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On the power-free parts of consecutive integers
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1. Introduction and main results. Considering the consecutive in-
tegers 48, 49, 50, we observe that they are divisible by 16, 49, and 25,
respectively, and thus their squarefree parts are relatively small. However,
as we consider larger integers, such striking examples are rare—exceptions
are pairs (x2, dy2) which satisfy Pell’s equation for some squarefree d ∈ Z
(see Lemma 2.1 below).

Let n ≥ 2 and k ≥ 2 be given integers. For any m ∈ N, we denote the
kth power-free part of m by ωk(m), and define the number λn,k(m) as

(1) λn,k(m) = max
i=0,1,...,n−1

ωk(m− i).

For example, λ3,2(50) = 3.
It is immediate from this definition that λn,k(m) ≤ m for all m ∈ N, and

that this bound is attained infinitely often—for example, if m is squarefree.
Thus there are no nontrivial upper bounds to λn,k(m). However, it is not
obvious to see how small λn,k(m) can be with respect to m. In this work,
we construct families of m with “small” λn,k(m); furthermore, we develop
some uniform lower bounds for this function, one of which follows from the
abc-conjecture. (We refer to [8] for an investigation of sets of almost powers
for which the power-free parts are fixed.)

To investigate the problem outlined above, we try to find pairs (e, c),
with e ≥ 0 and c > 0, such that, for some particular n and k,

(2) lim inf
m→∞

λn,k(m)
me

≤ c.
To show the existence of such numbers, we begin with remarking that (2)
is trivially satisfied by the pair (1, 1) for all n and k, as ωk(m) ≤ m for all
m ∈ N. We may prove (2) for a smaller value of e by constructing a sequence
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of distinct positive integers (mi)∞i=1 such that λn,k(mi) ≤ cme
i for all i ≥ 1

and some constant c > 0.
Following these lines, we prove

Theorem 1.1. (i) Let n ≥ 2 and k ≥ 2. Then (2) is satisfied by e =
1− k/(nk − 1) and some effectively computable constant c = c(n, k).

(ii) If n and k are odd , we may take e = 1− k/(nk − 2).
(iii) If n = k = 2, we have (2) for e = 0 and c = 2.

Regarding the question whether these upper bounds for e are sharp, we
begin with the following theorem of J. Turk [7, Theorem 3], which was proved
using the theory of linear forms in logarithms, and as such, is effective.

Theorem 1.2 (Turk). Let n ≥ 2 and k ≥ 3. For all sufficiently large
m ∈ N, we have

λn,k(m) > e(log logm)0.2
.

For n ≥ 3 and k = 2, we have

λn,k(m) > (logm)0.04.

Using estimates for the size of solutions of Thue equations, we have
proved

Theorem 1.3. Let n ≥ 2 and k ≥ 3. There exists a (large) effectively
computable constant c > 0 such that , for all m ∈ N,

λn,k(m) > c(logm)1/(2k−1).

We have not been able to obtain an absolute lower bound on λn,k(m)
that is polynomial in m. However, the following result, almost exactly the
desired one, follows if we assume that the abc-conjecture is true.

Theorem 1.4. Let n ≥ 2 and k ≥ 2. If the abc-conjecture is true, (2)
can be satisfied only if e ≥ 1− k/(nk − n).

Acknowledgements. We would like to thank R. Tijdeman and the
referee for their many valuable comments, and F. Göbel for suggesting the
problem.

2. Proof of Theorem 1.1. As we have remarked earlier, we may take
e = 1 for any n and k. However, we can establish better solutions e to (2)
by constructing increasing sequences of positive integers (mi)∞i=1 such that
λn,k(mi) ≤ cme

i for all i ≥ 1 and some constant c > 0. This task is easy in
case n = k = 2.

Lemma 2.1. If n = k = 2, (2) holds with e = 0 and c = 2.
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P r o o f. As the Pell equation x2 − 2y2 = 1 has infinitely many integral
solutions (x, y), we find an infinitude of integers m > 0 such that λ2,2(m)
= 2.

This lemma proves Theorem 1.1(iii). For general n and k, the construc-
tion of sequences (mi)∞i=1 starts with the consideration of systems of linear
congruences of the following form:

(3)





mi ≡ b1 (mod c1(i)k),
mi ≡ b2 (mod c2(i)k),
...
mi ≡ bn (mod cn(i)k),

where b1, . . . , bn are a fixed sequence of consecutive integers, and the moduli
ck1 , . . . , c

k
n are positive integers, depending on i. Now if mi satisfies a system

of this form for all i, we have

(4) λn,k(mi) ≤ mi − b1
minj=1,...,n cj(i)k

.

