 | r.
Theorem 4.4. We have d(D1) = 3/8.

P r o o f. Here we take j ≥ 1 and k = 0. Thus, in the notation of Lemma
4.1, F = F (j, 0). Let G∗ denote the Galois group of F (ζ3j+1)/Q. In this
proof, for p a rational prime, Q and R denote the sets of prime ideals above
p respectively in F and in F (ζ3j+1).

Put D1(j) = {p ∈ S1\D1 : V3(p + 1) = j}. Note that V3(p + 1) = j ⇔
the ideal generated by p is inert in the extension Q(ω)/Q, splits completely
in Q(ζ3j )/Q(ω) and its prime factors in Z[ζ3j ] are inert in Q(ζ3j+1). Also,
let p ∈ S1\D1. By the contrapositive of Theorem 3.5, we have 3 - r(p). So,
by Lemma 4.3, for all P ∈ P, and i = 1, 2, 3, V3(ei) = 0, which is equivalent
to Ψi being a 3jth power (mod P ) for all i, or by the Kummer–Dedekind
theorem (1), to P splitting completely in F/Q(ω, δ). Hence,

p ∈ D1(j)⇔ f(P | p) = f(Q | p) = 2(4.3)

and f(R | p) = 6, ∀P ∈ P, ∀Q ∈ Q, ∀R ∈ R,

(1) See Appendix A of [Ba1] for a statement of this theorem.
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where f(∗ | p) represents the inertial degree of ∗ over p. Next we show that
there is a subset A of G∗ such that

(4.4) p satisfies the condition in (4.3) ⇔ ∀R ∈ R, φ = φ(R | p) ∈ A,
where φ is the Frobenius automorphism of R over p.

So let p ∈ D1(j). Then P = {P0, P1, P2}, where, by the Kummer–
Dedekind theorem, we may write

Pi = (p) + (δ − ωid), i = 0, 1 or 2, where d ∈ Z and d3 ≡ D (mod p).

Suppose R lies above Pi. Because φ(x) ≡ xp (mod Pi) for all x ∈ O, and
since p ≡ 2 (mod 3) and dp ≡ d (mod p), we have

φ(δ) ≡ δp ≡ (ωid)p ≡ ω2id ≡ ω2i(ω−iδ) = ωiδ (mod Pi).

Now, because φ(δ) must be a cube root of D and p 6= 3, we deduce that
φ(δ) = ωiδ.

Assume for the moment that we choose R lying above P0. Then φ(δ) = δ
and so φ acts on {α, β, γ} as the transposition (βγ). Hence, we must have

(4.5)




φ(ϕ1) = ξ1ϕ2,
φ(ϕ2) = ξ2ϕ1,
φ(ϕ3) = ξ3ϕ

−1
3 ,

where ξ1, ξ2, ξ3 ∈ {ζl3j : l = 1, 2, . . . , 3j}. We may assume that the roots
ϕi = 3j

√
Ψi have been chosen in such a way that ϕ1ϕ

−1
2 ϕ3 = 1. Therefore

1 = φ(1) = φ(ϕ1ϕ
−1
2 ϕ3) = ξ1ξ

−1
2 ξ3 ·ϕ−1

1 ϕ2ϕ
−1
3 = ξ1ξ

−1
2 ξ3 ⇒ ξ2 = ξ1ξ3. Now

the restriction of φ to F has order 2 since f(Q | p) = 2 for all Q ∈ Q. Also
the restriction of φ to Q(ζ3j ) must be complex conjugation, the only order 2
automorphism of the extension Q(ζ3j ) over Q. So ϕ1 = φ2(ϕ1) = φ(ξ1 ·ϕ2) =
ξ−1
1 · (ξ2ϕ1), which implies ξ1 = ξ2. Hence, (ξ1, ξ2, ξ3) = (ξ, ξ, 1), for some
ξ = ζl3j . But ϕ1ϕ2 = 3j−1√

α. So on the one hand, φ( 3j−1√
α) = η 3j−1√

α with
η3j−1

= 1, and on the other hand, φ(ϕ1ϕ2) = ξ2ϕ1ϕ2. Hence, ξ2 = η and
ξ2·3j−1

= 1 so that 3 | l. So ξ = ζn3j−1 , where n ∈ {1, 2, . . . , 3j−1}. Moreover,
φ(ζ3j+1) = ζm3j+1 , where m ∈ {m1,m2} = {−1± 3j}, since V3(p+ 1) = j ⇔
p ≡ −1± 3j (mod 3j+1).

