A metric result on the pair correlation of fractional parts of sequences

by
Zeév Rudnick (Tel Aviv) and Alexandru Zaharescu (Montreal, Que.)

1. Introduction. Our purpose in this note is to show that the pair correlation function of several sequences of fractional parts behaves like those of random numbers. The pair correlation density for a sequence of N numbers $\theta_{1}, \ldots, \theta_{N} \in[0,1]$ which are uniformly distributed as $N \rightarrow \infty$, measures the distribution of spacings between the numbers at distances of order of the mean spacing $1 / N$. Precisely, if $\|x\|=\operatorname{distance}(x, \mathbb{Z})$ then for any interval $[-s, s]$ set

$$
\begin{equation*}
R_{2}([-s, s], N)=\frac{1}{N} \#\left\{1 \leq j \neq k \leq N:\left\|\theta_{j}-\theta_{k}\right\| \leq s / N\right\} \tag{1.1}
\end{equation*}
$$

For random numbers θ_{j} chosen uniformly and independently,

$$
R_{2}([-s, s], N) \rightarrow 2 s
$$

with probability tending to 1 as $N \rightarrow \infty$. In this case one says that the pair correlation function is Poissonian. A smooth form of (1.1) is to take a test function $f \in C_{\mathrm{c}}^{\infty}(\mathbb{R})$ and set

$$
R_{2}(f, N):=\frac{1}{N} \sum_{1 \leq j \neq k \leq N} F_{N}\left(\theta_{j}-\theta_{k}\right)
$$

where $F_{N}(y)=\sum_{m \in \mathbb{Z}} f(N(y+m))$. The Poisson case is that in the limit $N \rightarrow \infty, R_{2}(f, N) \rightarrow \int_{-\infty}^{\infty} f(x) d x$.

We will show that the pair correlation function of many sequences of fractional parts of the form $\{\alpha a(x)\}, x=1, \ldots, N$ with $a(x)$ integers, have Poissonian pair correlation for almost all α. Our main tool is:

[^0]Theorem 1. Let $a(x)$ be a sequence of integers so that $a(x) \neq a(y)$ if $x \neq y$ and furthermore suppose that there are at most $O\left(M N^{2+\varepsilon}\right)$ solutions to the equation

$$
\begin{equation*}
n_{1}\left(a\left(x_{1}\right)-a\left(y_{1}\right)\right)=n_{2}\left(a\left(x_{2}\right)-a\left(y_{2}\right)\right) \tag{1.2}
\end{equation*}
$$

with $1 \leq x_{i} \neq y_{i} \leq N$, and $1 \leq\left|n_{i}\right| \leq M, M \ll N^{R}$ for some $R>0$, and all $\varepsilon>0$. Then for almost all α, we have

$$
R_{2}(f, N) \rightarrow \int_{-\infty}^{\infty} f(x) d x
$$

A result of this kind was proved by Rudnick and Sarnak [4] for the spacings of αn^{d}, where $d \geq 2$ is an integer. Crucial use is made there of Weyl's differencing argument $[1,5]$ to get cancellations in sums of the exponential sums $\sum_{n \leq N} e(\alpha F(n))$, where $F(n)$ is a polynomial of degree $d \geq 1$, and α is of diophantine type. No such estimate is available when we replace polynomials by functions such as the exponential function g^{n} (this is a key issue in the study of "normal" numbers). The idea here is to avoid this issue for individual α, and instead to prove this kind of result for almost all α (see Proposition 4).

Theorem 1 reduces the study of the generic behavior of the pair correlation of the sequence of fractional parts of $a(x)$ to estimating the number of solutions of the equation (1.2). In [4] it was shown that the number of solutions of this equation for $a(x)=x^{d}, d \geq 2$, is indeed $O\left(M N^{2+\varepsilon}\right)$. In Section 4 we show that the same estimate holds if $a(x)$ is lacunary:

Proposition 2. Let $a(x)>0$ be an increasing sequence of positive integers so that there is some $c>1$ for which

$$
a(x+1) \geq c a(x) .
$$

Then the equation (1.2) has at most $O\left(M N^{2} \log ^{2} N\right)$ solutions in $0<\left|n_{i}\right|$ $\leq M, 1 \leq x_{i} \neq y_{i} \leq N$, where $M \ll N^{R}$ for some $R>0$.

