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1. Introduction. Let, for |q| < 1,

(1.1) R(q) :=
q1/5

1 +
q

1 +
q2

1 +
q3

1 + · · ·
and

(1.2) S(q) := −R(−q)
denote the Rogers–Ramanujan continued fractions. This famous continued
fraction was introduced by L. J. Rogers [19] in 1894 and rediscovered by S.
Ramanujan in approximately 1912. In his first two letters to G. H. Hardy
[16], Ramanujan communicated several results concerning R(q). In particu-
lar, he asserted that

R(e−2π) =

√
5 +
√

5
2

−
√

5 + 1
2

,(1.3)

S(e−π) =

√
5−√5

2
−
√

5− 1
2

,(1.4)

and

(1.5) R(e−2π
√

5) =

√
5

1 +
(
53/4

(√
5−1
2

)5/2 − 1
)1/5 −

√
5 + 1
2

.

These identities were first proved by G. N. Watson [20], [21], and the
latter two identities were also established by K. G. Ramanathan [10]. Four
more evaluations of R(e−2π

√
n) when n = 4, 9, 16, and 64 are found on

p. 311 of Ramanujan’s first notebook [15]. Ramanathan [11] gave a proof of
the evaluation of R(e−4π), but proofs for the other three were first given by
B. C. Berndt and H. H. Chan [6]. Several further evaluations of R(q) and
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S(q) were recorded by Ramanujan on pages 46 and 210 in his lost notebook
[18]. These evaluations have been proved by Ramanathan [12]–[14], Berndt
and Chan [6], and Berndt, Chan, and L.-C. Zhang [7].

It is noticeable that the evaluations of R(e−2π
√
n) and S(e−π

√
n) for

several rational numbers n were first made in a uniform way by Ramanathan
[13] by using Kronecker’s limit formula. However, Ramanathan’s method
could not possibly have been known to Ramanujan. Furthermore, his method
cannot be applied to all the evaluations of R(q) stated by Ramanujan.

Berndt, Chan, and Zhang [7] recently derived the first formulas for the
explicit evaluations of R(e−2π

√
n) and S(e−π

√
n) for positive rational num-

bers n in terms of Ramanujan–Weber class invariants by employing two
beautiful theorems of R(q) given in (1.7) and (1.8) below. To describe these
two theorems, we need to define Ramanujan’s function f(−q) by

(1.6) f(−q) := (q; q)∞ =: q−1/24η(z), q = e2πiz, Im z > 0,

where η(z) denotes the Dedekind eta-function and we employ the customary
notation

(a; q)∞ :=
∞∏
n=0

(1− aqn), |q| < 1.

Two of the most important formulas about R(q) are given by

(1.7)
1

R(q)
− 1−R(q) =

f(−q1/5)
q1/5f(−q5)

and

(1.8)
1

R5(q)
− 11−R5(q) =

f6(−q)
qf6(−q5)

.

The equalities in (1.7) and (1.8) were found by Watson in Ramanujan’s
notebooks and proved by him [20].

To evaluate R(q) explicitly for a certain value of q, it is clear that it
suffices to evaluate the right side of either (1.7) or (1.8). On page 46 in
his lost notebook [18], Ramanujan offers some identities which lead to the
evaluation of the right side of (1.8). In Section 2, we prove these identities
and also derive analogous identities leading to the evaluation of the right
side of (1.7). Berndt, Chan, and Zhang [7] have also established formulas
leading to the evaluations of the right sides of (1.7) and (1.8). We show that
Ramanujan’s formulas and our formulas also lead to the formulas of Berndt,
Chan, and Zhang, which actually are more amenable to specific calculations
than those of Ramanujan. At the time of the writing of their paper [7],
Berndt, Chan, and Zhang were unaware of this material in Ramanujan’s
lost notebook.
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The theorems in Section 2 are the main formulas of this paper, from
which we can derive two formulas for the Rogers–Ramanujan continued
fraction found on page 208 in Ramanujan’s lost notebook. They are the first
known formulas for computing directly the values of the Rogers–Ramanujan
continued fraction. The proofs of these formulas are given in Section 3.

In Section 4, we illustrate our main theorems and the formulas proved
in Section 3 by calculating some values of R(q).

