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In memory of Paul Erdős

E. Bombieri and U. Zannier [1] have recently proved an important theo-
rem which permits improving most of the results of papers VII, VIII, X and
XI of this series. In order to state the results I shall use the same notation as
in those papers, explained below, together with a new usage of the matrix
notation.
N and N0 are the sets of positive and non-negative integers, respectively,

Q is the field of algebraic numbers.
Bold face letters denote vectors written horizontally, x = [x1, . . . , xk],

x−1 = [x−1
1 , . . . , x−1

k ] and similarly for z; ab is the scalar product of a
and b.

The set of k× l integral matrices is denoted by Mk,l(Z), and the identity
matrix of order k by Ik. For a matrix A = (aij) ∈Mk,l(Z) we put

h(A) = max
i,j
|aij |, xA =

[ k∏

i=1

xai1i , . . . ,

k∏

i=1

xaili

]
.

For a Laurent polynomial F ∈ K[x,x−1], where K is any field, if F =∏k
i=1 x

αi
i F0(x), where F0 ∈K[x] and (F0,

∏k
i=1 xi) = 1, we put

JF = F0.

A polynomial F is reciprocal if JF (x−1) = ±F (x).
A polynomial is irreducible over K if it is not reducible over K and not

a constant. For K = Q we omit the words “over Q”. If F = c
∏s
σ=1 F

eσ
σ ,

where c ∈K∗, Fσ are irreducible over K and pairwise coprime, and eσ ≥ 1
(1 ≤ σ ≤ s), we write

F
can=
K

const
s∏

σ=1

F eσσ
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274 A. Schinzel

and call this a canonical factorization of F over K. If K = Q, then can=
K

is

replaced by can= . If

JF
can=
K

const
s∏

σ=1

F eσσ

we put

KF = const
∏∗

F eσσ ,

and if K = Q
LF = const

∏∗∗
F eσσ ,

where
∏∗ is taken over all Fσ that do not divide J(x

tα − 1) for any α ∈
Zk \ {0} and

∏∗∗ is taken over all Fσ that are not reciprocal. The leading
coefficients (i.e. the coefficients of the first term in the antilexicographic
order) of KF and LF are equal to that of F . Note that KF depends only
on F and the prime field of K, which in this paper is always Q.

If T is any transformation of K[x,x−1] into itself and F ∈ K[x,x−1]
then

KF (Tx) = K(F (Tx)),

and if K = Q
LF (Tx) = L(F (Tx)).

The Bombieri–Zannier theorem can be stated as follows.

Theorem BZ. Let P,Q ∈ Q[x] and n ∈ Zk. If (P,Q) = 1, but
(KP (xn),KQ(xn)) 6= 1, then there exists a γ ∈ Zk such that

γn = 0 and 0 < h(γ) ≤ c1(P,Q),

where c1(P,Q) depends only on P and Q.

In the sequel ci(. . .) denote effectively computable positive numbers de-
pending only on parameters displayed in parentheses. Theorem BZ extends
Theorem 1 of [7] from k ≤ 3 to arbitrary k in the crucial case [K : Q] <∞
and immediately implies that in Theorem 2 of [7],

c2(P,Q)Nk−min{k,6}/(2k−2) (logN)10

(log logN)9

can be replaced by

c2(P,Q)Nk−1.

Theorems 3 and 5 of [7] can now be extended in the following manner.

Theorem 1. Let F ∈ Z[x] \ {0}, k0 be the number of variables with
respect to which F is of positive degree, and ‖F‖ be the sum of squares of
the coefficients of F . Assume KF = LF . For every vector n ∈ Zk such that
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F (xn) 6= 0 there exist a matrix M = (µij) ∈Mk,k(Z) and a vector v ∈ Zk
such that

(1) 0 ≤ µij < µjj ≤ exp(9k0) · 2‖F‖−5 (i 6= j), µij = 0 (i < j),

(2) n = vM ,

and either

(3) KF (zM ) can= const
s∏

σ=1

Fσ(z)eσ

implies

(4) KF (xn) can= const
s∏

σ=1

Fσ(xv)eσ ,

or there exists a γ ∈ Zk such that

(5) γn = 0 and 0 < h(γ) ≤ c3(F,M).

Theorem 4 of [7] is extended as follows.

