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Numbers representable by five prime squares with primes
in an arithmetic progression
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YonGHUI WANG (Beijing)

1. Introduction. A classical result in additive number theory is the five
prime squares theorem proved by L. K. Hua: the diophantine equation
(1.1) N = pi +p3 +p3 +pi +p}
is solvable for large odd N satisfying N =5 (mod 24).

This theorem can be regarded as a nonlinear extension of the Goldbach
ternary theorem (Goldbach—Vinogradov Theorem), it also gives a deep in-
sight into the Lagrange four square theorem. In this paper we study the
equation (1.1) with prime variables in an arithmetic progression, i.e. the
prime variables satisfy p; = b; (mod d),i=1,...,5, and b = (b1,...,b5) €
B(N,d), where
(1.2)  B(N,d)

={beN°:1<b;<d, (bj,d)=1, b +...+b2 =N (mod o(d)d)}
with o(d) = 1,4,2 for 2td, 2||d and 4|d respectively. We will use this

notation in the rest of the paper.
Our main result is

THEOREM. There exists an effective positive constant § such that the
diophantine equation

(13) N =pt+p3 +p3 +pi + 13,
’ pi =b; (modd), i=1,...,5,

with prime variables is solvable for all positive integers d < N° provided
N =5 (mod 24) is a large odd integer with B(N,d) nonempty.

It should be mentioned that this result implies the famous Linnik theo-
rem on the least prime in an arithmetic progression.
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In the corresponding linear case, i.e. for the Goldbach ternary theorem
with prime variables in an arithmetic progression, M. C. Liu and Tao Zhan
[7] proved that there exists an effective positive constant 6 > 0 such that,
for all positive integers d < N?, the diophantine equation

N = p1 + p2 + p3,
pi=b; (modd), j=1,2,3,

where (b;,d) =1, Z?zl b; = N (mod d), is solvable for large odd N.

Their result improved the work of Rademacher, Ayoub and Zulauf, the
previous results holding only for a fixed positive integer d or d < (log N)®.

Hua’s method with minor modifications actually gives that the equation
(1.3) is solvable for large N with the set (1.2) nonempty and d < log? N,
but it fails when we want to enlarge the scope of d to d < N, where ¢ is an
absolute positive constant.

The difficulty lies in two respects. First, in the case of d < N, we cannot
use the Siegel-Walfisz theorem as usual to estimate the major arcs. Second,
the restriction to an arithmetic progression requires finding a way to deal
with exponential sums and Gauss sums over an arithmetic progression.

The second difficulty was overcome by Jianya Liu and Tao Zhan in [4,
Lemma 2|. By using multiplicativity ingeniously, they transform the expo-
nential sum over an arithmetic progression to the usual exponential sum
with Dirichlet characters and Gauss sums. The starting point of this pa-
per is a similar result for the quadratic case, i.e. Lemma 3.2. But we use a
different method to deal with the first difficulty.

In 1975, Montgomery and Vaughan [8] diminished the exceptional set of
the Goldbach problem from O(zlog™ z) to O(z'~%). Their difficulty also
was wider major arcs and the fact that the Siegel-Walfisz theorem could not
be used. They solved it by using the Deuring—Heilbronn phenomenon and
Gallagher’s theorem. But if we use their method for our quadratic problem,
we will face too many cases and need to do lots of calculation. This is
also the reason why we do not apply the method of M. C. Liu and Tao
Zhan [7]. Hence we shall apply a modification of the method by Liu and
Tsang [6]. The point is that we only need to estimate the singular series and
singular integral separately and only once. But as we are concerned with the
quadratic case and the restriction to an arithmetic progression, we have to
work harder from the beginning to estimate the complicated singular series
(Lemma 4.8).

2. Notations and the minor arcs. Define
(21) d:=N° Q:=N%0 T.=NY° L[:=N/50, r:=N"'T4
where § is a small computable positive constant. Then Q@ < T < L < N. We
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write
(2.2) Ly =LY% and N,= N2

In the following, € > 0 is a comparable very small constant, and the implied
constants in the symbols O and < are computable, positive and depend at
most on 6,e. We write e(y) for e*™¥ and e, (y) for e(y/q).

For any a, g such that (a,q) =1,1<a<¢<Q,let

a—T a+T

m(a,q) = ) .
q q

We can easily see that these intervals are mutually disjoint and all lie

in [1,1+ 7]. We call the union of these m(a,q) the major arcs M and

[7,14 7] \ M the minor arcs M'.

Define
(2.3) Si(a) = S(a,d,b;) = Y A(n)e(an?),
n< Nz
n=b,; (mod d)
1+7 5

Then the Theorem holds if R(N ) > 0. By interval dissection we get

(2.5)  R(N) = {g | }Hs —Na)da = Ry(N) + Ry(N),
i=1

M’

say. The integral over the minor arcs contributes the error term Ry(N). We
now estimate it by the following lemma from [11].

LEMMA 2.1. For « satisfying o —a/q| < 1/¢2, (a,q) = 1 and h = (q,d),
we have

N21+eh N211/14 N26/7h3/4 q1/2 q1/4 N1/7 N
1/2 + 1/2 + 3/4,1/4 1/2 + 1/4 :
dq d d3/%q h h

For any o € M’, by Dirichlet’s lemma we see that there exist ¢, a satis-
fying Q < ¢ <771, (a,q) = 1,1 < a < g such that |a —a/q| < 7/q < 1/¢%.
Notice that d = N%, Q = N9 and § is sufficiently small. We have

COROLLARY 2.2. For any o € M', we have
Si(a) < NY/2Q~1/2
provided N > Ny(9).
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LEMMA 2.3. We have
Ry(N) < N3/2Q=1/20=2og? e N
whenever N > N1(6,c).