In Section 5, we briefly discuss evaluation of the theta-functions ϕ(q)
and ψ(q) defined by

(1.9) ϕ(q) :=
∞∑

n=−∞
qn

2
=

(−q;−q)∞
(q;−q)∞

and

(1.10) ψ(q) :=
∞∑
n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

,

where the infinite product representations arise from Jacobi’s triple product
identity [2, p. 35, Entry 19]. For certain values of q, our main theorems con-
tain representations of these theta-functions as well as the aforementioned
eta-functions in terms of class invariants defined by (1.12) and (1.13) below.

In the final section, we provide tables summarizing the values of R(q)
and S(q) that appear in the literature.

We complete this introduction with a few basic facts about class invari-
ants. Define, for |q| < 1,

(1.11) χ(−q) := (q; q2)∞.

The class invariants are defined by

(1.12) Gn := 2−1/4q−1/24χ(q)

and

(1.13) gn := 2−1/4q−1/24χ(−q),
where q = exp(−π√n).

As usual, in the theory of elliptic functions, let k := k(q), 0 < k < 1,
denote the modulus. The singular modulus kn is defined by kn := k(e−π

√
n),

where n is a natural number. Following Ramanujan, set α = k2 and αn = k2
n.

Since χ(q) = 21/6{α(1−α)/q}−1/24 and χ(−q) = 21/6(1−α)1/12(α/q)−1/24

[2, p. 124], it follows from (1.12) and (1.13) that

(1.14) Gn = {4αn(1− αn)}−1/24

and

(1.15) gn = 2−1/12(1− αn)1/12α−1/24
n .
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2. Main formulas

Theorem 2.1 ([18], p. 46). Let

t1 := t1(q) := q1/6 χ(−q)
χ(−q5)

and s1 := s1(q) :=
ϕ(−q)
ϕ(−q5)

.

Then

(i)
f(−q)

q1/6f(−q5)
=
s1

t1
; (ii)

f(−q2)
q1/3f(−q10)

=
s1

t21
; (iii)

ψ(q)√
qψ(q5)

=
s1

t31
;

(iv) s2
1 = 1

2 ((1 + t61) +
√

(1 + t61)2 − 20t61 ).

Remark. Instead of (iv), Ramanujan actually stated

(2.1) s1 = 1
2

(√
1 + 2

√
5t31 + t61 +

√
1− 2

√
5t31 + t61

)

with a slight misprint. But in applications, it is more convenient to use the
equality in (iv) instead of (2.1) because of the nature of t1.

P r o o f (of Theorem 2.1). (i) Set t = t1 and s = s1 throughout the
proof. By (1.11), we have

(2.2) t = q1/6 (q; q2)∞
(q5; q10)∞

.

Using the definition of f(−q) in (1.6), Euler’s identity,

(2.3) (−q; q)∞ =
1

(q; q2)∞
,

(1.9), and (2.2), we deduce that

f(−q)
q1/6f(−q5)

=
(q; q)∞

q1/6(q5; q5)∞
=

(q; q)∞
(−q; q)∞ ·

(−q5; q5)∞
(q5; q5)∞

· (q5; q10)∞
q1/6(q; q2)∞

=
ϕ(−q)
ϕ(−q5)

· χ(−q5)
q1/6χ(−q) =

s

t
.

(ii) Using in turn (1.6), Euler’s identity (2.3), (1.9), and (2.2), we find
that

f(−q2)
q1/3f(−q10)

=
(q2; q2)∞

q1/3(q10; q10)∞

=
(q; q)∞

(−q; q)∞ ·
(−q5; q5)∞
(q5; q5)∞

· (q5; q5)∞(q5; q10)∞
(q; q)∞(q; q2)∞

· (q2; q2)∞
q1/3(q10; q10)∞

=
ϕ(−q)
ϕ(−q5)

· (q5; q10)2
∞

q1/3(q; q2)2∞
=

s

t2
.
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(iii) Applying (1.10), Euler’s identity (2.3), (1.9), and (2.2), we have

ψ(q)
q1/2ψ(q5)

=
(q2; q2)∞
q1/2(q; q2)∞

· (q5; q10)∞
(q10; q10)∞

=
(q; q)∞

(−q; q)∞ ·
(−q5; q5)∞
(q5; q5)∞

· (q5; q5)∞(q5; q10)∞
(q; q)∞(q; q2)∞

× (q2; q2)∞
q1/2(q; q2)∞

· (q5; q10)∞
(q10; q10)∞

=
ϕ(−q)
ϕ(−q5)

· (q5; q10)3
∞

q1/2(q; q2)3∞
=

s

t3
.