Hence, φ ∈ A0 = {g ∈ G∗ : g = g(m,n), where m ∈ {m1,m2} and
n ∈ {1, 2, . . . , 3j−1}}, and g(m,n) satisfies

(4.6) g(δ) = δ, g(ζ3j+1) = ζm3j+1 , g(ϕ1) = ζn3j−1ϕ2, g(ϕ2) = ζn3j−1ϕ1.

Observe that there is exactly one element of G∗ which satisfies (4.6) so that
A0 is a subset of G∗ of size 2 · 3j−1.

So by the Chebotarev density theorem, for each g = g(m,n) ∈ A0, there
are infinitely many primes p such that g = φ = φ(R | p), the Frobenius
automorphism of R over p, for some R ∈ R. We check that if p - 3D, then
φ = g ⇒ p satisfies condition (4.3). Note first that g(ζ3j+1) = ζm3j+1 ≡ ζp3j+1
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(mod R) ⇒ p ≡ m (mod 3j+1), since p 6= 3. But m = −1 ± 3j ⇒ p ≡ −1
(mod 3j) so that p has order 2 (mod 3j) which means that the restriction
of φ to Q(ζ3j ) has order 2. Hence φ(ζ3j ) = ζ−1

3j , which in view of (4.5) yields
φ2(ϕ1) = ϕ1 and φ2(ϕ2) = ϕ2. Therefore φ restricted to F is also of order 2.
Hence f(P | p) = f(Q | p) = 2 where P and Q are the ideals respectively in
P and Q lying under R. Finally, φ has order six so that f(R | p) = 6 and by
the normality of Q(δ, ω), F and F (ζ3j+1) condition (4.3) holds for all P, Q
and R.

Note that to prove equivalence (4.4) we assumed that R lied above P0.
This assumption was made to alleviate our proof. Had we assumed R to
lie above Pi, i = 1 or i = 2, a similar reasoning would have led to φ(R | p)
satisfying conditions analogous to (4.5), but different. Eventually, we would
obtain φ ∈ A1 or A2, where A1 and A2 are subsets of G∗ of the same size as
A0. Hence, the set A introduced in (4.4) is the disjoint union A0 ∪A1 ∪A2

and has size 2 · 3j . Now by equivalence (4.4) and because the Frobenius
φ(R | p) describes a full conjugacy class in G∗ as R varies, A must be a
union of conjugacy classes (2). So the Chebotarev density theorem gives

d(D1(j)) =
|A|
|G∗| =

2 · 3j
2 · 33j ,

since, by Lemma 4.1, the cardinality |G∗| of G∗ is 3 · [F : Q] = 2 ·33j . Hence,

d(D1) = d(S1)−
∑

j≥1

d(D1(j)) =
1
2
−
∑

j≥1

1
32j =

1
2
− 1

8
=

3
8
.

Numerical data. We found that 595 of the smallest 800 primes in S1

divide X. The relative density of D1 in S1 is (3/8)/(1/2) = 3/4, which
compares well to the experimental ratio of 595/800.

Theorem 4.5. The set D2 is empty so that d(D2) = 0.

P r o o f. We choose an elementary proof which uses Lucas-like identities
satisfied by the X, Y and Z sequences. Suppose p ∈ D2. Then there is an
integer n such that p |Y at n. So p | (yn, yn+1). Now equation (1.4) with
(x, y, z) = (M2,M, 1) yields

(4.7)
{
xn+1 = M2xn +Dyn +DMzn,
yn+1 = Mxn +M2yn +Dzn.