Proof. By Corollary 2.2 for S5(«), we have

47 4 4 147
Ro(N) < NY2Q 72 | | T] Si(a)| da < NY2Q72 37§ [si(a)] o
T =1 =1 T

Clearly, the inner integral is equal to

Z A(n1)A(ng) A(nz) A(ns) < log* N Z 1

nj <Nz n; <No
nf+n§:n§+ni anrng:nngni
n;=b; (mod d) n;=b; (mod d)
4 ; 4
= log NH E e(an)‘ da.
0 n<Na
n=b; (mod d)

Following the arguments in Hua’s lemma [9], it is seen that there is a constant
¢ such that

4 N
H E e(om)’ da < 7z log® N,
0 n<N,

n=b,; (mod d)

whence our lemma follows.

From (2.5), to obtain our Theorem it remains to find a lower bound for
Ry (N) such that Ry (N) > |Ra2(N)|.

3. Notations and the major arcs. We shall use x (mod ¢) and xo
(mod ¢) to denote a Dirichlet character and the principal character modulo ¢
respectively. It is known ([1], Chapter 14) that there exists a small ¢; such
that there is at most one primitive character Y to a modulus ¥ < T for
which the corresponding L-function L(s,x) has a zero in the region o >
1 —c1(logT)~, |t| < T; and if there is such an exceptional character, it is
quadratic and the corresponding zero B, called the exceptional zero, is real,
simple and unique. Furthermore we have

(3.1) (P2 10g? 7)1 <1— B < ¢y /logT.

We write Zg’zl or Z(a Q=1 for a sum over integers a satisfying 1 < a < ¢

and (a,q) = 1. For any character x (mod dq/h), h = (d,q) define
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S(6y) = S06ydg)i= Y x(n)A(n)e(n’y),

L2<n< N>
No
1) = | ela®y)dr,
Lo
(3.2) v
I(y) = | 2" le(a®y) dr,
Lo
, N2
I(x.y) =), | 2*  e(a®y) du,
v<T L3

where A(n) is the von Mangoldt function and Z; <7 denotes the summation
over all zeros o = 8 + iy of the function L(s, x) lying in the region 1/2 <

B<1—ci(logT)™t, |y| < T (hence excluding S, if it exists). By ([1], p. 120)
we can easily deduce that

LEMMA 3.1. For any real y and any x (mod dq/h) with dg/h < T, we
have

(3.3) S(x,y) = 8 I(y) — 61 (y) — I(x,y) + O((1 + [y| N)N2T~  log® N),

where
g = Jb ¥ x=xo (moddg/h),
X 0 otherwise;
5 — {1 if Xx=Xxo (mod dgq/h),
X 0 otherwise.
We next transform the exponential sum S;(«) into character sums or
integrals of the above forms. To do this we need some more notations.

For positive integers d, ¢ and h(q) := (d,q), i.e. the largest common
divisor of d, g, define positive integers «;, §;,~; according to

(3.4) d=pf...p0do, q=p0" ... p%q0,  (do,q0) =1,
(3.5) h(q) =p*...pl°,
hence v; = min(ay, 3;), i = 1,..., s. Define

o; if B; > oy
3.6 hi(q) :=p2t...p%, & =14 " tow
(3.6) 1(a) = pi s {O otherwise,

(3.7) h2(q) == h(q)/h1(q)-

For brevity, we write h = h(q), hy = h1(q) and he = ha(q). It is easily seen
that (hl,hg) =1 and (d/hl,q/hQ) =1.
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LEMMA 3.2. For o = a/q + X\, we have
(3:8)  Si(@) = ¢~ (d/hi)¢ " (q/ha)
< Y )Y Gulama)S@n ) + Oflog? ),

n(modd/hy) n (mod q/hz)
where
(39 Gi(a,7,q) =G(hbi,a,7,q) = Y e(ac/q)ii(c),
(c7q):1
c=b,; (mod h)

and n, ¢ are characters modulo q/hs and d/hy respectively.
Proof. We have
Si(a) = Z A(n)e(an?)

'I’LSNQ
n=b,; (mod d)
= Z A(n)e(an?) + O( Z logpe(p%oz))
ns N PPN,
n=b; (mod d) plq
(n,9)=1
ac?
= Z e<> Z A(n)e(n?X) + O<logNZlogp)
o=t 7 <N, rla
n=b; (mod d)
n=c (mod q)
ac? 9 9
= Z e<> Z A(n)e(n“A) + O(log” N).
(Cv(I):l q n<Na
c=b; (mod h) n=b; (mod d)
n=c (mod q)

The inner sum of the main term is empty unless ¢ = b; (mod h), we can
therefore add the restriction ¢ = b; (mod h) to the sum over c¢. On the other
hand, under the condition ¢ = b; (mod h), the congruences

n=b; (modd), mn=c (modq)
are equivalent to

n=b; (mod d/hy), n=c (modq/hs).

Then
ac?
S; (o) = el — A(n)e(n?\) + O(log® N
@= 2 (“C) X Awe) +0tog’ N)
(c,9)=1 n<N2
¢=b; (mod h) n=b; (modd/h1)

n=c (mod q/h2)
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= ' (d/h)e  (a/ha) Y e<a62>

(07Q):1 4
c=b; (mod h)
X Z C(bi) Z 7(c)
¢ (modd/h1) n (mod g/h2)
X Z ¢n(n)A(n)e(n?X) 4+ O(log® N).

TLSNZ

Hence we get the assertion.

By using the above lemmas, we now simplify R;(N) as follows.

223

For any @ = a/q + A € m(a,q), we have |A\| < 7/¢ and ¢ < Q. By

Lemmas 3.1 and 3.2,

Si(a) = ¢~ (d/h1)~ " (q/h2) (Gi(a>ﬁo»Q)I()\) - 6q5<0(bi)Gi(a’7~mOa q)

_ 5 Cb:)Gila,7.9)I(Gn. V)

¢ (modd/h1)n (modgq/hs)

ey

+0( Ma/ha) D 1Gia T+ NNINYAT og? )

n (mod q/hs)
+ O(log® N),

where (Co (mod d/h1) 7o (mod g/h2) = Xxo (mod dg/h), ¢, 7 are primi-

tive characters, and

5 { 1 if ¥ (mod 7) exists and 7| dq/h,
q'=

(3.10) )
0 otherwise.