(iv) In the sequel, set

(2.4) P1 := P1(q) :=
f(−q)

q1/6f(−q5)
and Q1 :=

f(−q2)
q1/3f(−q10)

.

Recall that [3, p. 206, Entry 53]

P1Q1 +
5

P1Q1
=
(
P1

Q1

)3

+
(
Q1

P1

)3

.

Since P1 = s/t and Q1 = s/t2 by (i) and (ii), respectively, the equation
above can be simplified to

s4 − (1 + t6)s2 + 5t6 = 0.

Thus (iv) follows immediately from the equation above by using the quadra-
tic formula.

Proposition 2.2. If P1 and Q1 are defined as in (2.4), then

(i) if 2c = Q6
1 + 11, then R5(q2) =

√
c2 + 1− c,

(ii) if 2c = P 6
1 (−q) + 11, then S5(q) =

√
c2 + 1 + c.

P r o o f. Solve the quadratic equations

(2.5)
1

R5(q2)
− 11−R5(q2) =

f6(−q2)
q2f6(−q10)

and

(2.6)
1

S5(q)
+ 11− S5(q) =

f6(q)
qf6(q5)

.

Equations (2.5) and (2.6) are obtained from (1.8) with q replaced by q2 and
−q, respectively.

Theorem 2.3 below is analogous to Theorem 2.1, but it was not stated
anywhere by Ramanujan.
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Theorem 2.3. Let

t2 := t2(q) := q1/5χ(−q1/5)
χ(−q5)

and s2 := s2(q) :=
ϕ(−q1/5)
ϕ(−q5)

.

Then

(i)
f(−q1/5)
q1/5f(−q5)

=
s2

t2
; (ii)

f(−q2/5)
q2/5f(−q10)

=
s2

t22
; (iii)

ψ(q1/5)
q3/5ψ(q5)

=
s2

t32
;

(iv) s2 =
1− 2t2 − 2t22 + t32 +

√
1− 4t2 − 10t32 − 4t52 + t62
2

.

P r o o f. Set t = t2 and s = s2 in the proof. From (1.11), we find that

(2.7) t = q1/5 (q1/5; q2/5)∞
(q5; q10)∞

.

The proofs of (i)–(iii) are similar to those of Theorem 2.1(i)–(iii), respec-
tively.

To prove (iv), set

(2.8) P2 := P2(q) =
f(−q1/5)
q1/5f(−q5)

and Q2 :=
f(−q2/5)

q2/5f(−q10)
.

Then by Entry 58 in [3, p. 212], we have

(2.9) P2Q2 +
25

P2Q2
=
(
Q2

P2

)3

− 4
(
Q2

P2

)2

− 4
(
P2

Q2

)2

+
(
P2

Q2

)3

.

Since P2 = s/t and Q2 = s/t2 from (i) and (ii), respectively, we derive that

(2.10)
s2

t3
+ 25

t3

s2 =
1
t3
− 4

1
t2
− 4t2 + t3.

Multiply both sides of (2.10) by s2t3 to deduce

(2.11) s4 − (1− 4t− 4t5 + t6)s2 + 25t6 = 0.

Solutions of this equation for s are

s =
1− 2t− 2t2 + t3 ±√1− 4t− 10t3 − 4t5 + t6

2
,

or

s =
−1 + 2t+ 2t2 − t3 ±√1− 4t− 10t3 − 4t5 + t6

2
.

But since t and s approach 0 and 1, respectively, as q approaches 0, the
appropriate solution for s is

s =
1− 2t− 2t2 + t3 +

√
1− 4t− 10t3 − 4t5 + t6

2
.



Rogers–Ramanujan continued fraction 55

Proposition 2.4. If P2 and Q2 are defined as in (2.8), then

(i) if 2c = Q2 + 1, then R(q2) =
√
c2 + 1− c,

(ii) if 2c = P2(−q) + 1, then S(q) =
√
c2 + 1 + c.

P r o o f. Solve the quadratic equations

(2.12)
1

R(q2)
− 1−R(q2) =

f(−q2/5)
q2/5f(−q10)

and

(2.13)
1

S(q)
+ 1− S(q) =

f(q1/5)
q1/5f(q5)

.

Equations (2.12) and (2.13) are derived from (1.7) with q replaced by q2

and −q, respectively.