Theorem 2. Let F ∈ Q[x] \ {0} and n ∈ Zk \ {0}. If JF (xn) is not
reciprocal , then KF (xn) is reducible if and only if there exists a matrix
N ∈Mr,k(Z) of rank r and a vector v ∈ Zr such that

(6) h(N) ≤ c4(F ),

(7) n = vN ,

(8) KF (yN ) = F1F2, y = [y1, . . . , yr], Fi ∈ Q[y] (i = 1, 2),

(9) KFi(xv) 6∈ Q (i = 1, 2).

Further we have

Theorem 3. Let F ∈ Q[x] \ {0}, n ∈ Zk \ {0}, K be the field generated
over Q by the ratios of the coefficients of F (xn) and K̂ be its normal closure.
Assume that F ∈K[x], F (xn) 6= 0 and for all embeddings τ of K into K̂,

(10)
JF (x−n)
JF τ (xn)

6∈ K̂.

If KF (xn) is reducible over K there exist a matrix N ∈Mr,k(Z) of rank r
and a vector v ∈ Zr such that

(11) h(N) ≤ c5(F ),

(12) n = vN

and JF (yN ) is reducible over K̂, where y = [y1, . . . , yr].
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This theorem implies

Corollary 1. Let a = [a0, . . . , ak] ∈ Q∗k+1, n = [n1, . . . , nk] ∈ Nk,
0 < n1 < . . . < nk and let K = Q(a1/a0, . . . , ak/a0). If a0 ∈ K and
K(a0 +

∑k
j=1 ajx

nj ) is reducible over K, then there exist a matrix N0 ∈
M[(k+1)/2],k(Z) and a vector v0 ∈ Z[(k+1)/2] such that

(13) h(N0) ≤ c6(a)

and

(14) n = v0N0.

Corollary 2. Under the assumptions of Corollary 1 the number of
vectors n such that nk ≤ N and K(a0 +

∑k
j=1 ajx

nj ) is reducible over K
is less than c7(a)N [(k+1)/2].

Corollary 3. Let a = [a0, . . . , ak] ∈ C∗k+1 be such that a0 ∈ K =
Q(a1/a0, . . . , ak/a0). The number of integer vectors n = [n1, . . . , nk] such
that 0 < n1 < . . . < nk ≤ N and K(a0 +

∑k
j=1 ajx

nj ) is reducible over K
is less than c8(a)Nk−1.

Corollary 1 improves in the case K = Q and extends Theorem 2 of [3],
while Corollary 2 drastically improves Theorem 1 of [5]. The exponent
[(k + 1)/2] cannot be further improved, as will be shown by an example,
the gist of which is in [3]. Corollary 3 improves Theorem 2 of [6] and the
Theorem of [8].

Further we have

Theorem 4. Let F ∈ Q[x] \ {0}. There exist two finite subsets R and S
of
⋃k
r=1 Mr,k(Z) with the following property. If n ∈ Zk \{0} and JF (xn) is

not reciprocal , then KF (xn) is reducible if and only if the equation n = vN
is soluble in v ∈ Zr and N ∈ R ∩Mr,k(Z) but unsoluble in v ∈ Zs and
N ∈ S ∩Ms,k(Z) for each s < r.

The reducibility condition given in Theorem 4 is more readily verifiable
than that of Theorem 2, because of the relation (9) occurring in the lat-
ter. It is conjectured that a similar reducibility condition holds without the
assumption that JF (xn) is not reciprocal and over any finite extension of Q.

The proofs of Theorems 1–4 are based on several lemmas.

Lemma 1. For every polynomial P ∈ Q[x] \ {0},
LKP = LP.

P r o o f. See [2], Lemma 11.

Lemma 2. For every polynomial F ∈ Z[x] and every vector n ∈ Zk such
that F (xn) 6= 0 there exist a matrix M = (µij) ∈ Mk,k(Z) and a vector
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v ∈ Zk such that

(15) 0 ≤ µij < µjj ≤ exp(9k) · 2‖F‖−5 (i 6= j), µij = 0 (i < j),

(16) n = vM ,

and either

LF (zM ) can= const
s∏

σ=1

F eσσ

implies

LF (xn) can= const
s∏

σ=1

Fσ(xv)eσ ,

or there exists a vector γ ∈ Zk such that

γn = 0 and 0 < h(γ) ≤ c9(k, F ).

P r o o f. See [2], Lemma 12, where c9(k, F ) is given explicitly.

