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Refinement of an estimate for the Hurwitz zeta function
in a neighbourhood of the line σ = 1

by

Mieczysław Kulas (Poznań)

The well-known estimate of the order of the Hurwitz zeta function

ζ(s, α)− α−s � tc(1−σ)3/2
log2/3 t

is proved with the constant c = 18.4974 for 1/2 ≤ σ ≤ 1, t ≥ t0 > 0.
The improvement of the constant c is a consequence of some technical

modifications in the method of estimating exponential sums sketched by
Heath-Brown ([11], p. 136).

I. Introduction. In 1967 H. E. Richert [9] proved for the Hurwitz zeta
function (defined in the half plane Re(s) > 1 by ζ(s, α) =

∑∞
n=0 (n+ α)−s,

0 < α ≤ 1) that

(1) |ζ(s, α)− α−s| ≤ c0tc(1−σ)3/2
log2/3 t

for 1/2 ≤ σ ≤ 1, t ≥ 2, where c0 is an absolute positive constant and
c = 100. This leads to the same bound for the Riemann zeta function,

(2) |ζ(σ + it)| ≤ c1t100(1−σ)3/2
log2/3 t

for 1/2 ≤ σ ≤ 1, t ≥ 2 and a positive constant c1.
More generally, one can deduce from (1) that if L(s, χ) denotes the

Dirichlet L-function associated with the Dirichlet character χ (mod k),
k ≥ 1, then

(3) |L(σ + it, χ)| ≤ c2k1−σt100(1−σ)3/2
log2/3 t+ k1−σ log k

for the same range as (2) and a positive constant c2.
The bounds of the type (2) or (3) have existed for a long time in the lite-

rature and have various applications (zero-free regions, a problem of Dirich-
let divisors in number fields, the order of the Dedekind zeta function of a
quadratic field, and so on).
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Several authors have reduced the constant c = 100 in (2) or (3). For
example, c = 86 [2], c = 39 [12] (also compare [4], Chapter 6 with c = 122,
c = 215 [10]).

In 1988 using Tyrina’s version (see [13]) of Vinogradov’s mean value
theorem, Panteleeva [6] proved that c = 21 in (3) but it seems that this
result is incorrect (since Tyrina’s result has a factor n4k2

in the “constant”
and it is not clear how to make it an absolute constant). Note that in [7]
(1994) Panteleeva postulated c = 21.57.

Heath-Brown ([11], p. 135) pointed out that “the best result up-to-date
appears to be one in which 100 is replaced by 18.8” (Heath-Brown, unpub-
lished).

In this paper we will show that Richert’s result (1) can be sharpened for
a given range of σ and sufficiently large t > 0. We shall prove the following

Theorem. If s = σ + it and 0 < α ≤ 1, then there exists an absolute
positive constant c0 such that

|ζ(s, α)− α−s| ≤ c0tc(1−σ)3/2
log2/3 t

for 1/2 ≤ σ ≤ 1, t ≥ t0 > 0 and c = 18.4974.

The improvement of the constant c is a consequence of some technical
modifications in the method of estimating exponential sums sketched by
Heath-Brown ([11], p. 136).

Perhaps, the latest developments in the theory of I. M. Vinogradov’s
mean value theorem (due to T. Wooley and others) could be used to obtain
an even better value of c. Of course the up-to-date constant c = 18.4974 is
still large, particularly in view of the fact that according to the Riemann
hypothesis it should tend to zero.

II. Lemmas. In the proof of the Theorem we use some lemmas, pre-
sented below for convenience. We suppose that s = σ + it and 0 < α ≤ 1.
All constants occurring in the Vinogradov symbol � are absolute.

Lemma 1 (compare [9], p. 101). For 0 < σ ≤ 1, t ≥ t1 > 0,
∑

n≤exp(log2/3 t)

(n+ α)−s � t(1−σ)3/2
log2/3 t.