Let q = exp(−π√n) for a positive rational number n. Recall that t1(q)
and t2(q) are defined in Theorems 2.1 and 2.3, respectively. Then by (1.12)
and (1.13),

t61(q) =
(
gn
g25n

)6

, t61(−q) = −
(
Gn
G25n

)6

,(2.14)

t2(q) =
gn/25

g25n
, t2(−q) = −Gn/25

G25n
.(2.15)

In [7], utilizing some theta-function identities and modular equations of
degree 5, Berndt, Chan, and Zhang found relations among P1, Q1, t1(q),
and t1(−q), where P1 and Q1 are defined by (2.4), and by using modular
equations of degree 25, they also discovered relations among P2, Q2, t2, and
t2(−q), where P2 and Q2 are defined by (2.8). All the relations they found in
[7] are actually equivalent to parts of Theorems 2.1 and 2.3, if q is confined
to be exp(−π√n). In particular, they showed

(2.16)
Q2√
5T

+

√
5T
Q2

= (T + T−1)2
(
T + T−1
√

5
−

√
5

T + T−1

)
,

where

T :=
√

g25n

gn/25
= t
−1/2
2 .

From Theorem 2.3(ii), we have

(2.17) s2 = Q2t
2
2.

And recall from (2.11) that

s4
2 − (1− 4t2 − 4t52 + t62)s2

2 + 25t62 = 0.

Substituting (2.17) into the equality above, we deduce that

t82Q
4
2 + 25t62 = t42Q

2
2 − 4t52Q

2
2 − 4t92Q

2
2 + t10

2 Q
2
2.
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Since t2 = T−2, after multiplying both sides by T 16Q−2
2 , we obtain

(2.18) Q2
2 + 25T 4Q−2

2 = T 8 − 4T 6 − 4T−2 + T−4.

Adding 10T 2 to both sides of (2.18) yields

(2.19) (Q2 + 5T 2Q−1
2 )2 = (T 4 − 2T 2 + T−2 − 2)2,

so we have

(2.20) Q2 + 5T 2Q−1
2 = T 4 − 2T 2 + T−2 − 2,

because the square roots of both sides of (2.19) have leading terms q−2/5.
By dividing both sides of (2.20) by

√
5T , we deduce (2.16). We can derive

all the other formulas discussed in [7] from our main theorems by the same
method.

3. Ramanujan’s explicit formulas for the Rogers–Ramanujan
continued fraction

Theorem 3.1 ([18], p. 208). Let t2 be given in Theorem 2.3. Then

R(q) =
1

4t2

((
1 + t2

√
5 + 1
2

)√
1− t2(i)

−
√

(1− t2)
(

1 + t2

√
5 + 1
2

)2

− 2t2(
√

5 + 1)
)

×
(
−
(

1− t2
√

5− 1
2

)√
1− t2

+

√
(1− t2)

(
1− t2

√
5− 1
2

)2

+ 2t2(
√

5− 1)
)
,

R(q2) =
1

4t22

((
1− t2

√
5 + 1
2

)√
1− t2(ii)

−
√

(1− t2)
(

1 + t2

√
5 + 1
2

)2

− 2t2(
√

5 + 1)
)

×
(
−
(

1 + t2

√
5− 1
2

)√
1− t2

+

√
(1− t2)

(
1− t2

√
5− 1
2

)2

+ 2t2(
√

5− 1)
)
.

P r o o f. (i) Set t = t2 throughout the proof. From (1.7) and Theorem
2.3(i), (iv), we have

(3.1)
1

R(q)
− 1−R(q) =

1− 2t− 2t2 + t3 +
√

1− 4t− 10t3 − 4t5 + t6

2t
,
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which is equivalent to

(3.2)
1

R(q)
−R(q) =

1− 2t2 + t3 +
√

1− 4t− 10t3 − 4t5 + t6

2t
.

Motivated by the fact that R(q) are units when q = e−π
√
n (see [7]), let us

assume that R(q) can be written a product of two units such as

(3.3) R(q) = (
√
a+ 1−√a)(

√
b−
√
b− 1).

Then

(3.4)
1

R(q)
−R(q) = 2(

√
ab+

√
(a+ 1)(b− 1)).

From (3.2) and (3.4), we may set

(3.5)
√
ab =

√
(1− 2t2 + t3)2

16t2

and

(3.6)
√

(a+ 1)(b− 1) =

√
1− 4t− 10t3 − 4t5 + t6

16t2
.

Equating (3.5) and (3.6) yields

(3.7) a =
(√

5 + 1
2

)(
1− t

4t

)(
1− t

√
5− 1
2

)2

and

(3.8) b =
(√

5− 1
2

)(
1− t

4t

)(
1 + t

√
5 + 1
2

)2

.