Lemma 3. If F ∈ Q[x] is irreducible and non-reciprocal and a matrix
M ∈Mk,k(Z) is non-singular , then

LF (zM ) = JF (zM ).

P r o o f. See [7], Lemma 17.

Lemma 4. If F ∈ Q[x]\{0}, KF = LF , M ∈Mk,k(Z) and detM 6= 0,
then

(17) KF (zM ) = LF (zM ).

P r o o f. By Lemma 1 we have, for every polynomial P ∈ Q[x] \ {0},
(18) LP |KP | JP.

Assume first that F is irreducible. If F = cxi, c ∈ Q, then JF (zM ) = c,
hence KF (zM ) = LF (zM ) = c. If F | J(x

tα − 1) for an α ∈ Zk \ {0}, then
F (zM ) | J(zM

tα− 1), hence KF (zM ) ∈ Q and (18) implies (17). If F 6= cxi
for all c ∈ Q and all i ≤ k, and F - J(x

tα − 1) for all α ∈ Zk \ {0}, then
KF = F , hence KF = LF implies that F is not reciprocal. By Lemma 3
we have LF (zM ) = JF (zM ) and (18) implies (17).

Assume now that

F
can= c

s∏
σ=1

F eσσ , c ∈ Q∗.

Then

KF = c

s∏
σ=1

KF eσσ , LF = c

s∏
σ=1

LF eσσ ,
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which together with KF = LF and (18) implies

KFσ = LFσ (1 ≤ σ ≤ s).
By the part of the lemma already proved, KFσ(zM ) = LFσ(zM ), hence

KF (zM ) = c

s∏
σ=1

KFσ(zM )eσ = c

s∏
σ=1

LFσ(zM )eσ = LF (zM ).

Lemma 5. Let Φ ∈ Q[x] be irreducible, γ = (γ1, . . . , γk) ∈ Zk and
(γ1, . . . , γk) = 1. Then JΦ(x

tγ) is irreducible.

P r o o f. See [4], Lemma 11.

Lemma 6. If F ∈ Q[x] and KF ∈ Q, then for every vector v ∈ Zk we
have KF (xv) ∈ Q.

P r o o f. It is enough to prove the lemma for F irreducible and different
from cxi (1 ≤ i ≤ k), c ∈ Q∗. The condition KF ∈ Q gives

F | J(x
tα − 1), where α ∈ Zk \ {0}.

If αv 6= 0 the conclusion follows at once, but the case αv = 0 remains to
be considered.

Let α = aγ, where a ∈ N, γ ∈ Zk and the coordinates of γ are relatively
prime. We have

J(x
tα − 1) =

∏

d|a
Jφd(x

tγ),

where φd is the cyclotomic polynomial of order d. By Lemma 5, Jφd(x
tγ)

is irreducible. Hence F = cJφd(x
tγ) for a c ∈ Q∗ and a divisor d of a. The

equality αv = 0 gives vtγ = (0), hence JF (xv) = cφd(1) ∈ Q.

Proof of Theorem 1. Let c1 have the meaning of Theorem BZ and c9
the meaning of Lemma 2. We may assume without loss of generality that
F ∈ Q[x1, . . . , xk0 ] and apply Lemma 2 with k replaced by k0, n replaced
by n0 = [n1, . . . , nk0 ], and z replaced by z0 = [z1, . . . , zk0 ]. Let M0 and v0

be the matrix and the vector the existence of which is asserted in Lemma 2.
We put

(µij)i,j≤k0 = M0, µii = 1 if i > k0, µij = 0 if i > k0 or j > k0 and i 6= j;

[v1, . . . , vk0 ] = v0, vi = ni if i > k0.

This together with (15) and (16) gives (1) and (2). Moreover, by Lemma 2,
either

(19) LF (zM ) = LF (zM0
0 ) can= const

s0∏
σ=1

F 0
σ (z0)e

0
σ
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implies

(20) LF (xn) = LF (xn0) can= const
s0∏
σ=1

F 0
σ (xv0)e

0
σ ,

or there exists a γ0 ∈ Zk0 such that

(21) γ0n0 = 0 and 0 < h(γ0) ≤ c9(k0, F ).