Furthermore, using the Chinese Remainder Theorem and the fact that not
all moduli are zero, it follows that we may assume

(5) 0 < mi < lcm(c1(i)k, . . . , cn(i)k) ≤ (c1(i) . . . cn(i))k .

To construct our actual mi, we resort to polynomial methods: from now
on, we will assume that the cj are given as functions of i by polynomials
with integer coefficients.

We will make use of both assertion and proof of the Chinese Remainder
Theorem for polynomials, which we adapt from the integer version given by
Cohen [3, Corollary 1.3.10]. Furthermore, we need a little symmetry result.

Lemma 2.2. Let c1(x), . . . , cn(x) be mutually relatively prime polynomials
over a field K, and let b1(x), . . . , bn(x) be arbitrary polynomials over K. Then
there exists a polynomial f(x) ∈ K, with degree less than

∑n
j=1 deg cj , which

satisfies

(6)





f(x) ≡ b1(x) (mod c1(x)),
f(x) ≡ b2(x) (mod c2(x)),
...
f(x) ≡ bn(x) (mod cn(x))

and which is unique modulo
∏n
j=1 cj(x).

P r o o f. Put Mj(x) =
∏n
l=1,l 6=j cl(x), and let yj(x) be the polynomial

inverse of Mj(x) modulo cj(x). Put f =
∑n
j=1 bjyjMj mod

∏n
j=1 cj . Then

f(x) satisfies our claims, which may be verified in a straightforward man-
ner.
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Lemma 2.3. Let f(x) be any polynomial over a field K such that it has
a polynomial inverse g(x) modulo xm+1 for some nonnegative integer m.
Then f(−x)g(−x) ≡ 1 (mod xm+1) as well.

P r o o f. If xm+1 | f(x)g(x)− 1, then (−x)m+1 | f(−x)g(−x)− 1.

Proof of Theorem 1.1(i) and (ii). We first prove the case when n is odd.
The even case will be analogous.

Consider the system

(7)





mi ≡ −n− 1
2

(
mod

(
ai− n−1

2

)k)
,

mi ≡ −n− 3
2

(
mod

(
ai− n−3

2

)k)
,

...

mi ≡ n− 1
2

(
mod

(
ai+ n−1

2

)k)
,

where a is an integer parameter which will be assigned a value later on.
Thus we have cj(x) = ax+ j in (3), letting our index j run from −(n− 1)/2
to (n− 1)/2. Note that mi ≡ 0 (mod (ai)k).

Following the proof of Lemma 2.2, we write

(8) Mj(x) =
(n−1)/2∏

l=−(n−1)/2, l 6=j
(ax+ l)k =

(n−1)/2∏

l=−(n−1)/2, l 6=j
(ax+ j + (l − j))k

as a polynomial
∑(n−1)k
l=0 mj,l(ax + j)l in ax + j, and likewise yj(x), the

polynomial inverse of Mj(x), is written
∑k−1
l=0 yj,l(ax + j)l. As Mjyj ≡ 1

(mod (ax+ j)k), we can solve the coefficients yj,l from the linear systems

Aj~yj :=




mj0 0 . . . 0

mj1 mj0
. . .

...
...

...
. . . 0

mj,k−1 mj,k−2 . . . mj0







yj0
yj1
...

yj,k−1


 =




1
0
...
0


 ,

for j = −(n− 1)/2, . . . , (n− 1)/2. We have det Aj = mk
j0; from (8), we have

mj0 = ±((n− 1)/2 + j)!k · ((n− 1)/2− j)!k.
As the binomial coefficient

(
n−1

(n−1)/2+j

)
is integral, we find thatmj0 | (n−1)!k.

Thus (n− 1)!k
2
yj(x) ∈ Z[x] for all j.

Let us denote by contP the content of a polynomial P ∈ Z[x], i.e. the
greatest common divisor of its coefficients with respect to expansions in
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powers of x. We have

f(x) =
(n−1)/2∑

j=−(n−1)/2

jyj(x)Mj(x).

As ak | cont(Mj) for j 6= 0, and M0 cancels out, f(x) has integer coefficients
if we choose a equal to (n− 1)!k.

It remains to investigate the quotients of f(x) − j and (ax + j)k, for
j = −(n− 1)/2,−(n− 3)/2, . . . , (n− 1)/2, which we know to be in Q[x].
It is an implication of Gauss’ Lemma that if g, h ∈ Z[x] with g |h, and g
has content one, then h/g ∈ Z[x]. We may thus conclude that f(x) − j is
divisible over Z by ((a/j)x+ 1)k if j 6= 0, and by xk if j = 0, recalling that
j | a for all j considered, and that the equations (6) remain valid over Q
upon multiplying some cj(x) by a nonzero scalar.