An example of such a sequence is $a(x)=g^{x}, g \geq 2$ an integer. Thus we get:

Corollary 3. Let $g \geq 2$ be an integer. Then for almost all α, the sequence of fractional parts of αg^{n} has Poisson pair correlation.

It seems plausible that for almost all α, all correlation functions should be Poissonian in this case, and in particular the nearest neighbor spacing distribution should be exponential.

Other examples would be the sequences $a(n)=n!$ or $g^{g^{n}}$ for an integer $g \geq 2$, or the integer parts $\left[c^{n}\right]$ where $c>1$ is any real number.
2. A metric result for sums of exponential sums. Suppose we are given a sequence $a(x) \in \mathbb{Z}_{+}$, satisfying $a(x) \neq a(y)$ if $x \neq y$. Define the Weyl sum

$$
S_{\alpha}(n, N)=\sum_{1 \leq x \leq N} e(\alpha n a(x))
$$

and for each N suppose we choose $M=M(N)=N^{1+1 / 100}$, and set

$$
H_{N}(\alpha)=\sum_{1 \leq n \leq M}\left|S_{\alpha}(n, N)\right|^{2}
$$

Proposition 4. For almost all α, we have

$$
H_{N}(\alpha) \ll \alpha_{\alpha} M N^{2-1 / 4} .
$$

Proof. The method of proof follows standard steps in the metric theory of uniform distribution of sequences (see $[2,3]$): Because $a(x) \neq a(y)$ if $x \neq y$, we clearly have

$$
\int_{0}^{1}\left|S_{\alpha}(n, N)\right|^{2} d \alpha=N
$$

and so

$$
\int_{0}^{1} H_{N}(\alpha) d \alpha=M N .
$$

Therefore we can estimate the measure of the set of α for which $H_{N}(\alpha)>$ $M N^{2-1 / 4}$ by

$$
\begin{aligned}
\operatorname{meas}\left\{\alpha: H_{N}(\alpha)>M N^{2-1 / 4}\right\} & \leq \frac{1}{M N^{2-1 / 4}} \int_{\left\{\alpha: H_{N}(\alpha)>M N^{2-1 / 4}\right\}} H_{N}(\alpha) d \alpha \\
& \leq \frac{1}{M N^{2-1 / 4}} \int_{0}^{1} H_{N}(\alpha) d \alpha \\
& =\frac{1}{M N^{2-1 / 4}} M N=N^{-3 / 4} .
\end{aligned}
$$

It follows from the Borel-Cantelli lemma that if we take a sequence of N_{m} 's which is sufficiently sparse so that $\sum_{m} N_{m}^{-3 / 4}$ converges, then along that sequence we find that for all α in a set of full measure,

$$
\begin{equation*}
H_{N_{m}}(\alpha) \leq M_{m} N_{m}^{2-1 / 4} \quad \text { for all } m>m_{0}(\alpha) . \tag{2.1}
\end{equation*}
$$

For simplicity, we take $N_{m}=m^{2}$.
Now fix α for which (2.1) holds. We now show that if $N_{m}<N<N_{m+1}$, then

$$
\begin{equation*}
\left|H_{N}(\alpha)-H_{N_{m}}(\alpha)\right| \ll M N^{3 / 2}, \tag{2.2}
\end{equation*}
$$

which together with (2.1) proves our proposition.