Since |\| < 7/¢ and |A|N < T/4g~1, the trivial bound
> 1Gi(a,m, )| < pla/h2)p(q)

n (mod q/h2)
shows that the first O-term above is
< ()T g ' NyT og? N < NoT~3/*log” N.

Hence, for @ = a/q+ A € m(a, q) we obtain

(3.11)  Si(a) = ¢ ' (d/h1)¢ " (a/h2)Hi(a,q, N) + O(N2T~*/*1og” N)

where

(3.12)  Hi(a,q,\) == Gi(a,7p, ) I(N) — 8,Co(b)Gi(a, im0, ) I(N)
- Fi(a) q, )‘)7

(3.13)  F(a,q,A) == > C(b:)Gi(a, 7, 9)I(Cn, N).

¢ (modd/hi)n(modgqg/hs)
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To estimate H;(a,q,\), we need the following lemma which can be de-
duced similarly to Lemma 3.3 of [5].

LEMMA 3.3. Let I(X),I(\) and I(x,)\) be defined as in (3.2).

(a) For any real y, we have

I(y) < min(No, Ly y|™Y),  I(y) < min(Ny, L5 y| ™)

and
Ny for any real y,
I(x,y) <  Na(Llyl)"/* for |y| > L7,
Ly(Llyh~"  for |yl > T/(rL).
(b) We have
| M@ dy < ML, | 1) dy < NJLS
and
S [I(x,y)|*dy < NL'log N.

By the trivial estimates for I(A), () and I(x, A) in Lemma 3.3(a),
o~ (d/h)¢™ (a/h)Hi(a, g, A) < @(q)No.

Then
= > @ %(d/h)e(qa/h2)
q<Q
T/q 5

< > | e(=N(a/a+2) ][] Hila,q.2) dr
(a.q)=1 —7/q i=1

+O<Z Z Z F(NoT—3/*1og? N)>~ k)

9<Q (a,9)= 14

=Y ¢ %(d/m)¢ " (a/ha) Y ey(—Na)

q<Q (a,q)=1
T/q 5

X S e(=NN) [ [ Hila,q,A) dx+ O(N*/2T1/2QP).
—7/q i=1

The product ]_[221 Hy(a,q, \) is a sum of at most (¢(dq/h)+2)® terms, each
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of the form [[7_, E; where Ej is either G;(q)I()), —3,((b:)G (a, 7o, ) T(N)
or _C(bz)G(av 7, Q)I(CTL )‘)

By comparing the estimates for I(\), I(\) and I(x,A) in Lem-
ma 3.3(a) with |\| > 7/¢ > L1, it is easily seen that the weakest one among
them is NY2(L|A|)~Y/2, since 7 = N= T4 [ = N/25 and T = QV/V5.
Then

5 o]
[[Eidx < &*@)lr/al=** | |E1Ez|dA
R\[-7/q,7/q] =1 —0o0

< ¢*(@)|7/al7*2,
by Cauchy’s inequality and Lemma 3.3(b). Hence

5

> ¢ < ) <hq) S| NN Hilab ) dx

2

9<Q (a,9)=1 R\[-7/q,7/d] i=1
q dq ° 5 3/2 nr3/2n—3/8
<y ¢7° =)o@ (o 7 ) +2) ¢°(0)g* NPT
ha h
q<Q
< QON3/2T—3/8 « N3/20Q 1,
Therefore
(3.14)  Ri(N)= > ¢ 5(d/m)o (q/h2) Y. eq(—Na)
9<Q (a,q)=1
oo 5
X S e(—NX) [[ Hi(a,q, %) dA + O(N*2Q71).
—00 =1

4. Some lemmas for singular series and singular integrals

LEMMA 4.1. Let x (mod p?/hy) be any character with 3 > 0, let hy =
ha(p?) be defined as in (3.7), and let a be such that p® || d. We have

(a) Gi(a,x,p?) =0 if x (mod p?) is primitive and p|a, B > a.

(b) Gi(a,xno,p") = 0 if no is modulo p'/ha(p'), pta and t > 0 +
max{0, a, 5} where 6 =1+ [1/p].

(¢) Gila, x,p?) < 2(2,p)p"/? if pta.

Proof. (a) Let a’ = a/p. For 1 < ¢ < pP, write ¢ = u + vp”~!. Since

B > a, h(p®) = p® and the restriction ¢ = b; (mod p®) is equivalent to
u=b; (mod p*). Hence
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> a'c?
Gi(a,x,p") = e<ﬁ—1)X(C)
c=1 p
c=b; (mod p%)
! a'u?\ <& 1
= X () X =0

For a primitive character xy (mod p?), the inner sum over v is zero.

(b) For t > «, we see from (3.7) that h(p') = p®, ha(p') = 1, so 1o is
modulo p'.

For 1 < ¢ < pt, write ¢ = u + vp'~?. The restriction ¢ = b; (mod p*)
is equivalent to u = b; (mod p?®), since t > 6 + max{0, o, 5}. Moreover, we

have ¢ = u? + 2uvp'™? (mod p?), ¢ = u (mod p?). Hence
" e i 2auv
Gla,x.,p)= >  xmolu Z
u=1 v=1

u=b; (mod p®)

For each u coprime with p, in view of pfa, the inner sum over v is zero.
Hence (b) is proved.
(c) For B8 < a, |G(a,x,p%)| < 1. For 3 > a, we have

G )= Y (%5 (@

B
p
=o' (") > e< >xp Xps (€)-
Xpo (mod p® ) C=1

By Exercise 14 in Chapter 6 of [10], the inner sum over c¢ is less than
2(2,p)p?/? for pta. Hence we get (c).
We shall use the following sums to form the singular series:

5

(4.1) Z(q) = Z(qg;m, ... n5) i= Z eq(—Na) HGi(a,m,q),

(a,q)=1 =1
(42) Y(Q) = Y(Qa 771:-~~7775 Zeq Na H (a7ni7q)7

where 7; is modulo ¢/h2(q). We can also write

(4.3) Y(gim,--ms) =q > mler)...ns(cs),
(9)
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where Z( 7) denotes the sum over cq, ..., c; satisfying
1<e,...,c5<q, ¢ =b; (mod (d,q)),
4.4 >
" (cg) =1, Y =N (mod g).
i=1

Denote by N(g) the number of solutions of the above congruence equation.
By Hua’s work on Tarry’s problem [3, p. 162] and M. C. Liu, K. M. Tsang
[6, (1.5)], we see that if N =5 (mod 24) and N satisfies (1.2) then N(q) > 1
for all ¢. In the case where 7; are all principal characters, we see that

(4.5) Y(g;no,---,m0) = ¢N(q).
Furthermore we put

where (d,q)* has the same prime factors of (d,q), and (d,q)* || d which
means that if p® || (d, ¢)*° then p® || d.