The second equation in (4.7) implies that p |Mxn + Dzn, so that the first
equation in (4.7) implies xn+1 ≡ Dyn (mod p). But p | yn ⇒ p |xn+1.

(2) More precisely, A is an elementary Frobenius set since condition (4.3) says that
primes in D1(j) have determined splitting types in the subfields of F (ζ3j+1 ) (cf. [Lag2],
p. 227).
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Now (1.5)⇒ x3
n+1 +Dy3

n+1 +D2z3
n+1−3Dxn+1yn+1zn+1 = 1. But xn+1

and yn+1 being divisible by p, we have D2z3
n+1 ≡ 1 (mod p), so that D2

must be a cube modulo p and therefore D must also be a cube modulo p.
This contradicts the hypothesis p ∈ S2. Hence, D2 is empty.

Remark. Theorem 4.5 renders Lemma 3.4 and Theorem 3.5 vacuous
for primes in S2!

Remark. The proof of Theorem 4.5 is a generalization of the proof by
M. Ward [Wa2] that no prime congruent to 1 (mod 4) such that 5 is not a
square (mod p) ever divides a Lucas number. Here identity (1.5) plays the
role of the Pythagorean identity L2

n − 5F 2
n = 4(−1)n, which links the nth

Lucas number to the nth Fibonacci number.

Definitions. Let j, k be integers such that j ≥ k ≥ 0. We define
D3(j, k) = {p ∈ D3 : V3(p− 1) = j, V3(e1) = k}. Note that p ∈ D3(j, k)⇒
p |X, so that V3(e1) = V3(e2) = V3(e3) = k. Also, the choice of P ∈ P used
to define e1, e2 and e3 does not alter the set D3(j, k).

Theorem 4.6. We have d(D3(j, k)) = 2/33j−2k+2 and d(D3) = 3/26.

P r o o f. Assume that j ≥ k ≥ 1 are fixed integers and that F is as in
Lemma 4.1.

Then we have the equivalence:

p ∈ D3(j, k)⇔ p splits in F, but is inert in the 4 extensions(4.8)

F ( 3
√
ϕi), i = 1, 2, 3 and F (ζ3j+1) over F.

Indeed, for all i, V3(ei) = k ⇔ Ψ
(p−1)/3j−k

i ≡ 1, but Ψ (p−1)/3j−k+1

i 6≡ 1
(mod P ). That is, using Euler’s criterion, Ψi is a 3j−kth power (mod P ), but
not a 3j−k+1th power. This last condition added to the fact that 3j+1 - p−1
yields (4.8) by application of the Kummer–Dedekind theorem (3).

Let Π be a prime in F ( 3
√
ϕ1, 3
√
ϕ2) lying over Q, where Q is in F and

lies above p. Let h be the Frobenius automorphism of Π over p. Because
the inertial degree of Q over p is 1, the restriction of h to F is the identity.
Thus h is in the Galois group G′ of F ( 3

√
ϕ1, 3
√
ϕ2) over F .

Now if j > k, then G′ has order 9 and exponent 3, so is isomorphic to
(Z/3Z)2. Each g in G′ is determined by g( 3

√
ϕ1) and g( 3

√
ϕ2). Since ϕi ∈

F, g( 3
√
ϕi) is again a cube root of ϕi. So let ξi ∈ {1, ω, ω2} be defined by

h( 3
√
ϕi) = ξi 3

√
ϕi. The condition that Q be inert in each F ( 3

√
ϕi) imposes

ξi 6= 1 for all i.
Indeed, the Frobenius h has the property that h( 3

√
ϕi) ≡ ( 3

√
ϕi)p =

( 3
√
ϕi)p−1 3

√
ϕi (mod Π). But ( 3

√
ϕi)p−1 = Ψ3k−1·l

i , where p− 1 = 3j · l. Now

(3) See Appendix A of [Ba1] for a statement of the theorems or principles used in the
proof.
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ei | 3k · l, but ei - 3k−1 · l, so that Ψ3k−1·l
i is a primitive cube root of 1. Hence,

