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1. Introduction. Hitherto articles in this series devoted to the study of
prime numbers in arithmetical progressions (I, II, IV–VIII, as enumerated
in the list of publications at the end) have concentrated on those properties
of the differences

(0) E(x; a, k) = θ(x; a, k)− x

φ(k)
=

∑

p≤x
p≡a,mod k

log p− x

φ(k)

that are formulated in terms of all reduced residue classes a, modulo k. For
example, apart from providing some confirmation of the conjecture that

E(x; a, k)

x1/2 log1/2 x/φ1/2(k)

is usually substantially bounded, the results obtained have been consistent
with the expectation that the above variate over all reduced residues, mod k,
has a distribution function, the first, second, and third moments of which
have been determined as 0, 1, and 0 (vid., in particular, VII and VIII). But
so far nothing has been done in regard to the reasonable prediction that
the behaviour of E(x; a, k) over a set of reduced residues a, mod k, is not
essentially altered when the set of a considered is contracted into those in
a shorter range. We therefore now begin to remedy this deficiency in the
theory by establishing analogues of the Barban–Montgomery theorem for
sums such as

(1)
∑

k

∑

u1<a≤u2
(a,k)=1

E2(x; a, k),

where u1, u2 are either fixed or are small multiples of k.
The reduction in the number of residue classes taken into account trans-

forms the problem considered in I into several of much greater difficulty
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that are not entirely dissimilar in character to the one about cubic moments
treated in VIII. As in that memoir, we are confronted at a critical stage of
the analysis with a ternary additive problem, which now, however, involves
only two primes but whose resolution is not entirely easy to exploit. Yet,
having likened our difficulties on the former occasion to one of Dante’s ex-
periences, we should perhaps affirm in contrast that we seldom felt during
the present investigation (Purgatorio)

“..........................as one
Who, wandered from his track, thinks every step
Trodden in vain till he regain the path”.

Once more, the principal problem is to treat all terms arising from the
original dissection of the moment so accurately that all the principal items
in the required estimates emerge with remainder terms that do not vitiate
them. But all points of delicacy are best appreciated at the points where
they occur in the sequel.

The ultimate destination of our present researches is an asymptotic for-
mula for the sum

(2) S%(x,Q) =
∑

k≤Q

∑

0<a≤%k
(a,k)=1

E2(x; a, k) (% = %(x) ≤ 1),

whither we travel via an investigation of sums (1) for fixed values of u1,
u2 that occupy most of our attention. However, the intermediate results
obtained during our journey are of interest in themselves and are therefore
also quoted in a series of theorems.

As in previous work on this type of topic, more accurate theorems become
available if the extended Riemann hypothesis be assumed. But yet again
considerations of space compel us to reserve a discussion of this matter
until a later occasion.

2. Notation. Owing to the length of the memoir it is not practicable to
lay down a completely consistent notation. Yet, the meaning of all symbols
should be clear from their context in view of the following guide.

The letters p, p1, p2 denote (positive) prime numbers; l, l′, l1, l2, l′1, l′2
are positive integers save at the beginning of Section 5 when some of them
may be zero; a, b, d, δ, ∆ are positive integers; m is a non-negative integer.

The letters Bi are specific constants whose values are immaterial to the
investigation; A, A1 are any positive absolute constants that need not be
connected, while A2, A3, . . . are positive absolute constants whose associa-
tion with each other and with A, A1 will be plain from the text.
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The constants implied by the O-notation depend at most on those values
of A, Ai that are relevant to each occasion. As usual (a, b), [a, b] respectively
denote the positive highest common factor and least common multiple of a
and b when these are defined; d(m) is the number of divisors of m, where m
itself may be a multiple of an integer d.

3. Initial analysis of S∗(x, u;Q1, Q2). The primary object S%(x,Q) of
our study is approached through the medium of the sums

S∗(x;u1, u2;Q1, Q2) =
∑

Q1<k≤Q2

k
∑

u1<a≤u2
(a,k)=1

E2(x; a, k)(3)

and

S∗(x, u;Q1, Q2) =
∑

Q1<k≤Q2

k
∑

0<a≤u
(a,k)=1

E2(x; a, k),(4)

to the latter of which the major part of our investigation is devoted under
the assumption that

(5) u < Q1, x log−A1 x < Q1 < Q2 ≤ x
where A1 is any given positive absolute constant as in Section 2. Associated
with S∗(x, u;Q1, Q2), there is also the parallel sum

(6) S(x, u;Q1, Q2) =
∑

Q1<k≤Q2

∑

0<a≤u
(a,k)=1

E2(x; a, k)

whose behaviour will not be utilized in the derivation of our main result but
is sufficiently interesting for it to be deduced from that of the former sum.
Here we have already initiated a convention to the effect that the insertion of
a superscript asterisk in a given notation for a sum over k means that its sum-
mand is to be affected by a weight k, an understanding that facilitates our
moving to and fro between unweighted and weighted sums in order that each
major entity in the analysis should be treated in the most expeditious way.

Proceeding to the preliminary analysis of S∗(x, u;Q1, Q2), we first infer
from (4) and (1) that

(7) S∗(x, u;Q1, Q2)

=
∑

Q1<k≤Q2

k
∑

0<a≤u
(a,k)=1

(
x2

φ2(k)
− 2xθ(x; a, k)

φ(k)
+ θ2(x; a, k)

)

= x2
∑

Q1<k≤Q2

k

φ2(k)

∑

0<a≤u
(a,k)=1

1− 2x
∑

Q1<k≤Q2

k

φ(k)

∑

0<a≤u
(a,k)=1

θ(x; a, k)
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+
∑

Q1<k≤Q2

k
∑

0<a≤u
(a,k)=1

θ2(x; a, k)

= x2S∗1 (x, u;Q1, Q2)− 2xS∗2 (x, u;Q1, Q2) + S∗3 (x, u;Q1, Q2), say,

the sums in which will be treated according to ascending order of difficulty.
The first sum S∗1 (x, u;Q1, Q2) is dismissed at once through the following

well-known lemma, to which we shall refer again during the later estimations.