LEMMA 4.2. Both Z(q) and Y (q) are multiplicative in the sense that if
q=q...q with (¢;,q;) = 1 for i # j, then for each i = 1,...,5, the
decompositions n; (mod q/ha(q)) = H§:1 ni; (mod q;j/ha(q;)) are unique.

We have
t
Z(gms-oms) = [T Z2(g5imys - 7s5)
j=1
and

t
Y(gm,..ms) = [[Y(gimy - msy)-
j=1

In particular, N(q) and A(q) are multiplicative functions of q.

Proof. It suffices to consider the case ¢ = 2, and then use induction.
Let ¢ = q1¢q2 with (q1,¢2) = 1. It is easily seen from (3.7) that

h(q) = Mq1)h(q2),  hi(q) = hi(@1)hi(g2),  (hi(q1), hi(g2)) = 1,

¢ _ @ @ <Q1 g2 ):1 P19
hi(q)  hi(q) hi(ge)’ hi(q1)’ hi(g2) ’ ’

Then 7; (mod q/h2(q)) = H?:1 ni; (mod gj/ha(gq;)) are uniquely deter-
mined.

Let a = a1q2 + a2q1. If a1, as run over reduced residue systems modulo
q1, g2 respectively, then a will run over a similar system modulo ¢g;¢2. So

5
(4.7) Z(q192) = Z %(-NG)HGi(a’m,qqu)

(a,q)=1 i=1
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= Z €q (_Nal) Z €QQ<_Na2)

(a1,q1)=1 (az,q2)=1

5
X H Gi(a1q2 + azq1,mi, 0192)-
i=1

In the same way, let ¢ = c1q2 + c2q1. We see that the restriction ¢ = b;
(mod h(q)) is equivalent to c1g2 = b; (mod h(q1)) and cag1 = b; (mod h(gs)),
so we have

Gi(a1q2 + a2q1,1i,q192)
q192

_ 3 e((alqz +a2q1)c2>n(c)

P 4192
c=b; (mod h(q))

= > > 6<a1(61q2)2)7h1(01qz)

1
(c1q2,q1)=1 (c2q1,92)=1 q
c1q2=b; (mod h(q1)) c2q1=b; (mod h(g2))

e<a2(cm)2)mz(02ql)

q2

= G;(a1, M1, QI)Gi(CLQa N2, q2)-

Hence the right hand side of (4.7) is equal to Z(q1)Z(q2) as desired. The
proof for the multiplicativity of Y (q) is similar.

LEMMA 4.3. For any positive integer q, we have

_5( dq h5(Q) —3/2
v (h(q)>Z(q)<< 554 2.

Proof. Let ¢ = leqpﬁp be the prime factorization of ¢q. By Lemma
4.1(c) and multiplicativity of Z(q), we have

5
Z(@) = [[1Z2e™) < []27 ] p™"* < 4"

plq plq i=1
Hence by ¢(q) > qloglog q, we get the assertion.
LEMMA 4.4. Fori = 1,...,5, let x; (mod p’) be primitive characters

and 8 = max{f1,...,Bs}. Define o := a(p) such that p*®) || d. For brevity,
write Z(p') = Z(p*; x1X0, - - -, X5X0), where xo is modulo pt. Then

(a) Z(p”) =Y (p°) if B > a.
(b) Z(p') =0 if t > 6 + max{6, 8, a}, where =1+ [2/p].
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(€) Yo @ (P")Z(p") = o2 (P)Y (p') for B>a or Yoy 0> (p*) Z(p*)
+ Ef}:aﬂ 9075(29“) (P') =¢ 5(pt) (p') for =0 andt > a.
(a

Proof. (a) Lemma 4.1(a) asserts that G;(a,x,p’) = 0 for pta and
(B > «. By comparing (4.1) and (4.2), the sum over a is empty if p | a, hence
(a) is proved.

(b) This follows readily from (4.1) and Lemma 4.1(b).

(c) The sum for Z(p!) can be written as ngzl - Z;me. The first

sum is Y (p®). By setting a = pa’, we see that the second sum is equal to
p°Y (p*~1) when v > max(3 + 1, + 1,2). Thus we have

e Z(PY) = e ()Y () — e (T HY (0.
For 3 > «, summing both sides for v = §+ 1,...,t and using (a), we get
the first equality. In order to consider the condition 8 = 0, t > «, we still

need to sum over those ¢ < o and prove that this yields ¢=°(p®)Y (p*). For
t <a, h(p') = p', ha(p') = p" we have

5
Z —Na H Z ac?
26 = 6< pt ) ( e(pt >)
(a,pt)=1 i=1 (ci,ph)=1
ci=b; (mod p*)

- > e< (o 11)?3 ))Zw(pt)-

(a,p*)=1
Since, by (1.2), >_b? = N (mod d), we have
(4.8) > o0 Z(p") = ¢ (0™,

which is equal to o =°(p®)Y (p®). Hence we get (c).
Taking x1 = ... = x5 = xo and # = 0 in Lemma 4.4, we obtain

COROLLARY 4.5. Let A(q), N(q), o = a(p) be defined as in (4.6), (4.5),
and Lemma 4.4 respectively. Then

(a) A(p*) =0 forp>3,t>1+a, and A(2") =0 for t > 2+ max{2,a}.

(b) P~ (P" )N (p') = pp~°(p®)N(p*) for p =3, t > av.

(c) 25 (2H)N(2F) = 2% = 5(2¢ )N(2%) fort > o/, o' = 1 +max{2, a}.