Hence (i) follows from (3.3), (3.7), and (3.8).
(ii) The proof of the formula for R(q2) is similar to that of R(q). By (1.7)

and Theorem 2.3(ii), (iv),

(3.9)
1

R(q2)
−R(q2) =

1− 2t+ t3 +
√

1− 4t− 10t3 − 4t5 + t6

2t2
.

As before, let

(3.10) R(q2) = (
√
a+ 1−√a)(

√
b−
√
b− 1).

Then

(3.11)
1

R(q2)
−R(q2) = 2(

√
ab+

√
(a+ 1)(b− 1)).

Equating
√
ab =

√
(1− 2t+ t3)2

16t4
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and
√

(a+ 1)(b− 1) =

√
1− 4t− 10t3 − 4t5 + t6

16t4
we deduce that

(3.12) a =
(√

5 + 1
2

)(
1− t
4t2

)(
1 + t

√
5− 1
2

)2

and

(3.13) b =
(√

5− 1
2

)(
1− t
4t2

)(
1− t

√
5 + 1
2

)2

.

We complete the proof by utilizing (3.12) and (3.13) in (3.10).

Theorem 3.2 ([18], p. 208). Let t1 be given in Theorem 2.1 and let

k := R(q)R2(q2).

Then

(i) R(q) = k1/5
(

1− k
1 + k

)2/5

and R(q2) = k2/5
(

1 + k

1− k
)1/5

.

Furthermore,

k =
1

4t61

(√
1− t61 −

√
1− t61

(√
5 + 1
2

)6)
(ii)

×
(√

1− t61
(√

5− 1
2

)6

−
√

1− t61
)

and

1− k
1 + k

=
1
4

(√(√
5 + 1
2

)6

− t61 −
√

1− t61
)

(iii)

×
(√(√

5− 1
2

)6

− t61 +
√

1− t61
)
.

P r o o f. Set t = t1 in the proof. Equalities (i) were found by Ramanujan
[15, p. 362], and first proved by Andrews, Berndt, Jacobsen, and Lamphere
[1, Entry 24]. So it suffices to prove (ii) and (iii).

Utilizing (i) in (1.8), we see that

f6(−q)
qf6(−q5)

=
1
k

(
1 + k

1− k
)2

− 11− k
(

1− k
1 + k

)2

=
(

1 + k − k2

k

)(
1− 4k − k2

1− k2

)2

.
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Hence, by Theorem 2.1(i),

s6
1

t61
=
(

1 + k − k2

k

)(
1− 4k − k2

1− k2

)2

,

or

t6 =
(

k

1 + k − k2

)(
1− k2

1− 4k − k2

)2(
ϕ(−q)
ϕ(−q5)

)6

.

But, since
ϕ2(−q)
ϕ2(−q5)

=
1− 4k − k2

1− k2

as proved in [9, Theorem 4.2], we obtain

(3.14) t6 =
k(1− 4k − k2)

(1− k2)(1 + k − k2)
.

Rearranging (3.14), we find that

t6k4 + (1− t6)k3 + (4− 2t6)k2 − (1− t6)k + t6 = 0,

which can be expressed as

(3.15) t6
(

1
k
− k
)2

− (1− t6)
(

1
k
− k
)

+ 4 = 0.

By the quadratic formula,

(3.16)
1
k
− k = 2

(
(1− t6) +

√
t12 − 18t6 + 1

4t6

)
.

As in the proof of Theorem 3.1, let

(3.17) k = (
√
a+ 1−√a)(

√
b−
√
b− 1).

Then
1
k
− k = 2(

√
ab+

√
(a+ 1)(b− 1)).

Comparing this with (3.16), we may set

√
ab =

√
(1− t6)2

16t12 and
√

(a+ 1)(b− 1) =

√
t12 − 18t6 + 1

16t12 .

Hence we can conclude that

(3.18) a =
(

1 +
√

5
2

)3 1− t6
4t6

and

(3.19) b =
(√

5− 1
2

)3 1− t6
4t6

.

The formula (ii) follows from (3.17)–(3.19).
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We prove (iii) in a similar way. Let u = (1 − k)/(1 + k). Substituting
k = (1− u)/(1 + u) in (3.15), we find that

4t6 − (1− t6)
(

1
u
− u
)

+
(

1
u
− u
)2

= 0,

and hence, by the quadratic formula,

(3.20)
1
u
− u = 2

(
(1− t6) +

√
t12 − 18t6 + 1
4

)
.