Note that $N-N_{m}<N_{m+1}-N_{m}=2 m+1 \ll N^{1 / 2}$, and further

$$
\begin{aligned}
M-M_{m} & =N^{101 / 100}-N_{m}^{101 / 100}<(m+1)^{202 / 100}-m^{202 / 100} \\
& \ll m^{102 / 100}=N^{1 / 2+1 / 100}
\end{aligned}
$$

We have

$$
\begin{aligned}
H_{N}-H_{N_{m}} & =\sum_{n \leq M}\left|S_{\alpha}(n, N)\right|^{2}-\sum_{n \leq M_{m}}\left|S_{\alpha}\left(n, N_{m}\right)\right|^{2} \\
& =\sum_{n \leq M_{m}}\left(\left|S_{\alpha}(n, N)\right|^{2}-\left|S_{\alpha}\left(n, N_{m}\right)\right|^{2}\right)+\sum_{M_{m}<n \leq M}\left|S_{\alpha}(n, N)\right|^{2} \\
& =I+I I
\end{aligned}
$$

We use the trivial bound $\left|S_{\alpha}(n, N)\right|^{2} \leq N^{2}$ to estimate the term $I I$:

$$
I I \ll\left(M-M_{m}\right) N^{2} \ll N^{1 / 2+1 / 100} N^{2}=M N^{3 / 2}
$$

For the term I, note that if we square out the summands $\left|S_{\alpha}(n, N)\right|^{2}=$ $\sum_{x, y \leq N} e(n \alpha(a(x)-a(y)))$ and likewise for $\left|S_{\alpha}\left(n, N_{m}\right)\right|^{2}$, we find that

$$
\begin{aligned}
I= & \sum_{n \leq M_{m}} \sum_{N_{m}<y \leq N} e(-\alpha n a(y)) \sum_{1 \leq x \leq N_{m}} e(\alpha n a(x))+\text { complex conjugate } \\
& +\sum_{n \leq M_{m}}\left|\sum_{N_{m}<x \leq N} e(\alpha n a(x))\right|^{2} \\
= & I_{1}+\bar{I}_{1}+I_{2} .
\end{aligned}
$$

For the term I_{2} we use the trivial bound on the inner sum to get

$$
I_{2} \ll M_{m}\left(N-N_{m}\right)^{2} \ll M N
$$

For I_{1} we get

$$
I_{1} \ll \sum_{n \leq M_{m}} \sum_{N_{m}<y \leq N}\left|S_{\alpha}\left(n, N_{m}\right)\right|=\left(N-N_{m}\right) \sum_{n \leq M_{m}}\left|S_{\alpha}\left(n, N_{m}\right)\right|
$$

By Cauchy-Schwarz we find

$$
\begin{aligned}
I_{1} & \ll\left(N-N_{m}\right) M_{m}^{1 / 2}\left(\sum_{n \leq M_{m}}\left|S_{\alpha}\left(n, N_{m}\right)\right|^{2}\right)^{1 / 2} \ll N^{1 / 2} M_{m}^{1 / 2} H_{N_{m}}(\alpha)^{1 / 2} \\
& \leq N^{1 / 2} M_{m}^{1 / 2}\left(M_{m} N^{2-1 / 4}\right)^{1 / 2} \ll M N^{3 / 2-1 / 8}<M N^{3 / 2}
\end{aligned}
$$

Together with the estimates on $I I$ and I_{2} we get (2.2) and so prove the proposition.

REmark. The choice of exponents $2-1 / 2,1+1 / 100$ is completely arbitrary. All we needed was some improvement on the trivial bound $H_{N} \leq M N^{2}$.
3. Proof of Theorem 1. In this section we deduce Theorem 1 from Proposition 4. The argument follows closely the one given in [4].
3.1. Bounding the variance. Let $f \in C_{\mathrm{c}}^{\infty}(\mathbb{R})$ be a test function and set

$$
R_{2}(f, N):=\frac{1}{N} \sum_{1 \leq j \neq k \leq N} F_{N}\left(\theta_{j}-\theta_{k}\right)
$$

where

$$
F_{N}(y)=\sum_{m \in \mathbb{Z}} f(N(y+m))
$$

Using the Fourier expansion of $F_{N}(y)$ we find

$$
R_{2}(f, N)=\frac{1}{N^{2}} \sum_{n \in \mathbb{Z}} \widehat{f}\left(\frac{n}{N}\right) \sum_{1 \leq j \neq k \leq N} e\left(n\left(\theta_{j}-\theta_{k}\right)\right)
$$

that is,

$$
\begin{equation*}
R_{2}(f, N)(\alpha)=\frac{1}{N^{2}} \sum_{n \in \mathbb{Z}} \widehat{f}\left(\frac{n}{N}\right) s_{\text {off }}(n, N) \tag{3.1}
\end{equation*}
$$

where

$$
s_{\text {off }}(n, N):=\sum_{1 \leq x \neq y \leq N} e(n \alpha(a(x)-a(y)))
$$