We take our solution mi to be f(i), so that

λn,k(mi + (n− 1)/2) ≤ mi/i
k,

an upper bound which is a polynomial in i of degree d ≤ (n − 1)k − 1. It
follows that

e =
d

d+ k
= 1− k

d+ k
≤ 1− k

nk − 1
.

We can, in some cases, improve this bound as follows. Suppose k is odd.
It is not difficult to see that M−j(x) = Mj(−x). Thus by our second lemma,
we also have y−j(x) = yj(−x). We find that the coefficient of (ax+ j)nk−1

in M−jy−j is

m−j,(n−1)ky−j,k−1 = (−1)n(k−1)mj,(n−1)kyj,k−1 = mj,(n−1)kyj,k−1,

as k is odd. Thus the (mk−1)th degree term of jyjMj−jy−jM−j cancels out,
yielding an upper bound for λn,k(mi) of polynomial degree d ≤ (n− 1)k− 2
in i; and we find

e =
d

d+ k
≤ 1− k

nk − 2
.

If n ≡ 3 (mod 4), it appears that our solution sequence mi consists of
negative numbers; this can be amended by reversing the order of the moduli,
or of the numbers −(n− 1)/2,−(n− 3)/2, . . . , (n− 1)/2. This proves 1.1(ii).

Finally, when n is even, we consider




mi ≡ 0 (mod (ai)k),

mi ≡ 1 (mod (ai+ 1)k),

...

mi ≡ n− 1 (mod (ai+ n− 1)k).
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The proof runs entirely analogously, except that j runs from 0 to n − 1,
and the symmetry considerations for odd k cannot be extended to this case.
Note that the same value for a suffices to obtain integral solutions; we have
mj0 = ±j!k(n− 1− j)!k | (n− 1)!k.

It is possible to obtain explicit solutions to the “Chinese Remainder
systems” considered in this proof. For example, when n = 3 and k = 3,
taking a = 8 gives f(i) = 3932160i7 − 172032i5 + 2240i3. Consider f(5) =
306662680000. It is easily verified that (8·5−1)3 | f(5)−1, (8·5+1)3 | f(5)+1,
and 53 | f(5). To give another example, when n = 4 and k = 2, taking a = 36
gives f(i) = 43535646720i7 + 12697896960i6 + 1434392064i5 + 78382080i4 +
2086560i3 + 22680i2. Here we find f(5) = 3604158765387000, and thus
52 | f(5), (36·5+1)2 | f(5)−1, (18 ·5+1)2 | f(5)−2, and (12·5+1)2 | f(5)−3.

It should be noted that the choice a = (n − 1)!k is an upper bound,
and is much too high in many concrete cases. For fixed n and k, one may
establish a tighter upper bound by reducing det Aj ; this is possible because
most equations are homogeneous. E.g., for n = 9 and k = 4, a = 5880 =
23 · 3 · 5 · 72 is enough to obtain an integral expression for mi, whereas 8!4 =
2642908293365760000; for n = 16 and k = 4, a = 360360 = 23 ·32 ·5 ·7 ·11 ·13
is sufficient, whereas (16− 1)!4 ≈ 1024.

When evaluating a concrete case, we recommend to take as initial value
for a the product of all primes dividing (n − 1)!, and adding some factors
as necessary (these may be derived from the denominators appearing in the
output of the Chinese Remainder Theorem, and especially the denominator
of the constant term).

3. Is our bound sharp? In the remainder of this work, we address
some possible approaches to settle the question whether the constructed
possible values for e are optimal. The quoted result of Turk (Theorem 1.2),
which provides a lower bound for λn,k(m) that is polynomial in logm, goes
without further comments here.

3.1. The Thue equation: proof of Theorem 1.3. We can view the problem
of finding X ∈ N where all of X,X + 1, . . . , X + n − 1 contain reasonably
large kth power factors, as the study of the system of Thue equations





a2x
k
2 − a1x

k
1 = 1,

a3x
k
3 − a1x

k
1 = 2,

...

anx
k
n − a1x

k
1 = n− 1

which is clearly solvable if we substitute the kth power-free part of the



Power-free parts of consecutive integers 393

consecutive integers X,X + 1, . . . , X + n − 1 for the coefficients a1, . . . , an
(thus we have X = a1x

k
1).