Lemma 2 ([5], p. 124). Let σ > 0, t ≥ t2 > 0, M,N ∈ N, N < M ≤ 2N ,
exp(log2/3 t) < N ≤ t1/1000. Then there exist positive constants γ, δ such
that ∣∣∣

∑

N<n≤M
(n+ α)−s

∣∣∣ ≤ γN1−σ−δ( logN
log t )2

where γ = 2.003 and δ = (2309.525)−1.
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This lemma plays the main role in the proof of our Theorem. The latest
version of Vinogradov’s mean value theorem joined with some technical
modifications in the method of estimating exponential sums (Heath-Brown
[11], p. 136) enables us to get a very good value of the constant δ. Numerical
calculations show that we can get a very small improvement of δ if we
decrease the exponent 1/1000 of t, so in this light our choice of the range of
N seems to be optimal.

Corollary 1. For 0 < σ ≤ 1 and t ≥ t3 > 0,

S =
∑

exp(log2/3 t)<n≤t1/1000

(n+ α)−s � tB(1−σ)3/2
log2/3 t,

where B = 18.4974.

P r o o f. Let

Q = [exp(log2/3 t)] + 1.

We see that

(1) S = (Q+ α)−s +
∑

Q<n≤t1/1000

(n+ α)−s.

Let r be the largest integer such that Q · 2r < T 1/1000. Then

(2)
∑

Q<n≤t1/1000

(n+ α)−s

=
r−1∑
m=0

∑

Q·2m<n≤Q·2m+1

(n+ α)−s +
∑

Q·2r<n≤t1/1000

(n+ α)−s.

From Lemma 2 we get

(3)
∑

Q<n≤t1/1000

(n+ α)−s

�
r∑

m=0

(Q · 2m)1−σ−δ( logQ·2m
log t )2

=
r∑

m=0

exp
{

(1− σ) log(Q · 2m)− δ log3Q · 2m
log2 t

}
= S1.

If δ = (2309.525)−1 = δ1 + δ2, δ1, δ2 > 0, then

S1 =
r∑

m=0

exp
{

(1− σ) log(Q · 2m)− δ1 log3Q · 2m
log2 t

}
(4)

× exp
{
−δ2 log3Q · 2m

log2 t

}
.
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Considering the function f(x) = (1− σ)x− δ1x3/log2 t, x > 0, we shall

see that f has a maximum at the point x0 =
√

1−σ
3δ1

log t and f(x0) =
2
3 (
√

3δ1)−1(1− σ)3/2 log t. This implies that

(5) S1 ≤
( r∑
m=0

exp
{
−δ2 log3Q · 2m

log2 t

})
t(2/3)(

√
3δ1)−1(1−σ)3/2

.

Now

(6)
r∑

m=0

exp
{
−δ2 log3Q · 2m

log2 t

}

≤ exp
{
−δ2 log3Q

log2 t

}
+
r\
0

exp
{
−δ2 log3Q · 2x

log2 t

}
dx

< e−δ2 +
∞\
0

exp
{
−δ2 log3Q · 2x

log2 t

}
dx

≤ e−δ2 + 1.5(log 2)−1
(

log2 t

δ2

)1/3

.

Choose the parameters δ1, δ2 in the way that δ1 = (2309.526)−1. This gives

(7) 2
3 (
√

3δ1)−1 = 18.497351 . . . < 18.4974 = B

and δ2 = δ − δ1 > 10−3 · (2309.526)−2.
From (4)–(7) we see that

(8) S1 � tB(1−σ)3/2
log2/3 t

and from (1)–(3) and (8) we have

S � Q−σ + tB(1−σ)3/2
log2/3 t� tB(1−σ)3/2

log2/3 t.

Lemma 3 ([9], Hilfssatz 4). For 1 − 1/2r+1 ≤ σ, 4 ≤ r ≤ log log t and
t ≥ t4 > 0, ∑

t1/(r−1)<n≤t1/2
(n+ α)−s = O(1).

From Lemma 3 we get immediately:

Corollary 2. For 1− 2−1002 ≤ σ and t ≥ t5 > 0,
∑

t1/1000<n≤t1/2
(n+ α)−s = O(1).

According to Vinogradov’s theorem in the form given in [14] (Th. 1b,
p. 114, compare an example after that theorem) one can easily achieve the
following:
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Lemma 4. Let σ > 0, t ≥ t6 > 0, k, P0, P ∈ N, k ≥ 11, 0 < P0 ≤ P and
t1/k ≤ P ≤ t1/(k−1). Then∑

P≤n≤P+P0−1

(n+ α)−s � (8k)(k log 120k)/2P 1−σ−%,

where % = (3k2 log 120k)−1.