As a function of $\alpha, R_{2}(f, N)(\alpha)$ is periodic and from (3.1) its Fourier expansion is

$$
R_{2}(f, N)(\alpha)=\sum_{l \in \mathbb{Z}} b_{l}(N) e(l \alpha)
$$

where for $l \neq 0$,

$$
\begin{equation*}
b_{l}(N)=\frac{1}{N^{2}} \sum_{n \neq 0} \sum_{\substack{1 \leq x \neq y \leq N \\ n(a(x)-a(y))=l}} \widehat{f}\left(\frac{n}{N}\right) \tag{3.2}
\end{equation*}
$$

The mean of $R_{2}(f, N)(\alpha)$ is

$$
\int_{0}^{1} R_{2}(f, N)(\alpha) d \alpha=b_{0}(N)=\frac{1}{N^{2}} \sum_{1 \leq x \neq y \leq N} \widehat{f}(0)=\left(1-\frac{1}{N}\right) \widehat{f}(0)
$$

so that

$$
\int_{0}^{1} R_{2}(f, N)(\alpha) d \alpha=\int_{-\infty}^{\infty} f(x) d x+O(1 / N)
$$

This is the expected value for a random sequence.
We next estimate the variance of $R_{2}(f, N)$:

Proposition 5. Under the assumption of Theorem 1,

$$
\int_{0}^{1}\left|R_{2}(f, N)(\alpha)-\widehat{f}(0)\right|^{2} d \alpha \ll N^{-99 / 100+\varepsilon}
$$

for any $\varepsilon>0$, the implied constants depending on ε and f.
Proof. We first note that since $\widehat{f}(n / N)$ is negligible if $|n| \gg N^{101 / 100}$ $=M$, we can bound $b_{l}(N)$ by

$$
\begin{aligned}
b_{l}(N) & \ll \frac{1}{N^{2}} \sum_{0<|n| \ll M} \sum_{\substack{1 \leq x \neq y \leq N \\
n(a(x)-a(y))=l}} \hat{f}\left(\frac{n}{N}\right) \\
& \ll \frac{1}{N^{2}} \#\{0<|n| \ll M, x \neq y \leq N: n(a(x)-a(y))=l\} .
\end{aligned}
$$

By Parseval,
$\int_{0}^{1}\left|R_{2}(f, N)(\alpha)-\widehat{f}(0)\right|^{2} d \alpha=\left(\frac{\widehat{f}(0)}{N}\right)^{2}+\sum_{l \neq 0}\left|b_{l}(N)\right|^{2} \ll \frac{1}{N^{2}}+\frac{1}{N^{4}} A(M, N)$
where $A(M, N)$ is the number of solutions of the equation

$$
n_{1}\left(a\left(x_{1}\right)-a\left(y_{1}\right)\right)=n_{2}\left(a\left(x_{2}\right)-a\left(y_{2}\right)\right)
$$

with $0<\left|n_{1}\right|,\left|n_{2}\right| \ll M$, and $x_{1} \neq y_{1}, x_{2} \neq y_{2} \leq N$. By the assumption of Theorem 1, $A(M, N) \ll M N^{2+\varepsilon}$ so since $M=N^{1+1 / 100}$ we find

$$
\int_{0}^{1}\left|R_{2}(f, N)(\alpha)-\widehat{f}(0)\right|^{2} d \alpha \ll M N^{-2+\varepsilon} \ll N^{-1+1 / 100+\varepsilon}
$$

as required.
3.2. Almost everywhere convergence. In order to prove Theorem 1 from the decay of the variance of the pair correlation (Proposition 5), we first show that for each $f \in C_{\mathrm{c}}^{\infty}(\mathbb{R})$, there is a set of full measure, depending on f, so that for all α in this set