In view of the above corollary, we now define
(4.9)  s(p) = > A@p)

0<t<O+max{0,a(p)}
— ¢—5(U(pa(p))pa(p))N(G(pa(p))pa(p))U(pa(p))pa(p),

where o(q) is defined in (1.2). We now simplify s(p).
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LEMMA 4.6. (a) s(p) = ¢ > (p™)p® if p # 2, a = a(p) > 1.

3 if o =
(b) s(2) = {25(204(2))2&(2)“ Z}” ag; > ;

hence we can also write s(2) = p~°(2%)2%(d).
(c) s(p) =1+A(p) if p # 2,ptd, 5(2) = 1+ A(2) + A(2%) + A(2°) if 2¢d.

Proof. (a) Use a similar argument to Lemma 4.4(c), (4.8).
(b) By a similar argument, we have A(2%) = ¢=5(2%)p(2?) for t < a.

t
If @« = 1, it remains to consider ¢ = 2,3. Since Z(a,pf):l =>r -
=1, pla» We have
5 2*
_ —Na ac?
ay =) 3 (F)I( X (%))

(a,2t)=1 i=1 ci=1
¢;=b; (mod 2)

_ w(gt)(i > (Lt =)

a=1 Cizl
¢;i=b; (mod 2)

RSERS e(a%z?;cl?—zv)))

a’=1 ci=1
CiEbi (mod 2)

— g0_5(2t)(2tN(2t) _ 2t—125N(2t—1))
— 90—5(2t)2tN(2t) _ ¢—5(2t—1)2t—1N(2t—1)

where N (2¢) is the number of solutions of the following congruence equation:

A+...+c2 =N (mod 2%),
¢ =b; (mod 2).

By an easy calculation, we see that N(23) = 21°, N(2) = 1. Then
s(2) =1+ A(2) + A(2%) + A(2%)
=1+4+1-¢ °(2)2N(2) + ¢ °(2%)2°N(2%) = 2°.

If @ > 1, it remains to consider t = o + 1. We have

1 < §2t) (Ci72):17 {

5 PR
—Na ac?
a+ly _ , —5roa+l 7
At =g ¥ (G X ()
(a,20t1)=1 i=1 c;=1
¢i=b; (mod 2%)
2a+1 2a+1 5 9
_ +1) a(2i—1 ¢ —N)
—eter (S X o(Ten

c;i=1
¢;=b; (mod 2%)
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2a+1

SO0 T (5))

20{
a’'=1
¢;i=b; (mod 2%)

— ¢75(2a+1)2a+1N(2a+1) _ @75(204)201’

where N (2%%1) is the number of solutions of the following congruence equa-
tion:

2+...+c2=N (mod 22H)
< o < a+1 . —_ C1 + + Cy 5
I<a <27, (6,2) =1, {ci = b; (mod 2%).

Obviously N(29*1) = 25. Then
$(2) = °(2%) + A(2) + ...+ A(2%) + A(2*T)
= (2 N (20 = (22,
Part (c) follows immediately from (4.9) and Corollary 4.5.
LEMMA 4.7. We have:

(a) A(p) < 30p~2 for all ptd.
(b) I1, s(p) converges absolutely and [], s(p) > 0 >(d)do(d).

(©) > ¢ °(dg/h)Z(gmo,- - m0) = [[5(p)
q=1 ptr
(g,r)=1
(d/ d T) s(p
ptd

d) > e (dg/h) Z(gimo, - - m0) < y~Hd P log® (y + 1).
q=>y

Proof. (a) Since ptd, we have h(p) = 1; let g be a quadratic nonresidue
modulo p. Then

A(p)=w5(p)§<e( §a>l 1(:26( )>)

<2 ({5 e oo (57 et

=1 =1

where Cp(a) = 72;11 e(ac?/p). It is well known [1] that

G—amt, A= {yp fp=t ed

Furthermore Cy,(1) + Cp(g) = 2> 0_; Ley(c) = =2, hence Cp(g) = =\ — 1.
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Plainly
C(a) = Cp(1) if ais a quadratic residue modulo p,
P4 = Cp(g) otherwise.

We get
Alp) = 307" (p)

(p= 1A= 1)+ (A =1)°) if p| N,

xd A=1°C+ (=X —-1)° if pt N and (%) =1,
(A=A =1+ A=1)(=A=1)° if p{N and (£) = -1,

(%) being the Legendre symbol. Hence |A(p)| < 30p=2 for ptd. The 30
comes from explicit computation, but it is unimportant for our application.
(b) By Lemmas 4.6 and 4.7(a), we have

[Ts@ =TI1s@ ][0+ A®)

pld pfd
> o (201(2) Qa(Q) H © -5 pa(P))pa(;D) H<1 _ 30p_2)
p®)||d ptd
pF#2

> o(d)p°(d)d.
The proof of the convergence is similar.
(c) Let g =q'q", (¢’,4") =1 and ¢’ | d*°, (¢”,d) = 1. By the multiplica-
tivity of Z(q), we have

i 905<CZJ>Z(Q)
:< i ¢—5(dhq/)2(q’)>( i ¢ (") 2(d").

7 =1 q"'=1
(¢',r)=1 (¢",r)=1
q'ld> (¢",d)=1
Hence by Corollary 4.5, (4.9) and Lemma 4.6, we obtain the result.
(d) Let § = (log(y +1))~!. We have

> 0™ (dg/n)Z(q) < ) |Alg |<y—1+‘52q1 ’|Ag)|

92y 92y q=1
O0+max{6,a(p)}

<y~ 1H( Z pt“"”!A(pt)!>H(1+30p’H)

P‘d ptd
d2
<<y71 pa(p) 1_p7175 730<<y71 5730
el GV F)

since 1 + nzr < (1 —2)™™ and ¢(1+§) ~ 6 L.
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LEMMA 4.8. For r;|dq/h,i=1,...,5, let

xi (mod r;) = ¢ (mod (ry,d/h1(q)))n; (mod (ri,q/h2(q)))

be all primitive characters, and r = [r1,...,75].
5
@) 2 ‘w_s(qd/h(q))Z(q;an,‘_',775770)1_[@&)(@) < r 3L,
q<Q i
rldg/h