Lemma 1. The number of positive integers not exceeding v that are co-
prime to k is equal to

vφ(k)
k

+O{d(k)}
for (1) v ≥ 0.

Thus (7) implies that

S∗1 (x, u;Q1, Q2) = u
∑

Q1<k≤Q2

1
φ(k)

+O

( ∑

k≤Q2

d(k)k
φ2(k)

)

= u
∑

Q1<k≤Q2

1
φ(k)

+O(log2Q2),

whence, remembering (5), we infer that

S∗1 (x, u;Q1, Q2) =
ζ(2)ζ(3)
ζ(6)

u log
Q2

Q1
+O

(
u logQ1

Q1

)
+O(log2Q2)

=
ζ(2)ζ(3)
ζ(6)

u log
Q2

Q1
+O(log2 x)

by the familiar estimate cited as part (i) of Lemma 1 in I. This we then place
in (7) and complete the initial phase of the analysis by concluding that

S∗(x, u;Q1, Q2) =
ζ(2)ζ(3)
ζ(6)

ux2 log
Q2

Q1
− 2xS∗2 (x, u;Q1, Q2)(8)

+ S∗3 (x, u;Q1, Q2) +O(x2 log x).

4. Estimation of S∗2 (x, u;Q1, Q2). The item analogous to S∗2 (x, u;
Q1, Q2) in our proof of the Barban–Montgomery theorem in I is so simple
that its calculation is concealed in the middle of equation (2) therein. But
the change in circumstances means that the estimation of S∗2 (x, u;Q1, Q2)
cannot be performed trivially and that we must therefore apply a principle
akin to one appearing in a slightly later part of I. Accordingly we find we
must first concentrate our attention on the sums

(1) For 0 ≤ v < 1 the result is trivial but helpful in what follows later.
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J∗2 (x, u;Q) = S∗2 (x, u;Q, x)
for

(9) u < Q, x log−A1 x < Q ≤ x,
between which and S∗2 (x, u;Q1, Q2) there is the obvious relation

(10) S∗2 (x, u;Q1, Q2) = J∗2 (x, u;Q1)− J∗2 (x, u;Q2)

implied by (7).
If we examine the conditions of summation contained in the definition

of J∗2 (x, u;Q) as a multiple sum in (7), we see from (9) that a ≤ u ≤ k,
which inequality in itself means that a is the only possible prime number
congruent to a, mod k, when (a, k) > 1. Therefore the condition (a, k) = 1
in the expression ∑

0<a≤u
(a,k)=1

∑

p≤x
p≡a,mod k

log p

for the inner sum in J∗2 (x, u;Q) is superfluous in regard to primes for which
p− a > 0, and we therefore get

J∗2 (x, u;Q) =
∑

Q<k≤x

k

φ(k)

∑

p≤u; p-k
log p(11)

+
∑

0<a≤u

∑

Q<k≤x

k

φ(k)

∑

a<p≤x
p≡a,mod k

log p

= J$
2 (x, u;Q) + J†2(x, u;Q), say,

wherein it is only the final term that need delay us. Indeed, the final effect
of the penultimate term is easily measured, since the prime-number theorem
for arithmetical progressions gives

(12) J$
2 (x, u;Q1)− J$

2 (x, u;Q2)

=
∑

Q1<k≤Q2

k

φ(k)

{
u+O

(
u

logA u

)
+O(log k)

}

= u
∑

Q1<k≤Q2

k

φ(k)
+O

(
u

logA x

∑

k≤Q2

k

φ(k)

)
+O

( ∑

k≤Q2

log k
)

=
ζ(2)ζ(3)
ζ(6)

u(Q2 −Q1) +O(u logQ2) +O

(
uQ2

logA x

)
+O(Q2 logQ2)

=
ζ(2)ζ(3)
ζ(6)

u(Q2 −Q1) +O

(
x2

logA x

)

by a variant of the already cited Lemma 1 in I and then by (9).
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To treat J†2(x, u;Q) let us denote by Φa,k,p the conditions

(13) 0 < a ≤ u, Q < k ≤ x, a < p ≤ x, p ≡ a,modk,

appertaining to its definition, deploying the identity

k

φ(k)
=
∑

d|k

µ2(d)
φ(d)

to obtain first

J†2(x, u;Q) =
∑

d≤x

µ2(d)
φ(d)

∑

Φa,k,p
d|k

log p(14)

=
∑

d≤x

µ2(d)
φ(d)

I1(x, u, d;Q), say,

and then

(15) I1(x, u, d;Q) =
∑

0<a≤u

∑

Φa,k,p
k≡0,mod d

log p =
∑

0<a≤u
I2(x, a, d;Q), say.