ξi ∈ {ω, ω2}.
With a choice of roots such that 3

√
ϕ2 = 3

√
ϕ1 3
√
ϕ3, we have h( 3

√
ϕ2) =

h( 3
√
ϕ1 3
√
ϕ3) ⇒ ξ2 = ξ1ξ3. But ξ3 6= 1 ⇒ (ξ1, ξ2) ∈ {(ω, ω2), (ω2, ω)}. So

there are two elements of G′ that h can be equal to. Hence, because G′ is
abelian, the density of primes p that split in F and then are inert in each
extension F ( 3

√
ϕi) over F , is 2

9 · 1
[F :Q] by the Chebotarev density theorem. A

similar reasoning shows that the density of primes which split in F (ζ3j+1)
and are then inert in the three extensions F (ζ3j+1 , 3

√
ϕi) is 2

9 · 1
[F (ζ3j+1 ):Q] , i.e.

2
27 · 1

[F :Q] . Combining these results with the principle of Inclusion-Exclusion,
we get the density of primes satisfying condition (4.8) as

(4.9) d(D3(j, k)) =
1

[F : Q]
·
[
1−

(
7
9

+
1
3

)
+

7
27

]
, where j > k ≥ 1.

For j = k, ϕi = Ψi, for all i, and because of the normality of F ( 3
√
ϕi),

condition (4.8) becomes

p splits in F, but does not split in either F ( 3
√
ϕ1) or F (ζ3j+1).

So using the Kronecker density theorem and the principle of Inclusion-
Exclusion, we get

(4.10) d(D3(j, j)) =
1

[F : Q]
·
[
1−

(
1
3

+
1
3

)
+

1
9

]
.

Now using Lemma 4.1 and formulas (4.9) and (4.10), one obtains the density
d(D3(j, k)) claimed.

Hence, the density d(D3) is evaluated by summing up two geometric
series:

d(D3) =
∑

j≥k≥1

d(D3(j, k)) =
2
9
·
∑

k≥1

∑

j≥k

1
33j−2k =

3
26
.

Numerical remark. The set S3 has Dirichlet density 1/6, while D3 has
density 3/26. So the relative density of primes in S3 that divide X is 9/13.
For D = 7, we found that 554 of the smallest 800 primes in S3 divide X.
This compares well to what the asymptotic ratio yields, i.e. 9

13 ·800 ∼ 553.85!

Theorem 4.7. The set of primes p such that p |X has Dirichlet density
51/104 = 1/2− 1/104.

P r o o f. By Theorems 4.4–4.6, we have d({p : p |X}) = 3/8 + 0 + 3/26.

Theorem 4.8. The set of primes p such that 3 | r(p) has Dirichlet density
157/312 = 1/2 + 1/312.

P r o o f. We have T1 = D1 and T2 = D2. So we must determine d(T3),
if it exists. What we do is show that T 3, the complement of T3 in S3 has a
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density. Indeed, negating equivalence (4.2), we get

(4.11) 3 - r(p)⇔ ∀P ∈ P, V3(e1) = V3(e2) = V3(e3) = 0.

Let j ≥ 1 and T 3(j) = {p ∈ T 3 : V3(p − 1) = j}. Using (4.11), we have

p ∈ T 3(j) ⇔ Ψ
(p−1)/3j

i ≡ 1 (mod P ), for all i and P ; that is, by Euler’s
criterion, each Ψi is a 3jth power (mod P ), and, by the Kummer–Dedekind
theorem, p splits in F , but not in F (ζ3j+1), where F = Q(δ, ζ3j , ϕ1, ϕ2, ϕ3)
and ϕi = 3j

√
Ψi, i = 1, 2, 3, as in Lemma 4.1. So,

d(T 3(j)) =
1

[F : Q]
·
[
1− 1

3

]
.

Now, since k = 0 and j > k, Lemma 4.1 gives [F : Q] = 2 · 33j−1. Hence,

d(T 3) =
∑

j≥1

d(T 3(j)) =
∑

j≥1

1
33j =

1
26

and

d(T3) = d(S3)− d(T 3) =
1
6
− 1

26
=

5
39
.