$$
R_{2}\left(f, N_{m}\right)(\alpha) \rightarrow \widehat{f}(0)
$$

for a subsequence N_{m} which grows faster than m.
Set

$$
X_{N}(\alpha)=R_{2}(f, N)(\alpha)-\widehat{f}(0) .
$$

By Proposition 5, $\left\|X_{N}\right\|_{2}^{2}<_{\varepsilon} N^{-99 / 100+\varepsilon}$ for all $\varepsilon>0$ and so if we take $N_{m} \sim m^{101 / 99}$ then

$$
\int_{0}^{1} \sum_{m}\left|X_{N_{m}}(\alpha)\right|^{2} d \alpha=\sum_{m} \int_{0}^{1}\left|X_{N_{m}}(\alpha)\right|^{2} d \alpha<\infty
$$

and so $\sum_{m}\left|X_{N_{m}}\right|^{2} \in L^{1}(0,1)$. Thus the sum is finite almost everywhere, and so $X_{N_{m}}(\alpha) \rightarrow 0$ as $m \rightarrow \infty$ for almost all α.

We next show
Lemma 6. If $N_{m} \sim m^{101 / 99}, N_{m} \leq N<N_{m+1}$ then for almost every α,

$$
X_{N}(\alpha)-X_{N_{m}}(\alpha) \rightarrow 0
$$

Since $X_{N_{m}}(\alpha) \rightarrow 0$ for almost all α, this lemma shows that $R_{2}(f, N)(\alpha)$ $\rightarrow \widehat{f}(0)$ for a set of full measure of α which depends on the test function f. By a diagonalization argument we can pass to a subset of full measure of α 's which works for all $f \in C_{\mathrm{c}}^{\infty}(\mathbb{R})$; for the details see [4].
3.3. Proof of Lemma 6. Recall that for almost all α we have, by Proposition 4,

$$
\sum_{1 \leq n \leq M}\left|S_{\alpha}(n, N)\right|^{2} \ll M N^{2-1 / 4}
$$

and applying Cauchy-Schwarz we get

$$
\begin{equation*}
\sum_{1 \leq n \leq M}\left|S_{\alpha}(n, N)\right| \ll M N^{1-1 / 8} \tag{3.3}
\end{equation*}
$$

for all $N \gg 1$, and $M=N^{101 / 100}$.
We write $N=N_{m}+k$, with $0 \leq k \ll N_{m}^{2 / 101}$. Then we claim that

$$
\begin{align*}
X_{N_{m}+k}(\alpha) & -X_{N_{m}}(\alpha) \tag{3.4}\\
= & \frac{1}{N_{m}^{2}} \sum_{0<|n| \leq M} \hat{f}\left(\frac{n}{N_{m}}\right)\left\{s_{\text {off }}\left(n, N_{m}+k\right)-s_{\text {off }}\left(n, N_{m}\right)\right\} \\
& +O\left(N_{m}^{-1 / 4+1 / 100+2 / 101}\right)
\end{align*}
$$

Indeed, since \widehat{f} is rapidly decreasing, the trivial estimate

$$
\left|s_{\mathrm{off}}(n, N)\right| \leq N+|S(n, N)|^{2} \leq N+N^{2}
$$

gives

$$
X_{N}(\alpha)=\frac{1}{N^{2}} \sum_{0<|n| \leq M} \widehat{f}\left(\frac{n}{N}\right) s_{\mathrm{off}}(n, N)+O\left(N^{-A}\right)
$$

for all $A \gg 1$. From now on we ignore this rapidly decreasing term.
Further, from Proposition 4 and $\left|s_{\text {off }}(n, N)\right| \leq N+|S(n, N)|^{2}$ we have

$$
\begin{aligned}
\sum_{0<|n| \leq M}\left|s_{\text {off }}\left(n, N_{m}+k\right)\right| & \leq M\left(N_{m}+k\right)+\sum_{0<|n| \leq M}\left|S\left(n, N_{m}+k\right)\right|^{2} \\
& \ll M\left(N_{m}+k\right)+M\left(N_{m}+k\right)^{2-1 / 4} \ll M N_{m}^{2-1 / 4}
\end{aligned}
$$