Here Φa,k,p now has its obvious meaning as the conjunction of the last three
constituents in (13) for a given value of a, which imply that p − a = lk for
a positive integer l such that l < (x− a)/Q. Combined with the conditions
p − a > lQ and p ≤ x, the previous two requirements are tantamount to
Φa,k,p in its second rôle with the conclusion that

I2(x, a, d;Q) =
∑

l<(x−a)/Q

∑

lQ+a<p≤x
p≡a,mod ld

log p,

in which, by the prime-number theorem for arithmetical progressions, the
inner sum is

x− lQ− a
φ(ld)

+O

(
x

logA+A1+1 x

)

if (a, ld) = 1 but is easily seen to be zero otherwise. Hence, by (9),

I2(x, a, d;Q) =
∑

l<(x−a)/Q
(a,l)=1

{
x− lQ− a
φ(ld)

+O

(
x

logA+A1+1 x

)}
(16)

=
∑

l≤(x−a)/Q
(a,l)=1

x− lQ− a
φ(ld)

+O

(
x

logA+1 x

)
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if (a, d) = 1, whereas

(17) I2(x, a, d;Q) = 0

in the contrary instance.
We return to the sum I1(x, u, d;Q) in (15) and infer from (16) and

(17) that

I1(x, u, d;Q) =
∑

l<x/Q

1
φ(ld)

∑

0<a≤u,x−lQ
(a,ld)=1

(x− lQ− a) +O

(
xu

logA+1 x

)

=
∑

l<x/Q

1
φ(ld)

∑

0<a≤u,x−lQ
(a,ld)=1

(x− lQ− a) +O

(
x2

logA+1 x

)

in virtue of (9) and a further change in the order of additions. Next, by
Lemma 1, the last inner sum above is

φ(ld)(x− lQ)u
ld

− φ(ld)u2

2ld
+O{xd(ld)}

or

φ(ld)(x− lQ)2

2ld
+O{xd(ld)}

according as l < (x− u)/Q or (x− u)/Q ≤ l < x/Q. Therefore

(18) I1(x, u, d;Q)

=
1
2d

∑

l<x/Q

(x− lQ)2

l
− 1

2d

∑

l<(x−u)/Q

(x− lQ)2 + u2 − 2u(x− lQ)
l

+O

(
x
∑

l≤x/Q

d(ld)
φ(ld)

)
+O

(
x2

logA+1 x

)

=
1
2d

∑

l<x/Q

(x− lQ)2

l
− 1

2d

∑

l<(x−u)/Q

(x− u− lQ)2

l

+O

(
x
∑

l≤x/Q

d(l)
φ(l)

)
+O

(
x2

logA+1 x

)

=
1
2d

∑

l<x/Q

(x− lQ)2

l
− 1

2d

∑

l<(x−u)/Q

(x− u− lQ)2

l
+O

(
x2

logA+1 x

)
,

the difference of the last two sums in which is assessed by means of
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Lemma 2. If 0 < h < y and (2) y ≥ 1, then

1
2

∑

l<y

(y − l)2

l
− 1

2

∑

l<y−h

(y − h− l)2

l

= 1
2{y2 log y − (y − h)2 log(y − h)}
+ 1

2B1{y2 − (y − h)2}+ 1
2h+O(hy−1/4),

where the value of γ − 3/2 of B1 is not yet of importance.

As with some later explicitly or implicitly stated results we use, this
theorem belongs most naturally to an order of ideas related to the Euler–
Maclaurin sum formula, to which in fact we shall later briefly advert. But
we prefer to establish it by a contour integral method in order to preserve
a quick and unified approach to the summation of most of the series of
this general type that occur, not all of which are treatable by the Euler–
Maclaurin method.

By the usual method involving the calculus of residues, the left side of
the proposed formula equals

(19)
1

2πi

c+i∞\
c−i∞

ζ(s+ 1)
ys+2 − (y − h)s+2

s(s+ 1)(s+ 2)
ds (c > 0)

= R1 + R2 +
1

2πi

−5/4+i∞\
−5/4−i∞

ζ(s+ 1)
ys+2 − (y − h)s+2

s(s+ 1)(s+ 2)
ds,

where R1 and R2 are the residues of the integrand at s = 0 and s = −1.
Next, since the principal part of ζ(s+1)/s is 1/s2+γ/s in the neighbourhood
of s = 0 and since ζ(0) = −1/2,

R1 + R2 = 1
2{y2 log y − (y − h)2 log(y − h)}+B1{y2 − (y − h)2}+ 1

2h;

also the residual integral is

O

(∞\
0

hy−1/4

(t+ 1)5/4−ε dt
)

= O(hy−1/4)

because within it ζ(s+ 1) = O{(|t|+ 1)3/4+ε} and

|y2+s− (y−h)2+s| = O

( |2 + s|
2 + σ

{y2+σ− (y−h)2+σ}
)

= O{(|t|+ 1)hy−1/4}.

(2) It is worth noting that, as for later lemmata and results of the same breed, the
proof of Lemma 2 is valid if y or merely y − h be less than 1 although its content then
becomes relatively trivial.
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The required result therefore follows; there is no advantage for the immediate
application in finding an improved version through the Euler–Maclaurin sum
formula.