By Lemma 4 the left-hand sides of (3) and (19) coincide. Since the canon-
ical factorization is essentially unique we have s = s0 and we may assume
that Fσ = F 0

σ , eσ = e0
σ (1 ≤ σ ≤ s). Therefore (JFσ(z−1), Fσ(z)) = 1 for

all σ ≤ s and the number

(22) c3(F,M) = max{c9(k0, F ), max
1≤σ≤s

c1(JFσ(z−1), Fσ(z))}
is well defined. We now show that it has the property claimed in the theorem.

By (3) we have

(23) F (zM ) = F0(z)
s∏

σ=1

Fσ(z)eσ ,

where KF0 ∈ Q. Hence on substitution z = xv we obtain, by (2),

F (xn) = F0(xv)
s∏

σ=1

Fσ(xv)eσ ,

and, on applying K to both sides, by Lemma 6 we infer that

KF (xn) = const
s∏

σ=1

KFσ(xv)eσ .

If KFσ(xv) = LFσ(xv) for all σ ≤ s, then since Fσ(xv) = F 0
σ (xv0),

(20) implies (4), while (21) and (22) imply (5) with γ = [γ0, 0, . . . , 0]. If
KFσ(xv) 6= LFσ(xv) for at least one σ ≤ s, then KFσ(xv) has an irreducible
reciprocal factor. Hence

(KFσ(x−v),KFσ(xv)) 6= 1

and by Theorem BZ there is a γ ∈ Zk such that γn = 0 and 0 < h(γ) ≤
c1(JFσ(z−1), Fσ(z)), which gives (5) by virtue of (22).

Lemma 7. Let F ∈ Q[x] with KF 6∈ Q. If n ∈ Zk and KF (xn) ∈ Q,
then there exists a vector γ ∈ Zk such that

(24) γn = 0 and 0 < h(γ) ≤ c10(F ).

P r o o f. See [7], Lemma 18.

Lemma 8. Let G ∈ Q[x]\{0}, n ∈ Zk\{0}, K be the field generated over
Q by the ratios of the coefficients of G(xn) and K̂ be its normal closure.
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Assume that G ∈K[x], G(xn) 6= 0 and

(25) JG(x−n)/JGτ (xn) 6∈ K̂ for all embeddings τ of K into K̂.

There exist a matrix M ∈Mk,k(Z) and a vector v ∈ Zk such that

(26) detM 6= 0, h(M) ≤ c11(G),

(27) n = vM ,

and either

(28) KG(xn) is irreducible over K,

or there exists a vector γ ∈ Zk such that

(29) γn = 0 and 0 < h(γ) ≤ c12(G),

or

(30) JG(zM ) = G1G2, Gi ∈ K̂[z] \ K̂
and if K = Q
(31) KGi(xv) 6∈ Q (i = 1, 2).

P r o o f. Let T be the set of all embeddings of K into K̂. The assumption
(25) implies

(32)
JG(x−1)
JGτ (x)

6∈ K̂ for all τ ∈ T,

hence, in particular, JG 6∈ K̂. If JG is reducible over K̂ or K = Q and
KG is reducible we have (26), (27) and (30) with M = Ik, v = n (provided
c11(G) ≥ 1) and for K = Q we may additionally assume that

(33) KGi 6∈ Q (i = 1, 2).

In this last case we have either (31) or, denoting by li the leading coefficient
of G,

Kl−1
i Gi(xn) ∈ Q for an i ≤ 2.

However, l−1
i Gi belongs to a finite set S of monic non-constant divisors D

of JG in Q[z] satisfying KD 6∈ Q by virtue of (33). Hence, by Lemma 7,
(29) holds provided

c12(G) ≥ max
D∈S

c10(D).

It remains to consider the case where JG is irreducible over K̂, orK = Q
and KG is irreducible.

If JG is irreducible over K̂, let l be the leading coefficient of JG(xn).
Since JG(xn) has the same coefficients as G(xn), by the definition of K,
τ1 6= τ2 implies that for all τ1, τ2 ∈ T ,

(l−1JG(xn))τ1 6= (l−1JG(xn))τ2
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and since both sides are monic,

(34)
(l−1JG(xn))τ2

(l−1JG(xn))τ1
6∈ K̂.