As an application of this lemma one can obtain

Corollary 3. For 0 < σ < 1− 2−1002 and t ≥ t7 > 0,
∑

t1/1000<n≤t1/10

(n+ α)−s � t18.1(1−σ)3/2
log2/3 t.

P r o o f. Consider a sum
∑
t1/k<n≤t1/(k−1)(n + α)−s, 11 ≤ k ≤ 1000.

If Q = [t1/k] + 1 and r denotes the largest integer such that Q · 2r <
t1/(k−1), then

∑

t1/k<n≤t1/(k−1)

(n+ α)−s

=
r−1∑
m=0

∑

Q·2m≤n≤Q·2m+1−1

(n+ α)−s +
∑

Q·2r≤n≤t1/(k−1)

(n+ α)−s.

With the help of Lemma 4 we see that

∑

t1/k<n≤t1/(k−1)

(n+ α)−s �
r∑

m=0

(Q · 2m)1−σ−%, % = (3k2 log 120k)−1,

because the dependence on k can be incorporated in the order constant
(k ≤ 1000).

Clearly 2−1002 − % < 1 − σ − % < 1 − % and r � log t. If 1 − σ − % ≤ 0
then ∑

t1/k<n≤t1/(k−1)

(n+ α)−s � log t� t18(1−σ)3/2
log t(1)

� t18.1(1−σ)3/2
log2/3 t.

Otherwise ∑

t1/k<n≤t1/(k−1)

(n+ α)−s � t(1/(k−1))(1−σ−%) log t(2)

= t18(1−σ)3/2−f(1−σ) log t,

on defining f(x) = 18x3/2 − (x− %)(k − 1)−1, x > 0.
Simple calculations show that f has a global minimum on (0,∞) at

the point x0 = (27(k − 1))−2 and f(x0) = −(37(k − 1)3)−1 + %(k − 1)−1.
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It follows that

(3)
∑

t1/k<n≤t1/(k−1)

(n+ α)−s � t18(1−σ)3/2−f(x0) log t.

However, for 11 ≤ k ≤ 1000 we can find that

f(x0) = − (37(k − 1)3)−1 + (3k2(k − 1) log 120k)−1

=
1

3(k − 1)3

{(
k − 1
k

)2 1
log 120k

− 1
36

}

≥ 1
3(k − 1)3

{(
10
11

)2 1
log 120 · 103 −

1
36

}
=

1
3(k − 1)3λ1.

Numerical calculations show that λ1 > 0 whence

(4)
∑

t1/k<n≤t1/(k−1)

(n+ α)−s � t18(1−σ)3/2
log t� t18.1(1−σ)3/2

log2/3 t.

From (1) and (2)–(4) we can easily conclude that

∑

t1/1000<n≤t1/10

(n+α)−s =
1000∑

k=11

∑

t1/k<n≤t1/(k−1)

(n+α)−s� t18.1(1−σ)3/2
log2/3 t

for 0 < σ < 1− 2−1002 and sufficiently large t > 0.

Lemma 5 ([1], Lemma 6, p. 15). Let σ ≥ 0, t ≥ t8 > 0, k,K,M,N ∈ N,
k ≥ 2, K = 2k, N ≤M ≤ 2N and 1 ≤ N ≤ t2/3. Then

∑

N≤n≤M
(n+ α)−s � N1−σ−k/(K−2)t1/(K−2).

Corollary 4. For 0 < σ < 1 < 2−1002, t ≥ t9 > 0 and 4 ≤ k ≤ 17,
∑

t1/(k−1)<n≤t1/2

(n+ α)−s � t18.1(1−σ)3/2
log2/3 t.

P r o o f. Taking k ≥ 4, Q = [t1/(k−1)] + 1, and defining r as the largest
integer such that Q · 2r ≤ t1/2 we have

∑

t1/(k−1)<n≤t1/2
(n+ α)−s

=
r−1∑
m=0

∑

Q·2m≤n≤Q·2m+1

(n+ α)−s +
∑

Q·2r≤n≤t1/2
(n+ α)−s.