Using the lemma twice with the values y = x/Q2, h = u/Q2 and y =
x/Q1, h = u/Q1, we obtain

I1(x, u, d;Q1)− I1(x, u, d;Q2)

=
1
2d

(
{x2−(x−u)2} log

Q2

Q1
−(Q2−Q1)u+O(Q5/4

2 ux−1/4)
)

+O
(

x2

logA+1 x

)

from (18) after taking into account a substantial cancellation of terms.
Joined with (14) and the formula

∞∑

d=1

µ2(d)
dφ(d)

=
∏
p

(
1 +

1
p(p− 1)

)
=
∏
p

p6 − 1
p(p2 − 1)(p3 − 1)

=
ζ(2)ζ(3)
ζ(6)

,

this yields

J†2(x, u;Q1)− J†2(x, u;Q2)

=
1
2

{
{x2 − (x− u)2} log

Q2

Q1
− (Q2 −Q1)u+O(Q5/4

2 ux−1/4)
}

×
∑

d≤x

µ2(d)
dφ(d)

+O

(
x2

logA+1 x

∑

d≤x

1
φ(d)

)

=
ζ(2)ζ(3)

2ζ(6)

{
{x2 − (x− u)2} log

Q2

Q1
− (Q2 −Q1)u

}

+O(x log x) +O

(
x2

logA x

)
+O(Q5/4

2 ux−1/4)

=
ζ(2)ζ(3)

2ζ(6)

{
{x2 − (x− u)2} log

Q2

Q1
− (Q2 −Q1)u

}

+O(Q5/4
2 ux−1/4) +O

(
x2

logA x

)
.

Hence, by (10)–(12), we are led to the equation

S∗2 (x, u;Q1, Q2) =
ζ(2)ζ(3)

2ζ(6)

{
{x2 − (x− u)2} log

Q2

Q1
+ (Q2 −Q1)u

}
(20)

+O(Q5/4
2 ux−1/4) +O

(
x2

logA x

)

that is the final conclusion of this section.
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5. The earlier analysis of S3(x, u;Q1, Q2). We reach the hardest parts
of the analysis now we confront the sum S∗3 (x, u;Q1, Q2) that was defined in
(7). To reduce the resistance it offers we first move over to the unweighted
sum S3(x, u;Q1, Q2) given by

(21) S3(x, u;Q1, Q2) =
∑

Q1<k≤Q2

∑

0<a≤u
(a,k)=1

θ2(x; a, k)

in accordance with the conventions laid down at the beginning of Section 3,
then letting

(22) J3(x, u;Q) = S3(x, u;Q, x)

when (9) holds so that

(23) S3(x, u;Q1, Q2) = J3(x, u;Q1)− J3(x, u;Q2)

much as in (10). Then the square θ2(x; a, k) in J3(x, u;Q) is equal to the
sum of log p1 log p2 taken over all solutions of the conditions

(24) p1 − a = l2k, p2 − a = l1k, a ≤ p1, p2 ≤ x
in primes p1, p2 and (non-negative) integers l1, l2, since as in the previous
section the stipulation (9) implies that positive numbers congruent to a,
mod k, are not less than a. These solutions fall into six mutually exclusive
categories characterized by the features

(25)

(i) p1 = p2 = a; (iv) p1 = p2 > a, l1 = l2 > 0;

(ii) p1 = a, p2 > a; (v) 0 < l2 < l1;

(iii) p1 > a, p2 = a; (vi) 0 < l1 < l2,

from which it is deduced that

(26) J3(x, u;Q) = J§3(x, u;Q) + 2J‡3(x, u;Q) + J$
3 (x, u;Q) + 2J†3(x, u;Q)

where J§3 , J‡3 , J$
3 , J†3 are, respectively, the contributions of categories (i),

(ii), (iv), (v) to J3 and appear in rising order of difficulty. But, before going
on, we emphasize that in future the letter l, with or without subscript, will
denote a positive integer.

The sum J§3 can be eliminated from the work at once, since (i), (21), and
(22) imply that

(27) J§3(x, u;Q1)− J§3(x, u;Q2) =
∑

Q1<k≤Q2

∑

p≤u
p-k

log2 p = O(Q2u log u)

by Chebyshev’s inequality. With this, we can now take leave of the present
section in order to concentrate on the remaining sums, in which we note at
once that the summatory condition (a, k) = 1 is redundant in view of the
comments after (10).
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6. Estimation of J‡3(x, u;Q). The estimation of J‡3(x, u;Q) is not en-
tirely dissimilar to that of J†2(x, u;Q) above although there are some im-
portant points of difference. First, by (21), (22), (24), and (ii), J‡3 is the
sum of log p1 log p2 taken over all solutions in primes p1, p2 and positive
integers l of

p1 ≤ u, p2 ≡ p1, mod l, l < x/Q, p1 + lQ < p2 ≤ x,
which conditions imply that p1 - l. Therefore

(28) J‡3(x, u;Q)

=
∑

l<x/Q

∑

p1≤min(u,x−lQ)
p1-l

log p1

∑

p1+lQ<p2≤x
p2≡p1,mod l

log p2

=
∑

l<x/Q

∑

p1≤min(u,x−lQ)
p1-l

log p1

{
x− lQ− p1

φ(l)
+O

(
x

logA x

)}

=
∑

l<x/Q

1
φ(l)

∑

p1≤min(u,x−lQ)

(x− lQ− p1) log p1

+O

(
x
∑

l≤x

log l
φ(l)

)
+O

(
x2u

Q logA x

)

=
∑

l<x/Q

1
φ(l)

∑

p1≤min(u,x−lQ)

(x− lQ− p1) log p1

+O

(
x2

logA x

)

= J‡‡3 (x, u;Q) +O

(
x2

logA x

)
, say,

by another application of the prime-number theorem for arithmetical pro-
gressions and then by (9). Next, the inner sum in J‡‡3 being

1
2

(x− lQ)2 +O

(
x2

logA+1 x

)

or

u(x− lQ)− 1
2
u2 +O

(
x2

logA+1 x

)

according as (x− u)/Q ≤ l < x/Q or l < (x− u)/Q, we have
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(29) J‡‡3 (x, u;Q)