It follows that JGτ2/JGτ1 6∈ K̂, and since JGτ1 , JGτ2 are both irreducible
over K̂, (JGτ1 , JGτ2) = 1. If F is the polynomial over Z with the least
positive leading coefficient divisible by JG and irreducible over Q we find
that

JNK/QG =
∏

τ∈T
JGτ |F

and, since JNK/QG ∈ Q[x] \Q, we infer that

(35) JNK/QG/F ∈ Q∗.
Moreover, by (32),

(JF (x−1), F ) = 1,

which implies LF = F and, by (18), KF = LF .
If K = Q and KG is irreducible we define F as the polynomial over Z

which is a scalar multiple of G with the least positive leading coefficient.
Thus we have (34) and infer, by (32) and (18), that KF = LF .

Hence in any case Theorem 1 applies to F . By virtue of that theorem
and of (34) there exist a matrix M ∈ Mk,k(Z) and a vector v ∈ Zk such
that (26), with c11(G) = 9k0 · 2‖F‖−5, and (27) hold and either

(36) KNK/QG(zM ) can= const
s∏

σ=1

Fσ(z)eσ

implies

(37) KNK/QG(xn) can= const
s∏

σ=1

Fσ(xv)eσ ,

or there exists a γ1 ∈ Zk such that

γ1n = 0 and 0 < h(γ1) ≤ c3(F,M) = c13(G,M).

In the latter case we have (29) provided

c12(G) ≥ max c13(G,M),

where the maximum is taken over all matrices M ∈Mk,k(Z) satisfying (26).
In the former case on the right-hand side of (36) we have

∑s
σ=1 eσ ≥ 1.

Indeed, if K 6= Q, then by Lemma 3,

LF (zM ) = JF (zM ),
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hence by (18),

KF (zM ) = JF (zM ) 6∈ Q.
If K = Q the same argument works with F replaced by KG.

If
∑s
σ=1 eσ = 1, then by (37), KNK/QG(xn) is irreducible, hence we

have (28). If
∑s
σ=1 eσ ≥ 2, then we have (30). Indeed, otherwise JG(zM )

would be irreducible over K̂ and would satisfy

(38) JG(zM ) |Fσ(z)

for a σ ≤ s. Since

JG(xn) = JG((xv)M ),

(34) implies that JG(zM )τ2/JG(zM )τ1 6∈ K̂ for any two distinct elements
τ1, τ2 of T . Since JG(zM )τ1 , JG(zM )τ2 are both irreducible over K̂,

(JG(zM )τ1 , JG(zM )τ2) = 1

and by (38),

JNK/QG(zM ) =
∏

τ∈T
JG(zM )τ |Fσ(z),

contrary to (36) under the assumption
∑s
σ=1 eσ ≥ 2. The contradiction

obtained shows (30). If K = Q the same assumption together with (37)
shows the existence of a factorization (30) satisfying (31). Indeed, according
to the definition of canonical factorization, Fσ(xv) 6∈ Q for all σ ≤ s.

Proof of Theorem 2. The reducibility condition given in the theorem is
clearly sufficient. We proceed to prove that it is necessary. Assume that
the condition is necessary for Q[x1, . . . , xk−1], c4(F ) being defined for all
polynomials in less than k variables for which it is needed (for k = 1 this is
an empty statement); assume that F ∈ Q[x], JF (xn) is not reciprocal and
KF (xn) is reducible.

Consider first the case where F is of positive degree with respect to all
k variables, so that k is determined by F . For k = 1 this is the only case.

If the matrix M and the vector v appearing in Lemma 8 for G = F
have the properties (30) and (31) we take N = M , r = k, Fi = (KF,Gi)
(i = 1, 2) and obtain h(N) ≤ c11(F ). Otherwise, by Lemma 8, there exists
a vector γ ∈ Zk such that γn = 0 and 0 < h(γ) ≤ c12(F ). For k = 1 this
completes the proof, since γn = 0 implies n = 0.

For k > 1 the integer vectors perpendicular to γ form a lattice, say Λ.
It is easily seen (cf. for instance Lemma 6 in [2]) that Λ has a basis that
written in the form of a matrix B ∈Mk−1,k(Z) satisfies

(39) h(B) ≤ k

2
c12(F ).
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Let us put

(40) F̃ = JF (x̃B), where x̃ = [x1, . . . , xk−1].

Since n ∈ Λ we have n = mB for an m ∈ Zk−1. Clearly

(41) JF (xn) = JF̃ (xm),

thus, by assumption, JF̃ (xm) is not reciprocal and KF̃ (xm) is reducible.
By the inductive assumption there exist a matrix Ñ ∈ Mr,k−1(Z) of rank
r ≤ k − 1 and a vector v ∈ Zr such that

(42) h(Ñ) ≤ c4(F̃ ),

(43) m = vÑ ;

KF̃ (yÑ ) = F1F2, Fi ∈ Q[y], KFi(xv) 6∈ Q (i = 1, 2).