As, if

(3.21) u = (
√
a+ 1−√a)(

√
b−
√
b− 1),

then
1
u
− u = 2(

√
ab+

√
(a+ 1)(b− 1)),

by (3.20),
√
ab =

√
(1− t6)2

16
and

√
(a+ 1)(b− 1) =

√
t12 − 18t6 + 1

16
.

Equating these identities, we deduce that

a =
(√

5− 1
2

)3 1− t6
4

and b =
(

1 +
√

5
2

)3 1− t6
4

.

We complete the proof by substituting these values into (3.21).

Alternative proof of Theorem 3.2. Recall that, if k ≤ √5− 2, then

(3.22)
k

1− k2

(
1 + k − k2

1− 4k − k2

)5

= q(−q; q)24
∞

and

(3.23)
(

k

1− k2

)5 1 + k − k2

1− 4k − k2 = q5(−q5; q5)24
∞.

The identities (3.22) and (3.23) are found in Ramanujan’s lost notebook [18,
p. 53], and the first proofs are given in [9, Theorem 4.5].

Divide (3.23) by (3.22) to deduce that
(

k(1− 4k − k2)
(1− k2)(1 + k − k2)

)4

=
(
q1/6 (−q5; q5)∞

(−q; q)∞

)24

.

Taking fourth roots of both sides yields (3.14). The rest of the proof is the
same as above.
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4. Evaluations of R(q). Let q = exp(−π√n) for a positive rational
number n in the sequel.

In the following two corollaries, the explicit formulas for R(q) discussed
in Section 3 are used for illustration. However, it should be mentioned that
it is much easier to use Theorems 2.1 and 2.3 for computing R(q) than the
explicit formulas.

We first reclaim (1.3) and (1.4) in the corollary to Theorem 3.1 below.

Corollary 4.1. If R(q) and S(q) are defined by (1.1) and (1.2), respec-
tively , then

(i) R(e−2π) =

√
5 +
√

5
2

−
√

5 + 1
2

and

(ii) S(e−π) =

√
5−√5

2
−
√

5− 1
2

.

P r o o f. Let q = exp(−π). Since (see [17])

(4.1) Gn = G1/n,

we find from (2.15) that t2(−e−π) = −1. Using this value in Theorem
3.1(ii), (i), we deduce (i) and (ii) above, respectively, after lengthy calcu-
lations.

We next turn to applications of Theorem 3.2.

Corollary 4.2.

S(e−π
√

3/5) =
(−(3 + 5

√
5) +

√
30(5 +

√
5)

4

)1/5

.

Remark. This evaluation is mentioned in the incomplete table of S(q)
on page 210 in Ramanujan’s lost notebook, but the actual value was first
introduced and proved by Ramanathan in [13].

P r o o f (of Corollary 4.2). Let q = e−π
√

3/5. Then by (2.14),

t61(−e−π
√

3/5) = −
(
G3/5

G15

)6

.

From Weber’s table [22, p. 721], or [4, Chapter 34], we find that

G15 = 2−1/12(1 +
√

5)1/3.

Using a modular equation of degree 5 [2, p. 282, Entry 13(xiv)], and (1.14),
we deduce that

G3/5 = 2−1/12(−1 +
√

5)1/3.
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Hence

(4.2) t61 = −3−√5

3 +
√

5
.

Substitute (4.2) into (ii) and (iii) to find k and (1 − k)/(1 + k), then
complete the proof using the first equality in (i). However, these calculations
are very lengthy.

Remark. By utilizing (4.2) in the second equality in (i), we can also

evaluate R(e−2π
√

3/5).

We complete this section with an application of Theorem 2.1 and Propo-
sition 2.2.

Corollary 4.3 ([18], p. 210).

S5(e−π/
√

5) =

√(
5
√

5− 11
2

)2

+ 1− 5
√

5− 11
2

.

P r o o f. Let q = e−π/
√

5. Then by (2.14) and (4.1),

t61(−e−π/
√

5) = −
(
G1/5

G5

)6

= −1.

Recalling that P1 is defined in (2.4), from Theorem 2.1(i), (iv), we have

(4.3) P 6
1 (−q) =

f6(q)
−qf6(q5)

= −5
√

5.

We complete the proof upon substituting (4.3) into Proposition 2.2(ii).

5. Evaluations of theta-functions. Recall that [2, p. 103]

(5.1) ϕ(e−π) =
π1/4

Γ (3/4)
.