=
1
2

∑

(x−u)/Q≤l<x/Q

(x− lQ)2

φ(l)
+

1
2

∑

l≤(x−u)/Q

2u(x− lQ)− u2

φ(l)

+O

(
x2

logA+1 x

∑

l<x/Q

1
φ(l)

)

=
1
2

∑

l<x/Q

(x− lQ)2

φ(l)

− 1
2

∑

l≤(x−u)/Q

(x− lQ)2 − 2u(x− lQ) + u2

φ(l)
+O

(
x2

logA x

)

=
1
2

∑

l<x/Q

(x− lQ)2

φ(l)
− 1

2

∑

l<(x−u)/Q

(x− u− lQ)2

φ(l)
+O

(
x2

logA x

)
,

the last two sums in which are like those in (18) save that the denomi-
nators are now φ(l) instead of l. To calculate their difference we therefore
need to replace the use of Lemma 2 by that of the analogous but sim-
pler

Lemma 3. If 0 < h < y and y ≥ 1, then

1
2

∑

l<y

(y − l)2

φ(l)
− 1

2

∑

l<y−h

(y − l − h)2

φ(l)

=
ζ(2)ζ(3)

2ζ(6)
{y2 log y − (y − h)2 log(y − h)}

+B2{y2 − (y − h)2}+O(hy3/4).

All we have to do is to revisit the asymptotic formula for

T (u) =
∑

l<u

(u− l)2

φ(l)

contained in Lemma 1 of I (or Lemma 1 in VIII), considering how an appro-
priate remainder term can be made available for T (y)−T (y− h). In fact, if
we subtract from T (y)−T (y−h) the explicit terms in our proposed formula
corresponding to the first two explicit terms in the formula of I, Lemma 1,
we are left with

1
2πi

−1/4+i∞\
−1/4−i∞

ζ(s+ 1)ζ(s+ 2)h(s+ 1)
ys+2 − (y − h)s+2

s(s+ 1)(s+ 2)
ds
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when the notation of I is deployed. This is similar to (but easier than) the
residual integral in (19) except for the factors

ζ(s+ 1) = O{(|t|+ 1)1/8+ε}, ζ(s+ 2)h(s+ 1) = O(1),

ys+2 − (y − h)s+2 = O{(|t|+ 1)hy3/4} (σ = −1/4)

whose presence in the integrand leads to the estimate

O

(∞\
0

hy3/4

(t+ 1)15/8+ε
dt

)
= O(hy3/4)

for the remainder term. A considerably more accurate version of this result
can in fact be made available but would not endow our present project with
additional benefit.

The final part of the assessment echoes the procedure at the end of
the previous section and uses the new lemma for the same sets of values
y = x/Q2, h = u/Q2; y = x/Q1, h = u/Q1. Accordingly, by (28) and (29),
we conclude that

(30) J‡3(x, u;Q1)− J‡3(x, u;Q2)

=
ζ(2)ζ(3)

2ζ(6)
{x2 − (x− u)2} log

Q2

Q1
+O(Q1/4

2 ux3/4) +O

(
x2

logA x

)
.

7. Estimation of J$
3 (x, u;Q). The ascent steepens as we arrive at

J$
3 (x, u;Q) even though the main peak to be scaled is not reached till the

next section. Analyzing (24) as in Section 6 save that (iv) in (25) is assumed
in place of (ii), we begin with the apparently innocuous equation

J$
3 (x, u;Q) =

∑

l<x/Q

∑

0<a≤min(u,x−lQ)
(a,l)=1

∑

a+lQ<p≤x
p≡a,mod l

log2 p,

the innermost sum in which is expressed as

1
φ(l)

x\
a+lQ

log t dt+O

(
x

logA x

)

in order to ease what would otherwise be a cumbersome summation over a.
Therefore, by (9),

J$
3 (x, u;Q) =

∑

l<x/Q

1
φ(l)

∑

0<a≤min(u,x−lQ)
(a,l)=1

x\
a+lQ

log t dt+O

(
x2u

Q logA x

)
(31)

=
∑

l<x/Q

1
φ(l)

H(x, u, l;Q) +O

(
x2

logA x

)
, say.

Next, if (x− u)/Q ≤ l < x/Q, Lemma 1 shews that



14 C. Hooley

H(x, u, l;Q) =
x\
lQ

log t
∑

0<a≤t−lQ
(a,l)=1

1 dt(32)

=
φ(l)
l

x\
lQ

(t− lQ) log t dt+O{d(l)x log x}

=
φ(l)
l
D1(x, lQ) +O{d(l)x log x}, say,

whereas, if l < (x− u)/Q, then

(33) H(x, u, l;Q)

=
u+lQ\
lQ

log t
∑

a≤t−lQ
(a,l)=1

1 dt+
x\

u+lQ

log t
∑

a≤u
(a,l)=1

1 dt

=
φ(l)
l

u+lQ\
lQ

(t− lQ) log t dt+
φ(l)
l

x\
u+lQ

u log t dt+O{d(l)x log x}

=
φ(l)
l

x\
lQ

(t− lQ) log t dt− φ(l)
l

x\
u+lQ

(t− lQ− u) log t dt+O{d(l)x log x}

=
φ(l)
l

x\
lQ

(t− lQ) log t dt− φ(l)
l

x−u\
lQ

(t− lQ) log t dt

− φ(l)
l

x−u\
lQ

(t− lQ){log(t+ u)− log t} dt+O{d(l)x log x}

=
φ(l)
l
D1(x, lQ)− φ(l)

l
D1(x− u, lQ)− φ(l)

l
D2(x, u, lQ)

+O{d(l)x log x}, say.