Next we claim that

$$
\begin{align*}
& \frac{1}{\left(N_{m}+k\right)^{2}} \sum_{0 \neq|n| \leq M} \widehat{f}\left(\frac{n}{N_{m}+k}\right) s_{\text {off }}\left(n, N_{m}+k\right) \tag{3.5}\\
& =\frac{1}{N_{m}^{2}} \sum_{0 \neq|n| \leq M} \widehat{f}\left(\frac{n}{N_{m}}\right) s_{\text {off }}\left(n, N_{m}+k\right)+O\left(N_{m}^{-1 / 4+1 / 100+2 / 101}\right)
\end{align*}
$$

This will immediately give (3.4). Indeed, write

$$
\frac{1}{\left(N_{m}+k\right)^{2}}=\frac{1}{N_{m}^{2}}+O\left(\frac{k}{N_{m}^{3}}\right)=\frac{1}{N_{m}^{2}}+O\left(N_{m}^{-3+2 / 101}\right)
$$

and

$$
\begin{aligned}
\frac{n}{N_{m}+k} & =\frac{n}{N_{m}}+O\left(\frac{n k}{N_{m}^{2}}\right) \\
& =\frac{n}{N_{m}}+O\left(\frac{M}{N_{m}^{2-2 / 101}}\right)=\frac{n}{N_{m}}+O\left(N_{m}^{-1+1 / 100+2 / 101}\right)
\end{aligned}
$$

so that for $|n| \leq M \sim N_{m}^{101 / 100}, k<N_{m}^{2 / 101}$,

$$
\begin{aligned}
\widehat{f}\left(\frac{n}{N_{m}+k}\right) & =\widehat{f}\left(\frac{n}{N_{m}}\right)+O\left(\frac{M}{N_{m}^{2-2 / 101}}\right) \\
& =\widehat{f}\left(\frac{n}{N_{m}}\right)+O\left(N_{m}^{-1+1 / 100+2 / 101}\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \frac{1}{\left(N_{m}+k\right)^{2}} \sum_{0 \neq|n| \leq M} \hat{f}\left(\frac{n}{N_{m}+k}\right) s_{\text {off }}\left(n, N_{m}+k\right) \\
& -\frac{1}{N_{m}^{2}} \sum_{0 \neq|n| \leq M} \widehat{f}\left(\frac{n}{N_{m}}\right) s_{\text {off }}\left(n, N_{m}+k\right) \\
& =\left(\frac{1}{N_{m}^{2}}+O\left(\frac{1}{N^{3-2 / 101}}\right)\right) \\
& \quad \times \sum_{0 \neq|n| \leq M}\left(\hat{f}\left(\frac{n}{N_{m}}\right)+O\left(N_{m}^{-1+1 / 100+2 / 101}\right)\right) s_{\text {off }}\left(n, N_{m}+k\right) \\
& \quad-\frac{1}{N_{m}^{2}} \sum_{0 \neq|n| \leq M} \widehat{f}\left(\frac{n}{N_{m}}\right) s_{\text {off }}\left(n, N_{m}+k\right) \\
& \ll N_{m}^{-3+2 / 101} \sum_{0 \neq|n| \leq M}\left|s_{\text {off }}\left(n, N_{m}+k\right)\right|
\end{aligned}
$$

$$
\ll N_{m}^{-3+2 / 101} \cdot M N_{m}^{2-1 / 4} \ll N_{m}^{-1 / 4+1 / 100+2 / 101} \quad \text { by }(3.3)
$$

as required. This proves (3.5) and so (3.4).

As our last step we express the difference $s_{\text {off }}\left(n, N_{m}+k\right)-s_{\text {off }}\left(n, N_{m}\right)$ in the form

$$
\begin{aligned}
s_{\text {off }}\left(n, N_{m}+k\right)-s_{\text {off }}(n, & \left.N_{m}\right) \\
= & 2 \operatorname{Re} \sum_{y=N_{m}+1}^{N_{m}+k} e(-n \alpha a(y)) \sum_{1 \leq x \leq N_{m}} e(n \alpha a(x)) \\
& +\sum_{N_{m}+1 \leq x \neq y \leq N_{m}+k} e(n \alpha(a(x)-a(y))) .
\end{aligned}
$$