(b) Let a(p) be defined as in Lemma 4.4. Furthermore let r; = 7“1(1)7'52),

(rgl),r?)) =1, be such that if p° || 7“2(1), then 8 > a(p), and if p° || T§2), then
B < a(p). Let d = dids, (dy,ds) = 1, be such that if p? ||r and p|dy, then
B < a(p), and if p° || r and p|dy, then 8 > a(p). Let r) = [rgl), . .,rél)]
and x; (mod r;) = XEI) (mod 7‘(1)) XEQ) (mod T(Q)). We have

i i

5
E = Z (p_5<qd)Z(q;nlnow--7775770)H€i€0(bi)

4<Q (@) i=1
rldq/h

o(dy)dy Y (o (rM)rM)
P5(di) (o (rM)r®)

[Ist) +o0@ ')
ptd

pir

5
— HXz('z)(bz‘) (mod r3)
i=1

Proof. Part (a) follows immediately from Lemma 4.3. We use the mul-
tiplicativity of Z(q) and Y (q) to prove (b).

Let d = d'd", g = ¢'q" be such that (d",r) =1, (¢",r) =1 and d’ | r*°,
q' |r*°, where the notation ¢|r° means that every prime factor of ¢ di-
vides r. For brevity, set b’/ = h(q"), b’ = h(¢'), hY = hi(q"), hi = hi(¢).
By (3.7) and r; | dg/h, we have

n; (mod (ri,q/h2)) =n; (mod ¢'/hy), ¢ (mod (rs,d/h1)) = ¢ (mod d'/hy).

Then by multiplicativity of Z(q),

5
(4.10) E= Z @° <q;i/>Z(q'; NiN0s - -+ N570) H GiCo(bi)
e
X > @_5((]/,;{,)2((1”;770,-.-,no)
(q”,r%i%,%é’q’,r):l

::E1E27
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say. By Lemma 4.7(c), (d), we have

(411) B = m 1:[ s(p) + O Q' (@) 10g® Q).

p'fd//

Hence by Lemmas 4.3 and 4.8(a), and (4.10),

112) B=p 00 o< “1(d") P log™ ! )
( ) 1@_5(d") g 8(p)—|— Q ( ) 0g Q ; (q/)1/2
ptd” rld'g’ Jh
_ E% IT 5() + 0@ (d") "2 (d) log™ Q),
pir
p‘i’d”

since we will see later from the following proof that the number of ¢’ is less
than 7(d), i.e. the divisor function.

Let ¢ = m'm” with (m”,d) =1 and m’ | (d’')*°, and let r; = rir! with
(r!,d) =1 and r} | (d')*°. Obviously m’| (r,d)> and
Gi (mod (ri,d'/hy))
i (mod (ri,q'/h3))

By combining with the multiplicativity of Z(q),

(413)  Er= > o (m")Zm"nf,....nf)

¢i (mod (ry, d'/hY)),
/
n;

; (mod (rf,m'/ha(m”)))mi (mod (i, m" /ha(m”))).

1

m//SQ
r//‘m//
m'd >
Xy s0‘5( o )Z(m’;ninov---,néno)HCéCo(bi)
m/SQ/m// i=1
r'|m'd /n’
=:G1Go,

say. By the same argument as in Lemma 3.8, (3.14), of [6], from our Lem-
ma 4.4 we see that

Gi =@ (o ( )" )Y (o (")) i o) < Q.

In fact we can assume o(r)r < @, otherwise if o(r)r > @, by Lemmas 4.3
and 4.8(a) we get
B, < Q73%L,
SD_S(O'(’I””)T”)Y(O’(T”)T‘//)Gg < (TIT/I)—3/2£2 < Q_3/2£2.
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Then combining with (4.13) we can write
(4.14) Ey = o 2 (a(r")r"Y (o(r") ") Gy + O(Q™3/2L?).

Furthermore we can assume o(r')r’ < Q/m”. Otherwise if o(r')r’ > Q/m”,
then Gy < Q3/2(m")3/2L by Lemma 4.8(a). By Lemma 4.3 then

El < Z Q—3/2£2<<Q—3/2£2
m//SQ

r//|m//

since by a similar proof to that of Lemma 3.8 in [6], m” = ur”, u|o(r”).

Hence the sum over o(r')r’ > @Q/m” will be absorbed in the error term.
Now we simplify Ga for o(r')r’ < Q/m”. It is seen that m'|(d")*,
m/ | (r")* is in fact m’ | (r,d)*>®| ("), (d')>°. Hence we can write

d=pa . pdt, o =p Pl o =i p
where p* || d, p;* || and «;, 5; > 0. The condition p;* ’:Li(;p;i; indicates that
s; > B if B; > oy, and s; > 0 if B; < a;. Hence Z
¢ (mod (rj,d /i (m') = [ ¢y (mod p}),
Bj<aj;
sjSa
ni (mod (v}, m’/ha(m’))) = H nij (mod p;”) H nij (mod p7).
Bi<ay Bj>a;
Sj>a

Let [15_; xij (mod p;’) = (n; (mod r}). Then we have

Gj it B <y, s5 < ay,
(415) Xij = § Mij if Bj < aj, s; > qj,
Mij if ﬂj > Qy.
Then by Lemmas 4.4 and 4.2, and (4.13),

(416)  Ga=W, [] (W)Y (05 X150, - X5570) I W,

;72 P;#£2
Bi>aj B <oy
where
Oéj 5
ij = wis(p;%)(z Z(p§7 Nos -+ - 770) H lego(bl))a
t=0 i=1

and by Lemma 4.4(b), (c),
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1 if 24 (r, d),
e o (20 )y (2021 if 2| (r,d), B2 > as >0,

1 5
o=@ (3 22 5m0, - m0) ] xiaGobi)
t=0 =1

3
Wy — + Z © (2 Z(2% x1270; - - - 5 X5270)
t=2

1f2|(T,d), 62 Say = 17
a 5
¢=2(2%) (Z Z(2%no,...,m0) [ [ Xi2§0(bi)>
t=0 =1

+ @22 Z (2 xa2m0, - - -, X52700)
L if2‘<7’,d), ﬁggag, ag > 1.