Hence (31) transforms into

J$
3 (x, u;Q) =

∑

l<x/Q

D1(x, lQ)
l

−
∑

l<(x−u)/Q

D1(x− u, lQ)
l

(34)

−
∑

l<(x−u)/Q

D2(x, u, lQ)
l

+O

(
x2

logA x

)

+O

(
x log x

∑

l≤x

d(l)
φ(l)

)
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= J
(1)
3 (x,Q)− J (1)

3 (x− u,Q)− J (2)
3 (x, u;Q)

+O

(
x2

logA x

)
, say,

to progress from which we must first evaluate the integral D1(x1, lQ) when
x1 is either x or x− u.

From the definition of D(x1, lQ) in (32) and (33) for lQ < x1, we have

D1(x1, lQ) =
x1

lQ

[
1
2 (t− lQ)2 log t

]− 1
2

x1\
lQ

(t− lQ)2

t
dt

=
1
2

(x1 − lQ)2 log x1

− 1
2

(
1
2

(x2
1 − l2Q2)− 2lQ(x1 − lQ) + l2Q2 log

x1

Ql

)

=
1
2

(x1 − lQ)2 log x1

−
(

1
4
x1(x1 − lQ)− 3

4
lQ(x1 − lQ) +

1
2
l2Q2 log

x1

Ql

)

= Q2
{

1
2

(x2 − l)2 log x1

−
(

1
4
x2(x2 − l)− 3

4
l(x2 − l) +

1
2
l2 log

x2

l

)}

on setting x2 = x1/Q. Therefore, substituting this into the formula for
J

(1)
3 (x1, Q) that is implicitly contained in (34), we get the equation

1
Q2 J

(1)
3 (x1, Q) =

1
2

log x1

∑

l<x2

(x2 − l)2

l

−
(

1
4
x2

∑

l<x2

x2 − l
l
− 3

4

∑

l<x2

(x2 − l) +
1
2

∑

l2<x

l log
x2

l

)
,

to develop which we employ the previous contour integral methods in pref-
erence to other available techniques. In consequence

1
Q2 J

(1)
3 (x1, Q) =

1
2πi

c+i∞\
c−i∞

ζ(s+ 1)
xs+2

2 log x1

s(s+ 1)(s+ 2)
ds

− 1
8πi

c+i∞\
c−i∞

ζ(s+ 1)xs+2
2

×
(

1
s(s+ 1)

− 3
(s+ 1)(s+ 2)

+
2

(s+ 2)2

)
ds
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=
1

2πi

c+i∞\
c−i∞

ζ(s+ 1)
xs+2

2 log x1

s(s+ 1)(s+ 2)
ds

− 1
2πi

c+i∞\
c−i∞

ζ(s+ 1)
xs+2

2

s(s+ 1)(s+ 2)2 ds

for c > 0 in the first place, whereupon, on writing y = x/Q and h = u/Q in
the notation of Lemmata 2 and 3, we obtain

(35)
1
Q2 {J

(1)
3 (x,Q)− J (1)

3 (x− u,Q)}

=
1

2πi

c+i∞\
c−i∞

ζ(s+ 1)
ys+2 log x− (y − h)s+2 log(x− u)

s(s+ 1)(s+ 2)
ds

− 1
2πi

c+i∞\
c−i∞

ζ(s+ 1)
ys+2 − (y − h)s+2

s(s+ 1)(s+ 2)2 ds.

Were it not for our desire to have preliminary theorems of optimum
sharpness, it would suffice to move the contours of integration to σ = −1/4
as in the proof of Lemma 3. As it is, we are obliged to shift at least the first
contour further left to σ = −5/4, it then being convenient for notational
brevity to shift the second one likewise. Next, following details related to
Lemma 2, we observe that the double poles at s = 0 and the single poles at
s = −1 create a term

1
2 (y2 log y+B3y

2) log x− 1
2{(y− h)2 log(y− h) +B3(y− h)2} log(x− u)

− [ 1
4 (y2 log y +B4y

2)− 1
4{(y − h)2 log(y − h) +B4(y − h)2}]

+ 1
2{y log x− (y − h) log(x− u)− h},

to which must be added a donation from the residual integrals of
O(hy−1/4 log x) that can be absorbed in the estimate O(h log x) from the
last explicit term.

From this and (35), we then infer that

(36) J
(1)
3 (x,Q1)− J (1)

3 (x− u,Q1)− {J (1)
3 (x,Q2)− J (1)

3 (x,Q2)}
=

1
2
{x2 log x− (x− u)2 log(x− u)} log

Q2

Q1

− 1
4
{x2 − (x− u)2} log

Q2

Q1
+O(Q2u log x),

thus finalizing the discussion of the influence of J (1)
3 (x,Q) on our problem.
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We need not tarry long over the treatment emanating from D2(x, u, lQ),
which by (33) equals

x−u\
lQ

(t− lQ)
{
u

t
+O

(
u2

t2

)}
dt = u(x− u− lQ)− ulQ log

x− u
lQ

+O

(
u2 log

x− u
lQ

)

under the assumption that l < (x− u)/Q. This and (34) then yield

J
(2)
3 (x, u;Q) = u

∑

l<(x−u)/Q

x− u− lQ
l

− uQ
∑

l<(x−u)/Q

log
x− u
lQ

+O

(
u2

∑

l<x/Q

1
l

log
x

lQ

)

= u(x− u) log
x− u
Q

+B5u(x− u)− u(x− u)

+O(Q1/4ux3/4) +O

(
u2 log2 2x

Q

)

= u(x− u) log
x− u
Q

+ (B5 − 1)u(x− u) +O(Q1/4ux3/4)

since u < Q, wherefore

(37) J
(2)
3 (x, u;Q1)− J (2)

3 (x, u;Q2) = u(x− u) log
Q2

Q1
+O(Q1/4

2 ux3/4).

