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Let R be a ring (commutative with unity, in what follows). For an integer
n > 1 define gR(n) to be the least integer s for which every element of R
is a sum of s nth powers of elements of R, if such an integer exists, or
∞ otherwise. Waring’s problem for R is the problem of deciding whether
gR(n) is finite and estimating it for all n. Note that what is usually called
Waring’s problem is not what we call Waring’s problem for Z. For n odd,
what we call Waring’s problem for Z is usually referred to as the “easier”
Waring’s problem, with Waring’s problem proper referring only to positive
integers. Nevertheless, the results we are discussing here have an impact on
the usual Waring’s problem because they have a bearing on the issue of local
solvability. For Waring’s problem for finite fields see [GV] and the references
therein.

We wish to consider in this note Waring’s problem for unramified exten-
sions of the ring of p-adic integers Zp. For Zp the problem has been con-
sidered extensively (see [B] and references therein) for its connection with
the problem of non-vanishing of the singular series in the classical Waring’s
problem. We shall improve some of Bovey’s results for Zp and obtain new
results for unramified extensions of Zp.

Let W (k) be the (unique) complete unramified extension of Zp with
residue field k algebraic over Fp; W (k) is the ring of Witt vectors over k
and we will recall some of its properties later. To begin with, note that it
follows from Hensel’s lemma that if n = ptd, (p, d) = 1 and a ≡ xn1 + . . .+xns
(mod pt+ε), x1, . . . , xs ∈ W (k), where ε = 1, p 6= 2, ε = 2, p = 2 and some
xi is a unit, then there exist y1, . . . , ys ∈W (k) with a = yn1 + . . .+ yns . This
is easy and well known.

Assume for now on that p 6= 2 so ε = 1. Notice that if a, as above, is a
unit then, for any representation a ≡ xn1 + . . .+xns (mod pt+ε), some xi will
be a unit. So every unit of W (k) is a sum of at most gWt+1(k)(n) nth powers,
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where Wt+1(k) = W (k)/pt+1 is the ring of truncated Witt vectors. If a is
not a unit then a−1 is a unit and is a sum of gWt+1(k)(n) nth powers, and it
follows that gW (k)(n) ≤ gWt+1(k)(n) + 1. Obviously, gW (k)(n) ≥ gWt+1(k)(n)
and in [B] it is implicitly assumed that they are equal (for k = Fp), however
this is false already for p = 3, n = 2.

Bovey’s nice idea was to relate gW (k) with the following function. Let v
denote the p-adic valuation onW (k) and define gW (k)(n, r) to be the smallest
integer s for which there exist x1, . . . , xs in W (k) with v(xn1 + . . .+xns ) = r.
Of course gW (k)(n, 0) = 1. If n = ptd, (p, d) = 1, r ≤ t and v(xn1 + . . .+ xns )
= r then some xi is a unit for, otherwise, v(xn1 + . . . + xns ) ≥ n ≥ pt > t.
This observation will be useful in the following.

The following result was proved by Bovey [B] for Zp. We state and prove
it in a more general form. The proof is essentially the same as Bovey’s and
is done here for the reader’s convenience. Note however that Bovey actually
claims a stronger result which is false (see above).

Lemma 1. If n = ptd and (p, d) = 1 then

gWt+1(k)(n) ≤ gk(n)
t∑

r=0

gW (k)(n, r).

P r o o f. By induction on t, the case t = 0 being clear. Assume t > 0.
If a ∈ Wt+1(k), then by induction there exist x1, . . . , xs in Wt+1(k), s ≤
gk(n)

∑t−1
r=0 gW (k)(n, r) with x

n/p
1 + . . . + x

n/p
s = a and, as xn/p ≡ (σx)n

(mod pt), where σ is the inverse of the Frobenius automorphism of W (k),
we get (σx1)n+ . . .+(σxs)n = a−bpt for some b. Also, there exist y1, . . . , yu
with

∑
yni = cpt, u ≤ gW (k)(n, t) and c not divisible by p. Finally, there exist

z1, . . . , zv with
∑
zni ≡ b/c (mod p) and v ≤ gk(n). It follows that

∑
(σxi)n +

∑
yni
∑

zni ≡ a− bpt + cptb/c ≡ a (mod pt+1)

and this means that a is a sum of at most s+uv nth powers in Wt+1(k), as
desired.

The main results of this paper are sharpened estimates for gW (k)(n, r)
with the consequences for Waring’s problem following from Lemma 1.

The simplest result is when k is algebraically closed.

Lemma 2. If n = ptd, (p, d) = 1 and k is an algebraically closed field
then gW (k)(n, r) ≤ 2r + 1 for 1 ≤ r ≤ t.