We will make use of a result of Bugeaud and Győry, which estimates
the size of the solutions of a Thue equation, i.e. an equation of the form
F (x, y) = b in x, y ∈ Z, where F (x, y) is a bivariate polynomial of degree
k ≥ 2 with integer coefficients. Their theorem reads [2, Theorem 3]:

Lemma 3.1. Let (x, y) be a solution of F (x, y) = b, as described above.
Then

(9) max{|x|, |y|} < exp{c4H2k−2(logH)2k−1 logB},
where B ≥ 3 is an upper bound for b, k ≥ 3 is the degree of the equation,
H ≥ 3 is an upper bound for the height of F , i.e. the maximum absolute
value of its coefficients, and c4 = c4(k) = 33(k+9)k18(k+1).

Note that the case k = 2 is not covered by this result.

Proof of Theorem 1.3. Assume that n ≥ 2, take some X ∈ N, X > 2,
and consider the equation

a2x
k
2 − a1x

k
1 = 1,

taking the coefficients a2 and a1 as defined above. Following Bugeaud and
Győry’s notations, we may take B = 3. On putting X = a1x

k
1 and H =

max{3, |a2|, |a1|}, it follows that λn,k(X) ≥ H, unless both coefficients are
less than 3 in absolute value. However, this would constitute a nontrivial
solution to the equation |xk − 2yk| = 1, whereas theorems of Darmon and
Merel [4] and Skolem [6, Theorem 7 of Chapter 23] show that this equation
has no solutions with |xy| > 1. Thus we have λn,k(X) ≥ H in all cases. We
have

logX ≤ log(max{|x1|, |x2|}kH) < kc4H
2k−2(logH)2k−1 logB + logH

so that, for some positive c5,

c5(logX)1/(2k−2) < H(logH)(2k−1)/(2k−2) ≤
(

2k − 1
e

H

)(2k−1)/(2k−2)

.

It is clear that these considerations imply our theorem.

3.2. The abc-conjecture: proof of Theorem 1.4. Finally, we will explore
the consequences of the abc-conjecture for the existence of consecutive inte-
gers with large perfect power divisors. We denote by r(n) the radical of a
number n ∈ Z, i.e. the product of all distinct primes dividing n.

The abc-conjecture, stated by J. Oesterlé and D. Masser, runs as follows
[1, 5]:

Conjecture 3.2. For all ε > 0, there exists a positive constant Cε such
that for any integers a, b, c > 0 satisfying a + b = c and gcd(a, b) = 1, we
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have

r(abc) > Cεc
1−ε.

This clearly implies that for any integers 0 < x < y we have

(y − x)r(xy) > Cεy
1−ε.

It is possible to apply this conjecture to our problem, with nearly optimal
results, viz. Theorem 1.4 from the introduction, which we will prove as a
corollary to the following proposition.

Proposition 3.3. Let n and k be integers, both greater than 2, and let
δ > 0. For any X ∈ N write

X = a1x
k
1 , X + 1 = a2x

k
2 , . . . , X + (n− 1) = anx

k
n,

with the ai k-free. Then assuming the abc-conjecture, we have

a1 . . . an > X((n−1)k−n−δ)/(k−1)

for all sufficiently large X.

For the proof we make use of a theorem of M. Langevin [5, Théorème 2],
which we state as a lemma.

Lemma 3.4 (Langevin). Let b1 < . . . < bn be integers and ε > 0 in R.
The abc-conjecture implies

(10) r((X + b1) . . . (X + bn)) > Xn−1−ε for all sufficiently large X.

P r o o f (of Proposition 3.3). Take n, k ∈ Z, both greater than 2, and take
ε > 0 small enough. Putting b1 = 0, . . . , bn = n−1, we have, by Lemma 3.4,

Xn−1−ε < r(X(X + 1) . . . (X + (n− 1))) ≤ (a1 . . . an)
(

(X + n)n

a1 . . . an

)1/k

,

so that

(a1 . . . an)1−1/k > Xn−n/k−1−ε(1 + ε′)−n/k ≥ Xn−n/k−1−δ

for some ε′ > 0. This proves the proposition.

Proof of Theorem 1.4. From our proposition, it follows that

max{a1, . . . , an} > X((n−1)k−n−δ)/(nk−n)

for any δ > 0 and all sufficiently large X ∈ N. Our theorem follows.

Browkin and Brzeziński have provided a generalization of the abc-con-
jecture, which they call the n-conjecture (cf. [1]). There, they deal with n
integers summing up to zero, and the exponent 1−ε is replaced by 2n−5−ε.
It might be interesting to see whether a generalization of Langevin’s results
to cover this more general case provides a better bound for e.
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