Thus we conclude that

(38) J$
3 (x, u;Q1)− J$

3 (x, u;Q2)

=
1
2
{x2 log x− (x− u)2 log(x− u)} log

Q2

Q1

− 1
4
{x2 − (x− u)2} log

Q2

Q1
− u(x− u) log

Q2

Q1

+O(Q2u log x) +O(Q1/4
2 ux3/4) +O

(
x2

logA x

)
,

whither we have arrived via (34), (36), and (37).

8. Estimation of J†3(x, u;Q)—the preliminary stages and the ap-
plication of the circle method. The difficulty of the treatment quickly
attains its culmination after we appraise the consequences of (25)(v) and
the other conditions of summation appertaining to the implicit meaning of
J†3(x, u;Q) as a triple sum. First, if (l1, l2) = δ with the consequence that
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we may write l1 = l′1δ, l2 = l′2δ where

(39) (l′1, l
′
2) = 1,

then the first two items in (24) are tantamount to the pair

(40) p1 ≡ p2 ≡ a,modδ,

and

l′1{(p1 − a)/δ} = l′2{(p2 − a)/δ},
the latter member of which may be restated as

(41) l′1p1 − l′2p2 − l′3a = 0 (l′3 = l′1 − l′2).

Secondly, the conditions related to k translate into the implication

l2 < l1 < x/Q

and the two requirements

p2 > a+ l1Q, p1 > a+ l2Q,

the second one of which is implied by the first when (41) is in place. There-
fore, if we recall again the final remark in Section 5 and any remaining
conditions related to (21) and (22), we confirm that (41) and the inequality
p2 ≤ x imply

(42) p1 < p2, p1 ≤ x
and then complete the first phase of the calculation by deducing that

(43) J†3(x, u;Q) =
∑

δ<x/Q

∑

l′2<l
′
1<x/(Qδ)

(l′1,l
′
2)=1

P (x, u,Qδl′1; l′1, l
′
2; δ)

the inner summand in which is defined by letting Θ = Θδ,l′1,l′2 indicate the
conjunction of (40) and (41) and by then setting

(44) P (x, u, T ; l′1, l
′
2; δ)

=
∑

Θ
0<a≤u; a+T<p2≤x

log p1 log p2 (x log−A1 x < T < x)

as a sum over the variables a, p1, p2.
The formula needed for P (x, u, T ; l′1, l

′
2; δ) is obtained by a version of the

circle method having some affinity with problems of a binary Goldbach type,
although the presence of the variable a means we are meeting a workable
binary assignment. Somewhat similar to its namesake in VIII on account
of the core conditions (40) and (41), the sum is handled by using some of
the results of the previous paper in combination with a Farey dissection in
which very few arcs are to be regarded as major. It therefore suffices to
sketch the demonstration, especially since the calculations over the minor



Barban–Davenport–Halberstam theorem: XI 19

arcs are mainly influenced by the presence of simple exponential sums with
integer argument a.

As in VIII, we first contemplate an associated problem in which the
domains of summation over each of p1, p2, a are not interconnected and
therefore look at the sum

(45) P1(x, t1, t2; l′1, l
′
2; δ) =

∑

Θ
0<a≤t1; t2<p2≤x

log p1 log p2

for any values of t1, t2 such that 0 < t1 < t2 ≤ x, where the second part of
(42) is still implicit in the summation. Since

P1(x, t1, t2; l′1, l
′
2; δ) =

∑

0<b≤δ
(b,δ)=1

∑

p1≡p2≡a≡b,mod δ

(46)

=
∑

0<b≤δ
(b,δ)=1

P2(x, t1, t2; l′1, l
′
2; b; δ), say,

by the first part of (42), we are then led to introduce the exponential sums

f1(θ) =
∑

p1≤x
p1≡b,mod δ

log p1 e
2πil′1p1θ, f2(θ) =

∑

t2<p2≤x
p2≡b,mod δ

log p2 e
−2πil′2p2θ,

(47)
f3(θ) =

∑

0<a≤t1
a≡b,mod δ

e−2πil′3aθ,

in terms of which we find that

(48) P2(x, t1, t2; l′1, l
′
2; b; δ) =

1\
0

f1(θ)f2(θ)f3(θ) dθ

in the usual way.
Assuming throughout

(49) l′2 < l′1 < (logA1 x)/δ ≤ logA1 x and δ ≤ logA1 x

in conformity with (9), we use a Farey dissection of order M = x log−A2 x
that has the property that each θ in the range of integration belongs to one
and only one arc, mod 1, (apart from the end points) of the form

(50) |θ − h/k| ≤ ϑh,k/(Mk),

where k ≤ M , 0 < h ≤ k, (h, k) = 1, and 1/2 ≤ ϑh,k ≤ 1. Next, by (47),
f3(θ) = O(1/‖δl′3θ‖) so that

(51) |f3(θ)| > A3x log−A2 x
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only when δl′3θ = m + ψ for some (non-negative) integer m and for |ψ| <
1
2x
−1 logA2 x, namely, only when