P r o o f. It follows from [TV] that the residue classes of x1, . . . , xs with
v(
∑
xp

t

i ) ≥ r form an algebraic variety Vr for r ≤ t + 1, since xp
t

is a
Teichmüller representative modulo pt+1. Also from [TV], Proposition 1, Vr
has dimension s−1−r for r ≤ (s+1)/2. The subset of Vr where the residue
class of some xi is zero corresponds to a similar variety with s replaced by
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s− 1. Again by [TV], Proposition 1, we know its dimension to be s− 2− r
for r ≤ s/2. It follows that there exists a point in Vr \ Vr+1 with x1, . . . , xs
non-zero, for r ≤ (s − 1)/2. The Teichmüller representatives of x1, . . . , xs
are dth powers since k is algebraically closed, and are ptth powers modulo
pt+1. We thus obtain y1, . . . , ys ∈ W (k) with v(

∑
yni ) = r if s ≥ 2r + 1.

Thus gW (k)(n, r) ≤ 2r + 1.

Corollary. Under the assumptions of Lemma 2, gW (k)(n) ≤ (t+1)2+1.

P r o o f. Since gk(n) = 1, this follows from Lemmas 1 and 2.

Lemma 3. If n = pd, (p, d) = 1 and q ≥ 4d4, q 6= p, or q = p ≥
max{27d6, 13}, then gW (Fq)(n, 1) ≤ 3.

P r o o f. Retaining the notation of the previous lemma and of [TV], we
have to consider the Fq-rational points of V1 \ V2, that is, the set of a ∈ Fq
with f(a) 6= 0, where f(x) = ((−x − 1)p + xp + 1)/p. Any such a will give
rise to a triple of pth powers modulo p2 whose sum has valuation 1, by
taking the Teichmüller representatives of a, (−1−a), 1. To ensure that these
lifts are pdth powers and prove the lemma, we need to be able to choose
a ∈ Fq such that both a and −1 − a are dth powers. The set of a ∈ Fq
with both a and −1− a dth powers has at least q/d2− q1/2 elements by the
Riemann hypothesis for function fields (although the relevant case of Fermat
equations can be proved directly), whereas f(x) has at most p− 1 zeros, so
we are done unless q = p. In this case Mit’kin [M] (see also Heath-Brown
[HB]) has shown that f(x) has at most 2p2/3 + 2 zeros in Fp and again we
are done.

Corollary. Under the assumptions of Lemma 3, gW (Fq)(n) ≤ 9. If n
is odd then gW (Fq)(n) ≤ 8.

P r o o f. The first statement follows from Lemma 1 and gFq (n) = gFq (d)
≤ 2, for d in the given range. For the second statement, note that 0 =
1n + (−1)n, so it is easy to see that gW (Fq)(n) = gW2(Fq)(n) in this case. So,
again, the statement follows from Lemma 1 and gFq (n) = gFq (d) ≤ 2.

Remark. For p = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, we have gZp(2p) =
9, 12, 7, 6, 7, 5, 5, 5, 5, 5, 5 respectively. It appears at first glance that gZp(2p)
= 5 for p ≥ 17. However, gZ59(118) = 7.

Examples. Some cases where one knows the value of gZp are:

gZp((p− 1)pt) = pt+1, p 6= 2, gZp((p− 1)pt/2) = (pt+1 − 1)/2, p 6= 2.

Bovey has shown (it appears that the proof can be fixed) that, if (p− 1)/2
does not divide n, gZp(n)� n1/2+ε for all ε > 0.

It is not hard to show, using the above methods, that gZp(p) ≤ 4 for
all p. But gZp(p) = 3 for all p ≤ 211, except p = 3, 7, 11, 17, 59 when it is 4.
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Lemma 4. gW (k)(n, r) ≤ gW (k)(n, 1)r.

P r o o f. If
∑s
i=1 x

n
i has valuation 1, then (

∑s
i=1 x

n
i )r has valuation r,

which gives what we want upon expansion.

Lemma 4 is well known but is included here for completeness. Since
gW (k)(n, 1) = gW (k)(n/pt−1, 1), n = ptd, (p, d) = 1, the above lemma can
be used together with the previous results to give bounds on gW (k)(n), for
arbitrary n. Of course, these bounds are not always the best. For instance,
gW (Fq)(p

2, 2) ≤ 32 = 9, q 6= p, as follows from Lemmas 3 and 4. However,
we have

Lemma 5. gW (Fq)(p
2, 2) ≤ 5 if q = pa, a ≥ 7 and p is sufficiently large.

P r o o f. As in Lemma 2, we use the notation and results of [TV]. The
variety V2 is, in this case, a surface of degree p in V1

∼= P3, with iso-
lated singularities, and V3 is a curve of degree p3. It follows from [K] that
|#V2(Fq)−q2−q−1| ≤ 2(4p+10)3q3/2. Also #V3(Fq) ≤ p3(q+1), trivially.
So V2 \ V3 has Fq rational points as soon as p is sufficiently large.
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My interest in the subject was started by reading a post by N. Benschop
on the Usenet newsgroup sci.math where he claimed, in effect, that gZp(p) ≤
4 for all p. After overcoming my initial disbelief of the statement, through
numerical experimentation, I looked at Benschop’s paper [Be], but the proof
there is unfortunately incorrect, although he does rediscover part of Bovey’s
argument. A search through MathSciNet then unearthed Bovey’s paper,
which sparked the present work.
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