We estimate the second term trivially by $k^{2} \ll N_{m}^{4 / 101}$:

$$
\left|s_{\text {off }}\left(n, N_{m}+k\right)-s_{\text {off }}\left(n, N_{m}\right)\right| \leq k\left|S\left(n, N_{m}+k\right)\right|+k^{2} .
$$

Then inserting this into (3.4) and using (3.3) we get

$$
\begin{aligned}
X_{N_{m}+k} & -X_{N_{m}} \\
& \ll \frac{1}{N_{m}^{2}} \sum_{0<|n| \leq M}\left(k\left|S\left(n, N_{m}+k\right)\right|+k^{2}\right)+N_{m}^{-1 / 4+1 / 100+2 / 101} \\
& \ll \frac{k}{N_{m}^{2}} \sum_{0<|n| \leq M}|S(n, N)|+\frac{M k^{2}}{N_{m}^{2}}+N_{m}^{-1 / 4+1 / 100+2 / 101} \\
& \ll \frac{k}{N_{m}^{2}} M N_{m}^{7 / 8}+\frac{M k^{2}}{N_{m}^{2}}+N_{m}^{-1 / 4+1 / 100+2 / 101} \quad \text { by }(3.3) \\
& \ll N_{m}^{-1 / 8+2 / 101+1 / 100}+N_{m}^{-1+1 / 100+2 / 101}+N_{m}^{-1 / 4+1 / 100+2 / 101} \\
& \ll N_{m}^{-1 / 8+2 / 101+1 / 100} .
\end{aligned}
$$

This proves our lemma.
4. Proof of Proposition 2. We assume that $a(x)>0$ is an increasing sequence of positive integers so that there is some $c>1$ for which

$$
\begin{equation*}
a(x+1) \geq c a(x) \tag{4.1}
\end{equation*}
$$

and we will show that the equation

$$
\begin{equation*}
n_{1}\left(a\left(x_{1}\right)-a\left(y_{1}\right)\right)=n_{2}\left(a\left(x_{2}\right)-a\left(y_{2}\right)\right) \tag{4.2}
\end{equation*}
$$

has at most $O\left(M N^{2} \log ^{2} N\right)$ solutions in $0<\left|n_{i}\right| \leq M, 1 \leq x_{i} \neq y_{i} \leq N$, where $M \ll N^{R}$ for some $R>0$.

By changing the sign of n_{i} and exchanging the roles of x_{1} and y_{1} and of x_{2} and y_{2} as needed, we may assume that

$$
\begin{equation*}
x_{1}>y_{1}, \quad x_{2}>y_{2}, \quad n_{1}, n_{2}>0 \tag{4.3}
\end{equation*}
$$

Moreover, by changing the roles of the right- and left-hand sides of (4.2), we may further assume

$$
\begin{equation*}
x_{1} \geq x_{2} . \tag{4.4}
\end{equation*}
$$

We begin by observing that for solutions of (4.2) satisfying the above normalization conditions (4.3), (4.4), we must have

$$
\begin{equation*}
x_{1}-x_{2} \ll \log _{c} M . \tag{4.5}
\end{equation*}
$$

Indeed, the LHS of (4.2) is by (4.1) at least

$$
\begin{align*}
& n_{1}\left(a\left(x_{1}\right)-a\left(y_{1}\right)\right) \tag{4.6}\\
& \quad \geq 1 \cdot\left(a\left(x_{1}\right)-a\left(y_{1}\right)\right) \geq a\left(x_{1}\right)-a\left(x_{1}-1\right) \geq a\left(x_{1}\right)(1-1 / c) .
\end{align*}
$$

The RHS of (4.2) is at most

$$
n_{2}\left(a\left(x_{2}\right)-a\left(y_{2}\right)\right) \leq M a\left(x_{2}\right) .
$$

From (4.1) we have

$$
a\left(x_{1}\right) \geq c^{x_{1}-x_{2}} a\left(x_{2}\right)
$$

so that the RHS of (4.2) is at most

$$
\begin{equation*}
\text { RHS } \leq \frac{M a\left(x_{1}\right)}{c^{x_{1}-x_{2}}} . \tag{4.7}
\end{equation*}
$$