Let us take N = ÑB. It follows from (40) that JF̃ (yÑ ) = JF (yN ) and
from (43) that n = vN ; moreover, since rank B = k−1, rank N = r. Thus
N and v have all the properties required in the theorem apart from (6);
it remains to establish (6) by an appropriate choice of c4(F ). We have, by
(39) and (42),

h(N) ≤ (k − 1)h(Ñ)h(B) ≤
(
k

2

)
c4(F̃ )c12(F ).

However, F̃ is determined by F andB via (40) and, by virtue of (39),B runs
through a finite set of matrices depending only on F . Hence c4(F̃ ) ≤ c14(F )
and the theorem holds with

c4(F ) = max
{
c11(F ),

(
k

2

)
c12(F )c14(F )

}
.

Consider now the case where F is of positive degree with respect to
less than k variables. We may assume that F ∈ Q[x̃]. By the inductive
assumption there exist a matrix N0 ∈ Mk−1,r0(Z) of rank r0 and a vector
v0 ∈ Zr0 such that

h(N0) ≤ c4(F ), [n1, . . . , nk] = v0N0,

KF (yN0
0 ) = F1F2, y0 = [y1, . . . , yr0 ],

Fi ∈ Q[y0], KFi(xv0) 6∈ Q (i = 1, 2).

We put r = r0+1,N =
(
N0
0

0
1

)
, v = [v0, nk] and easily verify that conditions

(6)–(9) are satisfied.

Proof of Theorem 3. We proceed in the same way as in the proof of the
necessity part of Theorem 2, with K instead of Q, using Lemma 8 without
the formula (31). Therefore we point out only the argument not needed in
the proof of Theorem 2. Before applying the inductive assumption to F̃ (xm)
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we have to check that F̃ ∈K[x̃] and that

(44)
JF̃ (x̃−m)

JF̃ τ (x̃m)
6∈ K̂

for all embeddings τ of K into K̂.
Now F̃ ∈ K[x̃] follows from F ∈ K[x] and from the definition of F̃ by

the formula (40), while (44) follows from (10) and (41).

Lemma 9. If aj 6= 0 (0 ≤ j ≤ k) are complex numbers and the rank of a
matrix (νij) ∈Mr,k(Z) is greater than (k + 1)/2, then

J
(
a0 +

k∑

j=1

aj

r∏

i=1

x
νij
i

)

is absolutely irreducible.

P r o o f. See [3], Corollary to Theorem 1. The proof of Theorem 1 given
there shows less than stated in the theorem, but only in the case of positive
characteristic of the ground field, so the Corollary is fully justified.

Proof of Corollary 1. We apply Theorem 3 with F = a0 +
∑k
j=1 ajxj and

infer that if K(a0 +
∑k
j=1 ajx

nj ) is irreducible over K, then either

(45)
J(a0 +

∑k
j=1 ajx

−nj )

aτ0 +
∑k
j=1 a

τ
jx

nj
∈ K̂

for an embedding τ of K into K̂, or there exist a matrix N = (νij) ∈
Mr,k(Z) of rank r and a vector v ∈ Zr such that h(N) ≤ c4(F ), n = vN
and

(46) J
(
a0 +

k∑

j=1

aj

r∏

i=1

y
νij
i

)
is reducible over K̂.

Let us put c6(a) = max{2, c4(F )}.
If (45) holds, then nj + nk−j = nk (1 ≤ j < k) and we satisfy (13) and

(14) by taking

v0 =
{

[n1, . . . , nk/2] if k is even,
[n1, . . . , n(k−1)/2, nk] if k is odd;

N0 =




1 −1

1 . .
.

. . . −1
1 −1

1 2 2 . . . 2 2




if k is even,
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N0 =




1 −1

1 . .
.

. . . −1
1 1

1 1 . . . 1 1




if k is odd,

where the empty places (but not the dots) denote zeros.
If (46) holds, then by Lemma 9, r ≤ (k+ 1)/2. If r = [(k+ 1)/2] we take

N0 = N , v0 = v; if r < (k + 1)/2 we amplify N and v by inserting zeros.