We can evaluate quotients of theta-functions in the forms of those in The-
orems 2.1 and 2.3 as we can determine the Rogers–Ramanujan continued
fraction, but by using (5.1), ϕ(e−π

√
n) and ψ(−e−π

√
n) may be determined

explicitly.

Corollary 5.1. Recall that ϕ(q) and ψ(q) are defined by (1.9) and
(1.10), respectively. Then

ϕ(e−π)
ϕ(e−5π)

=
√

5
√

5− 10,(i)

ψ(−e−π)
e−π/2ψ(−e−5π)

=
√

5
√

5 + 10.(ii)
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Remark. Corollary 5.1(i) is recorded on page 285 in Ramanujan’s first
notebook. One of the proofs of this evaluation is given by Berndt and Chan
[5]. Corollary 5.1(ii) appears to be new.

P r o o f (of Corollary 5.1). Let q = e−π. From Ramanujan’s paper [16],
[17], Weber’s table [22, p. 722], or [4, Chapter 34],

(5.2) G1 = 1 and G25 = (1 +
√

5)/2.

Thus by (2.14),

(5.3) t61(−e−π) = −
(
G1

G25

)6

= −
(√

5− 1
2

)6

.

Hence, from Theorem 2.1(iv),

(5.4)
(
ϕ(e−π)
ϕ(e−5π)

)2

= −4 + 2
√

5 +
√

81− 36
√

5 = 5
√

5− 10.

Corollary 5.1(i) follows immediately from (5.4). Applying (5.3) and (5.4) to
Theorem 2.1(iii) we deduce Corollary 5.1(ii).

From the theta-function transformation for ϕ(q) [2, p. 102, Corollary] or
Theorem 2.3 with t2 = −1, we find that

ϕ(e−π/5)
ϕ(e−5π)

=
√

5.

Similarly,

ψ(−e−π/5)
e−3π/5ψ(−e−5π)

=
√

5.

Combining these results with Corollary 5.1, we obtain

Corollary 5.2.

ϕ(e−π/5)
ϕ(e−π)

=
√

2 +
√

5,(i)

ψ(−e−π/5)
e−π/10ψ(−e−π)

=
1√

2 +
√

5
.(ii)

6. Tables of R(q) and S(q). Prior to providing the tables of all the val-
ues of R(q) and S(q) found in the literature, we first recall the reciprocity
theorems for the Rogers–Ramanujan continued fraction stated by Ramanu-
jan in his second letter to Hardy [16] and his notebooks [15]. If both α and
β are positive and αβ = 1, then
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{√
5 + 1
2

+R(e−2πα)
}{√

5 + 1
2

+R(e−2πβ)
}

=
5 +
√

5
2

,(6.1)

{√
5− 1
2

+ S(e−πα)
}{√

5− 1
2

+ S(e−πβ)
}

=
5−√5

2
.(6.2)

Ramanathan [10] established analogues of (6.1) and (6.2); namely, if α and
β are positive and αβ = 1/5, then

(6.3)
{(√

5 + 1
2

)5

+R5(e−2πα)
}{(√

5 + 1
2

)5

+R5(e−2πβ)
}

= 5
√

5
(√

5 + 1
2

)5

,

(6.4)
{(√

5− 1
2

)5

+ S5(e−πα)
}{(√

5− 1
2

)5

+ S5(e−πβ)
}

= 5
√

5
(√

5− 1
2

)5

.

We see that, from each of (6.1)–(6.4), if we find a particular value of R(q)
or S(q), then we easily can find the other. For this reason, we list just one
of the two values in each case in the table below.

Table of R(e−π
√
n)

R(e−2π) =

√
5 +
√

5
2

−
√

5 + 1
2

Refs: [10], [12], [16], [20]

R(e−2π
√

2) =

√
5(g + 1) + 2g

√
5−√5g − 1

2
, where

(g3 − g2)/(g + 1) = (
√

5 + 1)/2

Ref: [10]

R(e−2π
√

5) =

√
5

1 +
(
53/4

(√
5−1
2

)5/2 − 1
)1/5 −

√
5 + 1
2

Refs: [10], [12], [16], [21]

R(e−2π
√

2/5) = −18− 5
√

5 +
√

90(5 + 2
√

5)

Refs: [11], [13]

R(e−2π
√

17/5) =
−111− 5

√
5 +

√
10(2245 + 999

√
5)