Combining (4.6) and (4.7) gives

$$
a\left(x_{1}\right)\left(1-\frac{1}{c}\right) \leq \frac{M a\left(x_{1}\right)}{c^{x_{1}-x_{2}}}
$$

so that

$$
x_{1}-x_{2} \leq \log _{c} M .
$$

Now fix n_{1}, x_{1}, y_{1}. We need to show that the number of triples $\left(n_{2}, x_{2}, y_{2}\right)$ solving (4.2) and the normalization conditions (4.3), (4.4) is at most $O\left(\log ^{2} M\right)$. Since $x_{1}-x_{2} \leq \log _{c} M$ we may also fix x_{2} and show that the number of pairs (n_{2}, y_{2}) solving (4.2) and the normalization conditions (4.3), (4.4) is at most $O(\log M)$. Since y_{2} will now determine n_{2}, it suffices to determine y_{2}. For this, it suffices to show that there is at most one solution with $x_{2}-y_{2}>2 \log _{c} M$.

Indeed, if $\left(n_{2}, y_{2}\right)$ is a solution with $x_{2}-y_{2}>2 \log _{c} M$ then

$$
a\left(y_{2}\right) \leq \frac{a\left(x_{2}\right)}{c^{x_{2}-y_{2}}}<\frac{a\left(x_{2}\right)}{M^{2}} .
$$

Thus the LHS of (4.2) equals

$$
n_{2}\left(a\left(x_{2}\right)-a\left(y_{2}\right)\right)=n_{2} a\left(x_{2}\right)\left(1-\frac{a\left(y_{2}\right)}{a\left(x_{2}\right)}\right)=n_{2} a\left(x_{2}\right)\left(1+O\left(\frac{1}{M^{2}}\right)\right) .
$$

If $\left(n_{2}^{\prime}, y_{2}^{\prime}\right)$ is another such solution then

$$
n_{2}\left(a\left(x_{2}\right)-a\left(y_{2}\right)\right)=n_{2}^{\prime}\left(a\left(x_{2}\right)-a\left(y_{2}^{\prime}\right)\right)
$$

so that we find

$$
\frac{n_{2}^{\prime}}{n_{2}}=\frac{1+O\left(1 / M^{2}\right)}{1+O\left(1 / M^{2}\right)}=1+O\left(\frac{1}{M^{2}}\right)
$$

However, since $n_{2}, n_{2}^{\prime} \leq M$ this forces $n_{2}=n_{2}^{\prime}$. Thus there are at most $1+2 \log _{c} M$ solutions of (4.2) with $n_{1}, x_{1}, y_{1}, x_{2}$ fixed (and satisfying the normalization conditions). This shows that the total number of solutions of (4.2) is $O\left(M N^{2} \log ^{2} N\right)$.

References

[1] H. Davenport, Analytic Methods for Diophantine Equations and Diophantine Inequalities, Ann Arbor Publ., Ann Arbor, Mich., 1962.
[2] M. Drmota and R. F. Tichy, Sequences, Discrepancies and Applications, Lecture Notes in Math. 1651, Springer, Berlin, 1997.
[3] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974.
[4] Z. Rudnick and P. Sarnak, The pair correlation function of fractional parts of polynomials, Comm. Math. Phys. 194 (1998), 61-70.
[5] H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313-352.

Raymond and Beverly Sackler School of Mathematical Sciences
Tel Aviv University
Tel Aviv 69978, Israel
E-mail: rudnick@math.tau.ac.il

Department of Mathematics and Statistics McGill University

Burnside Hall 805 Sherbrooke Street West Montreal, Quebec Canada, H3A-2K6
E-mail: zaharesc@scylla.math.mcgill.ca

Received on 23.10.1998
and in revised form on 16.2.1999

[^0]: 1991 Mathematics Subject Classification: Primary 11K99.
 Supported in part by grants from the Israel Science Foundation, the U.S.-Israel Binational Science Foundation and the Hermann Minkowski Center for Geometry at Tel Aviv University.