Proof of Corollary 2. For each matrix N0 ∈M[(k+1)/2],k(Z) the number
of vectors n ∈ Zk with h(n) ≤ N for which there exists a v0 ∈ Z[(k+1)/2]

satisfying (14) is less than c15(N0)N [(k+1)/2]. Hence Corollary 2 follows from
Corollary 1 with

c7(a) =
∑

c15(N0),

where the sum is taken over all matrices N0 ∈M[(k+1)/2],k satisfying (13).

Remark 1. If k > 1 and
∑k
j=0 aj = 0, then the polynomial a0 +∑k

j=1 ajx
nj is reducible for all vectors n in question. This shows that re-

placing a0 +
∑k
j=1 ajx

nj by K(a0 +
∑k
j=1 ajx

nj ) is really needed in order
to obtain a non-trivial result.

Example. Here is the example announced in the introduction showing
that the exponent [(k+ 1)/2] is best possible in Corollary 2, and hence also
in Corollary 1.

If k = 2l − 1 we take a0 = 4, aj = 2 (1 ≤ j ≤ l), aj = 1 (l < j < 2l),
nj = nl + nj−l (l < j < 2l). It follows that

a0 +
k∑

j=1

ajx
nj =

(
2 +

l−1∑

j=1

xnj
)

(2 + xnl).

The two factors on the right-hand side are not reciprocal, hence K(a0 +∑k
j=1 ajx

nj ) is reducible. The number X of relevant vectors n with nk ≤ N
is at least equal to the number of increasing sequences n1 < . . . < nl with
nl ≤ [N/2], hence

X ≥
(

[N/2]
l

)
≥ c16(l)N l for N ≥ 2l,

where c16(l) > 0.
If k = 2l we take a0 = 4, aj = 2 (1 ≤ j ≤ l), al+1 = 3, aj = 1

(l + 1 < j ≤ 2l), nj = nl + nj−l (l < j < 2l), n2l = 2nl + n1. It follows that

a0 +
k∑

j=1

ajx
nj =

(
2 +

l−1∑

j=1

xnj + xnl+n1

)
(2 + xnl).
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The two factors on the right-hand side are not reciprocal, hence K(a0 +∑k
j=1 ajx

nj ) is reducible. The number X of relevant vectors n with nk ≤ N
is at least equal to the number of increasing sequences n1 < . . . < nl with
nl ≤ [N/3], hence

X ≥
(

[N/3]
l

)
≥ c17(l)N l for N ≥ 3l,

where c17(l) > 0.

Lemma 10. For any k + 1 non-zero complex numbers a0, . . . , ak such
that a0 ∈ K = Q(a1/a0, . . . , ak/a0) there exist k + 1 algebraic numbers
α0, . . . , αk−1, αk = 1 such that if 0 = n0 < n1 < . . . < nk and
K(
∑l
j=0 ajx

nj ) is reducible over K then either K(
∑l
j=0 αjx

nj ) is reducible
over K0 = Q(α0, . . . , αk−1), or there is a vector γ ∈ Zk such that γn = 0
and

(47) 0 < h(γ) ≤ c18(a).

P r o o f. See [6], Lemma 5.

Proof of Corollary 3. Let αi have the meaning of Lemma 10. By Corol-
lary 2 the number of relevant vectors n for which nk≤N andK(

∑k
j=0 αjx

nj )
is reducible over Q(α0, . . . , αk−1) is less than c7(α)N [(k+1)/2]. For a fixed
α ∈ Zk \ {0} the number of relevant vectors n ∈ Zk with nk ≤ N such that
γn = 0 is less than c19(γ)Nk−1. Hence Corollary 3 holds with

c8(a) = c7(α) +
∑

c19(γ),

where the sum is taken over all vectors γ ∈ Zk satisfying (47).

Remark 2. It seems likely that by improving Lemma 10 one can replace
the exponent k − 1 in Corollary 3 by [(k + 1)/2].