We shall estimate Wy for 2| (r,d), B2 < as and W, for B; < a;. By a
similar argument to that in Lemma 4.4, (4.8), for ¢t < a(p) and (b;,d) =1,

5 5
[T Gico®)2(0%) = T ] xis (o) (0.
=1 =1
Then
5
Wy, = sz‘j(bi)@_g)@a(m)pa(m'
=1
And for 2| (r,d),

RG] (G

(a,202+1)=1 i=1

a02
6(20&11))(1‘2770(0@‘))

Cz‘=1
Cq Ebi (mod 2a2)

5
= Y(2a2+1) — 204225 H ng(bl)
i=1

5
= (271N (272 = 20279) TT xaa (bi).-
i=1

Hence, for as > 1, we see from the proof of Lemma 4.6(b) that N(222F1) =
25, and we have
5

Wo = HXiQ(bi)SD_5(2a2)2a2+1‘
=1

If ap =1, then B =1, since 0 < (s < a9, and

1 5
Wa = @) (Y 2@ m. - .m) [T xaa(00)
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+ ZSO 2t X127]o, ey X52M0)
= HXiQ(bi)(l+A(2)+A<22)+A(23))

5
= 2° [ xaa(b)
=1

The last equality comes from the proof of Lemma 4.6(b). Hence for 21 (r, d)
we obtain

2a2)2a2 .
(417) W2 — HX12 20{2) lf O[2 2 /82’

@—5(252+1)Y(2BQ+1) if g < Ba.
Then by (4.12)—(4.14) and (4.16), we have

o(di)dy Y (o(r®)r(V)
o5(dr) (o (rM)r) [Is

5
418)  E=J[xP(b:) (mod r2)

@) o(di)dy  Y(a(rM)r(V)
HX b) (mod r2) 2o Samymy L)
+0(Q™tL3h).
The error term can be obtained from Lemmas 4.4 and 4.8(a).
The following lemma is actually Lemma 3.9 of [6].

LEMMA 4.9. For any complex numbers o; with0 < Reg; < 1,1 =1,...,5,
we have

(4.19) _OSO ﬁ ( S 2% )d:;;) dX

(2

— N3/29- 5SH @022 gy day,
Di=1

where

4
(4.20) zy=1-Y
=1
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and
(4.21) D :={(x1,...,x4): L/N < x1,... 24,25 < 1}.
Furthermore, we have
5
(4.22) | (Hx;”z) doy ... dwg > 1.
D =1

5. Major arcs and the completion of the proof of Theorem. We
can now complete the proofs of our main results by showing that R;(N)
dominates the error term in (2.5). From (3.12), we see that the product
H?:l H;(a,q,)\) is a sum of 3° terms which can be classified into three
categories:

(C1): the term H?Zl Gi(q)I(N\), in which (;, n; are all principal charac-
ters.

(Ca): the 211 terms each of which has at least one F;(a, g, \) as factor.

(Cs): the 31 remaining terms.

For convenience, we write, for ¢ = 1,2, 3,

(5.1) =Y ¢ °(dg/h) Y eq(—Na)

q<Q (a,9)=1
X S e(—NA){sum of the terms in (C;)} dA.

In view of (3.14), we have

(5.2) Ri(N) = My + My + M3 + O(N3/2Q71).

For distinct integers mq, ma, ... taken from the set {1,...,5}, let
(5.3)  P(my,ma,...)

5 -~
= N3/2975 S (Hz 1/2) (Nzy, Ny, - ..)(’8_1)/2dx1 ...dzy
D =1
and
(5.4) Almy,ma,...) = XMmy ) X(Mmy) - - -

where the region D is defined in (4.21), and Y and 3 are the exceptional
character and exceptional zero respectively. Let

(5.5) Py := N3/2275 S (ﬁxi_lﬂ) dzy ...dxy
D =1

Clearly, from (4.21) we have
(5.6) |P(my,ma,...)| <Py < N2
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LEMMA 5.1. We have

M, — a_(g)d H s(p)Po + O(N3/24=3Q~1 £31).
p=°(d)
ptd
Proof. From (5.1), we see that
5 oo 5
=Y @ da/h) Y eg(=Na)[[Gia) | e(~=NN)J]1(V) A
q<Q (a,q)=1 i=1 —00 i=1

By (5.5) the above integral is equal to Py. In view of (4.1), the above double
sum is Z <Q ¢ °(dg/h)Z(q). By Lemma 4.7(c), (d), this can be written as

) +0( Y 14@)]) = []s0) + 0@ 1a?c™).

>Q ptd

Our lemma then follows from this and (5.6).

LEMMA 5.2. If the exceptional zero B exists, and 71,dy, are defined as in
Lemma 4.8(b), by taking r™Y) =7\, then

U(dl)dl U(Fl)?”l
a Ms = . A
@ M= 5w etom L0 2 (- Z
pir
+ 3 AGGHPGG) ... — A1,2,3,4,5)P(1,2,3,4, 5)}
1<i<j<5
+ O(NS/ZQ_lﬁgl),
(b) My < N3/25=3/2 231,
Proof. In view of (3.12), the 31 terms in (C3) can be grouped into 5

types according to the number of the factors Z”(bi)Gi(a,ﬁ, q)f()\) in these
terms. A typical term with k& such factors is of the form

o ([Tewa6em0700) (1T 6ioma)

i=k+1
If Msy is the contribution to M3 from such a term, then according to (5.1),

MSk:(_l)k<Z‘P_5<CZ]) Y ey(—Na HC Gi(a,7,q)

9<Q (a,q)=1
Tlq
5 0o
< T Gilemna)) (] =MV )
i=k+1 —o0

= (-D*WU, say.
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The integral U, by (4.19), is equal to P(1,...,k). In view of (4.1), W is
the singular series

W =" ¢ "(dg/h)Z(g; 7o, - -, TM0sM0s - - M0)GCo + -~ CCo - Co - -+ Co.