From Lemma 5 we get

∑

t1/(k−1)<n≤t1/2
(n+ α)−s �

r∑
m=0

(Q · 2m)1−σ−k/(K−2)t1/(K−2).
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Clearly

2−1002 − k

K − 2
< 1− σ − k

K − 2
< 1− k

K − 2
, r � log t.

If 1− σ − k/(K − 2) ≤ 0, then
∑

t1/(k−1)<n≤t1/2
(n+α)−s ≤ t 1

k−1 (1−σ− k
K−2 )+ 1

K−2 log t = t18(1−σ)3/2−g(1−σ) log t

on defining

g(x) = 18x3/2 − x

k − 1
+

1
(K − 2)(k − 1)

, x > 0.

Just like for the function f considered in the proof of Corollary 3 we
find that g has a global minimum on (0,∞) at x0 = (27(k − 1))−2 but
g(x0) = −(37(k − 1)3)−1 + ((K − 2)(k − 1))−1. It follows that

∑

t1/(k−1)<n≤t1/2

(n+ α)−s � t18(1−σ)3/2−g(x0) log t.

However, for 4 ≤ k ≤ 19, we can find that

g(x0) = − (37(k − 1)3)−1 + ((2k − 2)(k − 1))−1

=
1

(k − 1)3

{
(k − 1)2

2k − 2
− 1

37

}

≥ 1
(k − 1)3

{
182

219 − 2
− 1

37

}
=

1
(k − 1)3λ2,

and λ2 > 0.
This yields

∑

t1/(k−1)<n≤t1/2

(n+ α)−s � t18(1−σ)3/2
log t� t18.1(1−σ)3/2

log2/3 t.

Otherwise (0 < 1− σ − k/(K − 2))
∑

t1/(k−1)<n≤t1/2
(n+ α)−s� t

1
2 (1−σ− k

K−2 )+ 1
K−2 log t = t18(1−σ)3/2−h(1−σ) log t

on defining h(x) = 18x3/2 − x/2 + (k − 2)/(2(K − 2)), x > 0.
We find that the function h has a global minimum on (0,∞) at the point

x0 = 54−2 and h(x0) = −(23 · 37)−1 + (k − 2)/(2(K − 2)).
A not very difficult calculation shows that for 4 ≤ k ≤ 17,

h(x0) = − 1
23 · 37 +

k − 2
2(2k − 2)

≥ 15
2(217 − 2)

− 1
23 · 37 > 0.
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It follows that
∑

t1/(k−1)<n≤t1/2

(n+ α)−s � t18(1−σ)3/2−h(x0) log t < t18(1−σ)3/2
log t

� t18.1(1−σ)3/2
log2/3 t.

III. Proof of the Theorem. According to van der Corput and
Koksma’s result ([1], p. 4) we have

ζ(s, α)− α−s � t
1−σ

log(1/(1−σ)) log 2 log t
log log t

for 1/2 ≤ σ < 1 and t > e.
This estimate is better than ours for 1/2 ≤ σ ≤ 1−1/216 and sufficiently

large t. Indeed, for 1/2 ≤ σ ≤ 1− 1/216 we have 1/216 ≤ 1− σ ≤ 1/2 and

(1− σ) log
1

1− σ log 2 ≤ 16(1− σ)3/2.

It follows that for sufficiently large t > t10 > 0,

ζ(s, α)− α−s � t16(1−σ)3/2 log t
log log t

� t16.1(1−σ)3/2
log2/3 t.

Clearly it suffices to consider the range 1− 1/216 < σ ≤ 1.
For 1 − 2−5 ≤ σ ≤ 1 and t ≥ t11 > 0 (compare [9], p. 101, and [8],

pp. 270–271) we have

|ζ(s, α)− α−s| ≤
∣∣∣
∑

n≤t1/2

(n+ α)−s
∣∣∣+ const

and
∑

n≤t1/2
(n+ α)−s =

{ ∑

n≤N1

+
∑

N1<n≤N2

+
∑

N2<n≤N3

+
∑

N3<n≤t1/2

}
(n+ α)−s

where N1 = exp(log2/3 t), N2 = t1/1000, N3 = t1/10.
For the first sum we use Lemma 1. Corollary 1 gives an estimate for the

second sum. To estimate the third and fourth term one can use Corollary 3,
Corollary 4 with k = 11 and Corollary 2. In this way our Theorem is proved.
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