Proof of Theorem 4. We begin by defining subsets Si and Ri of Mk−i,k(Z)
(0 ≤ i < k) inductively, as follows:

(48) S0 = {Ik},
and supposing that Si is already defined and y = [y1, . . . , yk−i],

(49) Ri = {MN : N ∈ Si, M ∈Mk−i,k−i(Z), detM 6= 0,

h(M) ≤ c11(F (yN )), KF (yMN ) is reducible},
and for i < k − 1,

(50) Si+1 =
{
N ∈Mk−i−1,k(Z) : rankN = k − i− 1,

h(N) ≤ 1
2 (k − i)2 max

N1∈Si
{h(N1) max{max c12(F (yN1)),

max∗(k − 1)c10(D)h(M)}}}



Reducibility of lacunary polynomials XII 287

where max∗ is taken over all M ∈ Mk−i,k−i(Z) with detM 6= 0, h(M) ≤
c11(F (yN1)) and all monic irreducible divisors D of KF (yMN1). (If
KF (yMN1) ∈ Q we take max∗ = 0.)

In this way Ri and Si are defined for all i < k and we put

R =
k−1⋃

i=0

Ri, S =
k−1⋃

i=1

Si.

We first prove that the condition given in the theorem is necessary. By
(48) there exist indices i such that

n = uU , U ∈ Sk−i, u ∈ Zi.
Let r be the least such index and

(51) n = vN , N ∈ Sk−r, v ∈ Zr.
By Lemma 8 if KF (xn) = KF (xvN ) is reducible, then there exists a matrix
M ∈Mr,r(Z) such that

(52) detM 6= 0, h(M) ≤ c11(F (yN )), y = [y1, . . . , yr],

(53) v = v1M , v1 ∈ Zr
and either KF (yMN ) is reducible, or there exists a vector γ ∈ Zr such that

γv = 0 and 0 < h(γ) ≤ c12(F (yN )).

The second possibility can only hold for r > 1 since for r = 1 it gives v = 0
and by (51), n = 0. For r > 1 the vectors v perpendicular to γ form a
lattice Λ in Zr. This lattice has a basis that written in the form of a matrix
B ∈Mr−1,r(Z) satisfies

(54) rankB = r − 1,

(55) h(B) ≤ r

2
h(γ) ≤ r

2
c12(F (yN ))

(cf. Lemma 6 in [2]). Since v ∈ Λ we have

v = wB, w ∈ Zr−1,

hence, by (51),

(56) n = wBN , BN ∈Mr−1,k(Z).

Since, by (50) and (51), rankN = r, it follows from (54), by linear algebra,
that

rankBN = r − 1.
Moreover, by (55),

h(BN) ≤ rh(B)h(N) ≤ r2

2
h(N)c12(F (yN ))

and, by (50), BN ∈ Sk−r+1, contrary, in view of (56), to the definition



288 A. Schinzel

of r. The contradiction obtained proves that KF (yMN ) is reducible, hence
MN ∈ Rk−r by (49). By (51) and (53) we have

n = v1MN ,

while by the definition of r the equation n = uU in unsoluble in u ∈ Zi,
U ∈ Sk−i for i < r. Thus the condition given in the theorem is necessary.

Now we prove that it is sufficient. Assume that for a certain matrix
N ∈ Rk−r (1 ≤ r ≤ k),

(57) n = vN , v ∈ Zr,
but

(58) n 6= uU for all s < r, u ∈ Zs, U ∈ Sk−s.
Then by (49),

n = vMN1, N1 ∈ Sk−r, M ∈Mr,r(Z), detM 6= 0,

h(M) ≤ c11(F (yN1)), y = [y1, . . . , yr]

and
KF (yMN1) = F1F2, F1, F2 ∈ Q[y] \Q.

Hence

(59) KF (xn) = KF1(xv)KF2(xv).

Suppose that for an i ≤ 2 we have KFi(xv) ∈ Q. Then KD(xv) ∈ Q
for an irreducible monic factor D of KF , hence by Lemma 7 there exists a
vector γ ∈ Zr such that

γv = 0, 0 < h(γ) ≤ c10(D).

Again this can occur only for r > 1 and, repeating the argument about the
lattice given above, we find a matrix B ∈Mr−1,r(Z) such that

rankB = r − 1, h(B) ≤ r

2
h(γ) ≤ r

2
c10(D);

v = wB, w ∈ Zr−1.

It follows that

(60) n = wBMN1, BMN1 ∈Mr−1,k(Z),

rankBMN1 = r − 1,

h(BMN1) ≤ r2h(B)h(M)h(N1) ≤ r3

2
c10(D)h(M)h(N1),

hence by (50),
BMN1 ∈ Sk−r+1,

which together with (59) contradicts (58). The contradiction obtained shows
that KFi(xv) 6∈ Q (i = 1, 2), hence by (59), KF (xn) is reducible.
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