9@
Tlq

By Lemma 4.8(b) and Y (071) = 071 }_ 7, - - -, we have

d )d1 0'( 7’1
My, = (12004 || Y oan ok
= )SO_S(dl) ©®(o(r1)r P, )
’id (o(71)71)

+O(N*2Q %),

Hence we obtain (a) by combining all these contributions.
The bound in (b) can be deduced directly from Lemma 4.3.
Define

(5.7) 0= { (1—-P)logT if 3 exists,
1 otherwise.

In view of Corollary 4.5, Lemma 4.6 and (4.9), we have

(5-8) [Is) = o)™ (a (" )" )N (o (+")r"),

pld
plr
oM o) = 2 d2)d2 _ 0(da)dy
(59) @5(0(7"3)7“/1)]\[( ( 1) 1) QDE)(O'(dz)dQ)N( (d2)d2) @5(d2) )

where r'r" =7, (', r") =1, (r",d) =1, ' |d>; r},da | (r,d) have the same
prime factors and the exponent of each prime factor of ds is less than in 7.
Hence we can write M7 in the form

o(dy)dy o(r1)r —3/2 -3 -1 31
M, = : = Py + O(N3/24 £3h.
'S ) Pt LLP 2 T @y
)’Fd (o(71)71)
pr

Comparing it with the form of M3 in Lemma 5.2(a), we have
U(dl)dl ) U(Fl)?l
=5(d1) (o (r1)r)

5

XH )N3/295 Z S(in—l/2>

ptd (o(F)F) D i=1
piT

(5.10) M + Mz =
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5
XHl— NJJ )(ﬂ 1)/2)d$1...dl‘4
+0(N3/2Q o).
It remains to bound the integral, as

10 - xte)wva) @7 = [0 -

i=1 i=1

ot
ot

since x; > L/N in the region D. Hence, we have
1-LF1>1- exp(—3(1 —3)log N) > min {3, 5( g)logN} > (2.
Then the main term in (5.10) is
d )dl 0'(7’1)
> 02 old)dr Po.
“(d1)  @*(a(r)r) I[s0) 2

ptd (0(7“1)7”1)
pir

Hence, by (5.8) and (5.9), we have

LEMMA 5.3.
o(d)d
—5(d)

M; + Mz > 2° [[s@Po +ON32Q~ %),

ptd

We need to estimate Ms. By the Deuring—Heilbronn phenomenon, we
have

LEMMA 5.4.

M, < 2° exp(—c/V6) ;_(fgj) [[s()Po+ON*2Q 1 £?").
ptd

Proof. In view of (3.12), each term in (C2) must have the form like
ch bi)Gi(a,7,q)I2(¢{n, A) at least once. Indeed, to be specific, we only
need to treat a typical term

5211 26006407 0126 30) Gl o )TN Fbs) G 7 )TN

=1 (n

to illustrate the method. Denote the contribution of this term to My by X.
By (5.1),
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= Y S 2(dg/h) D eq(—Na)Gala,mo,q)C(bs)Gs(a, 7, q)

g
3 . 3 Ny
(fewmiena) (oo
X (J\gz e(\z?) dl’) <]\§2 xg_le()\:L"Q) dac) dA.
2 Lo

By (4.19) the integral Siooo AT

5 3
N2 | (H:c;l/?) (H(in)@i—l)/?)(Na;5)<ﬁ—1>/2 dz; ... dza.
D =1 =

It is well known [1] that each character is induced uniquely by a primitive
character, and conversely, for each primitive character x* (mod r) and each
q divisible by r, there is a unique character y (mod ¢) which is induced
by x*. Furthermore, the L-functions L(s, x*) and L(s, x) have the same set
of nontrivial zeros with positive real parts. Accordingly, we can rearrange
the summation for X as follows:

5
5.11) X = N3/2275 -1/2
(5.11) é@lf )

e 3 * /
% (Nx5)(671)/2(H Z Z Z (in)(gi—n/z)

i=1 r;<dQ x;=¢;n: (mod ;) |v|<T

x> ¢7?(dg/h) Y Gala,mo,q)CCo(bs)Gs(a, im0, q)

q<Q (aﬂQ):l
r|dq/h

(HC i(a,7,q ))dxl...clx47

where >~" denotes the summation over all the primitive characters modulo
r; and r = [ry,72,7r3,7]. In view of Lemma 4.8, the inner sum Zq<Q rldg/h
is equal to

3

@) v ~(2) 5 O(d1)dy Y (a(rP)r)
o Ex (bi)X()(b5)¢51(d1).905(0(7'(1))7”(1))]};,17«8(1))

4 O(NB/ZQ_l,CSl),
where d; and 7(!) are defined as in Lemma 4.8(b). Since
Y(o(m1)r1) < o(r)rN(o(m1)71),
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combining with (5.8), (5.9), we obtain

DS ‘<‘%Hs(p)+ow3/2@1£3l).
falh T

By the idea of [2], Lemma 6.2 of [6] proved the following form of large sieve:
for some suitable ¢ and for any real y > Nj,

Z Z* Z/ Y1 <« 2% exp(—c/V3).

9<T x (modgq) |y|<T
Applying these to the multiple sums in (5.11), and combining with (4.21),
we prove the lemma.

We can now combine all our estimates to obtain a lower bound for Ry (V).
There are two cases to be considered.

(1) 7> QY3 or 3 does not exist. By Lemmas 5.1, 5.2(b), and 5.4 with
a sufficiently small §, we have

1 d)d
L DL Ty, + 0oL,
2 p7o(d) o5
Then by Lemma 4.7(a), this gives I;(N) > N3/2Q~1/5; notice that d =
QY21

(2) 7 < QY/'3. From Lemmas 5.3 and 5.4, we can deduce that for suffi-
ciently small ¢,

Ri(N) >

Ra(V) 2 50 2O T s)Po + OV/2Q %)
pld
Since
2> (/2 log?7) "L > QY 10g2Q,
we get

Ri(N) > N3/2Q=2/5,
Finally, comparing this with Lemma 2.3, both of these two cases give that
R1(N) > |Ra(N)| for large N. Hence our Theorem is proved.
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