Thus,

d({p : 3 | r(p)}) =
3
8

+
5
39

=
157
312

.

Numerical remark. The relative density of T3 in S3 is (5/39)/(1/6) =
10/13. For D = 7, we found that 617 of the smallest 800 primes in S3

have a rank multiple of 3, while the asymptotic ratio of 10/13 predicts
10
13 · 800 ∼ 615.4.

Remark. Suppose p ∈ T3, V3(p− 1) = j but that condition (4.2) holds
with V3(ei) = j for some i = 1, 2 or 3 and some P ∈ P, then condition (4.1)
is also satisfied. Indeed, V3(ei) = j ⇔ p does not split in F ( 3

√
Ψi), where F is

Q(δ, ζ3j ). But F ( 3
√
Ψ1) = F ( 3

√
Ψ2) = F ( 3

√
Ψ3) ⇒ V3(e1) = V3(e2) = V3(e3) =

j. Now if V3(e1) = V3(e2) = V3(e3) = j holds for some P , then it holds for
all P ∈ P. That is, p belongs to D3. In particular, as mentioned in Section
3, all primes p congruent to 4 or 7 (mod 9) in T3 belong to D3.

5. Final remarks

Remark 5.1. In [M-S], the authors determine the density of prime divi-
sors of the Lucas sequence (αn + αn), where α is the fundamental unit of
the real quadratic field Q(

√
D), D ≥ 2, D squarefree integer. They found

the set of possible densities to be limited to a few values and to depend in
a simple manner on the norm and trace of α. We ask analogous questions
for the cubic case.

In particular, besides the fieldsQ( 3
√
D) whereD = M3±1, are there other

pure cubic fields with fundamental unit α for which X = (αn+βn+βn) has
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order 3 in the Laxton–Ballot group E(f), where f is the minimal polynomial
of α? If so, do the maximal divisors of X have a computable and predictable
density? Or, do other sequences in S(f) have such properties? Are there
more families of pure cubic fields for which the density of primes having
a rank r (relative to f) such that 3 | r is determined? What would these
densities be?

Remark. Although the WB-sequences may be viewed as a general-
ization of the pair {Vn, Un} of ordinary Lucas sequences, they can also be
viewed as a generalization of the triplet {W 1

n ,W
2
n , Un} of integral quadratic

recurrences that exist whenever the discriminant ∆ of X2 − PX + Q is of
the form −3F 2.

The remark will make sense if one considers the theorem below.

Theorem 5.2. Let f(X) = X2 − PX + Q = (X − α)(X − α) ∈ Z[X],
(P,Q) = 1 and ∆ = P 2 − 4Q = −3F 2, F ∈ N. Then the sequences (W 1

n)
and (W 2

n) in S(f) defined by their initial values as

W 1 =
[
1,
P − F

2

]
and W 2 =

[
1,
P + F

2

]
,

have the following properties, with α = (P + F
√−3)/2:

(i) W 1 = 〈Fω, Fω2〉, W 2 = 〈−Fω2,−Fω〉 and U = 〈1, 1〉, so that
the sequences W 1,W 2, U have classes in E(f) forming a cyclic subgroup of
order 3.

(ii) If p - 3FQ, then

∃n ∈ N, r(p) = 3n⇔ p |W 1 at n or p |W 2 at n.

(iii) If α/α is not a cube in Q(ω), then d(W 1) = d(W 2) = 3/4.

P r o o f. (i) Use (2.1) or (2.5) of [Ba1] to calculate 〈A1, A2〉.
(ii) This follows easily from the identity F 2U3n = 3UnW 1

nW
2
n .

(iii) One may follow the proof in the corrigendum of [Lag1] which treats
the particular case (P,Q) = (5, 7). (The proof is in two parts according
as V3(p − 1) ≥ 1 or V3(p + 1) ≥ 1. Note that the two sub-densities are
3/8 and 3/8, so that the density of prime divisors ≡ 2 (mod 3) is equal
to the density of maximal prime divisors ≡ 2 (mod 3) found in companion
WB-sequences.)
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