2
Ref: [13]
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R(e−4π) =
√
c2 + 1− c, where 2c = 1 +

51/4 + 1
51/4 − 1

√
5

Refs: [4], [6], [11], [15]

R(e−6π) =
√
c2 + 1− c, where 2c = 1 +

601/4 + 2−√3 +
√

5

601/4 − 2 +
√

3−√5

√
5

Refs: [4], [6], [7], [15]

R(e−8π) =
√
c2 + 1− c, where 2c = 1 +

3 +
√

2−√5 + 201/4

3 +
√

2−√5− 201/4

√
5

Refs: [4], [6], [15]

R(e−16π) =
√
c2 + 1− c, where

2c = 1 +
51/4(4−√2) + 1 +

√
2 +
√

5− 21/4(3−√2 +
√

5−√10)

51/4(4−√2)− 1−√2−√5 + 21/4(3−√2 +
√

5−√10)

√
5

Refs: [4], [6], [15]

Table of S(e−π
√
n)

S(e−π) =

√
5−√5

2
−
√

5− 1
2

Refs: [10], [11], [12], [16], [21]

S(e−π
√

3) =
−3−√5 +

√
6(5 +

√
5)

4
Refs: [8], [14], [18]

S(e−π
√

5) =

√
5

1 +
(
53/4

(√
5+1
2

)5/2 − 1
)1/5 −

√
5− 1
2

Refs: [10], [12]

S(e−3π) =
√
c2 + 1− c, where 2c =

(60)1/4 + 2 +
√

3−√5

(60)1/4 − 2−√3 +
√

5

√
5− 1

Ref: [7]

S5(e−π/
√

5) =

√(
5
√

5− 11
2

)2

+ 1− 5
√

5− 11
2

Refs: [7], [18]

S5(e−π
√

3/5) =
−5
√

5− 3 +
√

30(5 +
√

5)

4
Refs: [6], [7], [11], [12], [13]
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S5(e−π
√

7/5) = −5
√

5− 7 +
√

35(5 + 2
√

5)

Refs: [6], [11], [12], [13], [18]

S5(e−π
√

9/5) =
√
c2 + 1− c, where 2c =

2
√

15 + 3
√

5− 1

2
√

15− 3
√

5 + 1
5
√

5− 11

Ref: [7]

S5(e−π
√

11/5) =
√
c2 + 1− c, where

2c =
( √

3
√

5 + 7−
√

3
√

5− 1√
9
√

5 + 27−
√

9
√

5 + 19

√
5
)3

− 11

Ref: [7]

S5(e−π
√

13/5) =
√
c2 + 1− c, where

2c =
(√√

65 + 7−
√√

65− 1√√
65 + 9−

√√
65 + 7

·
√

5
2

)3

− 11

Ref: [7]

S5(e−π
√

23/5) = −207− 95
√

5 + 3
√

5(1955 + 874
√

5)

Refs: [11], [13]

S5(e−π
√

29/5) =
√
c2 + 1− c, where

2c =
( √√

145 + 17−
√√

145 + 9

(
√√

29 + 2
√

5 + 1−
√√

29 + 2
√

5− 1)2

√
5
2

)3

− 11

Ref: [7]

S5(e−π
√

39/5) =
√
c2 + 1− c, where

2c =
(√

5(
√

65 + 8)1/3
(√

13 + 3
2

))3

− 11

Ref: [12]

S5(e−π
√

41/5) =
√
c2 + 1− c, where

2c =
( √

3
√

41 + 25−
√

3
√

41 + 17

(
√

3
√

41 + 23−
√

3
√

41 + 19)2

√
10
)3

− 11

Ref: [7]

S5(e−π
√

53/5) =
√
c2 + 1− c, where

2c =
(

(
√√

265 + 16−
√√

265 + 12)2
√

5

(
√

5
√

53 + 17
√

5 + 2−
√

5
√

53 + 17
√

5− 2)2

)3

− 11

Ref: [7]
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S5(e−π
√

89/5) =
√
c2 + 1− c, where

2c =
( √

9
√

89 + 85−
√

9
√

89 + 77

(
√

9
√

89 + 85−
√

9
√

89 + 83)2

√
5
2

)3

− 11

Ref: [7]

S5(e−π
√

101/5) =
√
c2 + 1− c, where

2c =
( √

5
√

505 + 113−
√

5
√

505 + 105

(
√

13
√

101 + 58
√

5 + 1−
√

13
√

101 + 58
√

5− 1)2

√
5
2

)3

− 11

Ref: [7]
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