θ =
m

δl′3
+ φ and |φ| < logA2 x

2xδl′3
=

1
2Mδl′3

and hence certainly only when θ lies within an arc (50) for which k | δl′3. All
such arcs are then dilated to form the set M of major arcs

|θ − h/k| < 1/M, k | δl′3,
which are non-intersecting because k ≤ logA1 x; the complement of M in
the range of integration then forms the set m, on which (51) is false. We
therefore determine at once the effect of m on the integral in (48) because

\
m

f1(θ)f2(θ)f3(θ) d(θ) = O

{
x

logA2 x

( 1\
0

|f1(θ)|2 dθ
)1/2( 1\

0

|f2(θ)|2 dθ
)1/2

}

= O

(
x

logA2 x

∑

p≤x
log2 p

)
= O

(
x2

logA2−1 x

)
,

the cumulative contribution of m to P1(x, t1, t2; l′1, l
′
2; δ) via (46) being

(52) O

(
x2δ

logA2−1 x

)
= O

(
x2

logA2−A1−1 x

)
= O

(
x2

logA4 x

)

for any A4 provided that A2 = A2(A1, A4) be chosen to be sufficiently large.
On the major arcs we almost treat matters as we would for a binary

problem, disengaging the function f3(θ) from the integral by performing
the summation over a outside the integral sign. Accordingly the integral of
f1(θ)f2(θ)f3(θ) over M is expressed as

(53)
∑

0<a≤t1
a≡b,mod δ

\
M

f1(θ)f2(θ)e−2πil′3aθdθ,

to which the contribution of the arc centred on h/k is

(54)
∑

0<a≤t1
a≡b,mod δ

1/M\
−1/M

e−2πihbl′3/kf1(h/k + φ)f2(h/k + φ)e−2πial′3φ dφ

because k | δl′3. In this, the integral is processed by the methods in VIII and,
in particular, by the formulae for f1(h/k+ φ) and f2(h/k+ φ) furnished by
the work immediately following equation (50) therein. The upshot is that,
setting

υ1(φ) =
x\
0

e2πil′1zφ dz, υ2(φ) =
x\
t2

e−2πil′2zφ dz,
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k1 = k/(k, l′1), k2 = k/(k, l′2)

and then letting a∗ denote the unique root, mod k, of the simultaneous
congruences

ν ≡ 0, mod k/(k, δ), ν ≡ b,mod(k, δ),(55)

when

(k/(k, δ), δ) = 1,(56)

we discover that the integrand in (54) is

(57)
∏

j=1,2

µ{kj/(kj , δ)}
φ([kj , δ])

e2πih{a∗(l′1−l′2)−bl′3}/kυ1(φ)υ2(φ)e−2πial′3φ

+O

(
x2

logA5 x

)

if (56) hold but that it is

(58) O

(
x2

logA5 x

)

in the contrary case. Next, in the former situation let k∗ = k/(k, δ), k† =
(k, δ) for brevity and deduce from (55) that

a∗ − b ≡ 0, mod k†, a∗ − b ≡ −b, mod k∗,

whence, by the definition of l′3 in (41),

h{a∗(l′1 − l′2)− bl′3}
k

=
h(a∗ − b)l′3

k
≡ −hk

†bl′3
k∗

, mod 1,

where k†k† ≡ 1, mod k∗. Then direct this to (57), which when incorporated
in (54) shews the latter equals

(59)
∑

0<a≤t1
a≡b,mod δ

{
e−2πihk†bl′3/k

∗∏

j=1,2

µ{kj/(kj , δ)}
φ([kj , δ])

∞\
−∞

υ1(φ)υ2(φ)e−2πial′3φ dφ

+O

(
x

logA6 x

)}

=
∑

0<a≤t1
a≡b,mod δ

e−2πihk†bl′3/k
∗ ∏

j=1,2

µ{kj/(kj , δ)}
φ([kj , δ])

Il′1,l′2,a

+O

(
x

logA6 x

∑

0<a≤t1
a≡b,mod δ

1
)
, say,



22 C. Hooley

by methods akin to those that substantiated (51) in VIII, the constants A2

and then A5 having been chosen to be sufficiently large.
It is opportune to evaluate the integral Il′1,l′2,a in the standard way by

Fourier’s integral theorem. Arising as a double integral with variables of
integration z1, z2, the integrand in Il′1,l′2,a is transformed by the substitution

Z1 = l′1z1 − l′2z2, Z2 = z2

of absolute modulus l′1 so that it becomes the Fourier transform

1
l′1

∞\
−∞

F (Z1)e2πiZ1φ dZ1.

Consequently,

(60) Il′1,l′2,a =
1
l′1
F (al′3) =

x− t2
l′1

because the limits t2 and x for z2 imply that 0 ≤ z1 ≤ x when l′1z1 − l′2z2 −
l′3a = l′1(z1 − a)− l′2(z2 − a) = 0 and a ≤ t1 < t2.

Introducing the Ramanujan sum

(61) cq(m) =
∑

0<d≤q
(d,q)=1

e2πimd/q =
∑

r|q; r|m
µ

(
q

r

)
r

to gather up what has so far been obtained, let us add (59) and the integral
of (58) over the Farey fractions corresponding to the major arcs to get

(62)
x− t2
l′1

∑

0<a≤t1
a≡b,mod δ

∑

k|δl′3
(k/(k,δ),δ)=1

φ(k†)ck∗(bl′3)
∏

j=1,2

µ{kj/(kj , δ)}
φ([kj , δ])

+O

(
x

logA6 x

∑

0<a≤t1
a≡b,mod δ

∑

k|δl′3
φ(δl′3)

)

by (60). In the principal term here, by (56), we may assume that k∗ is square-
free, while (b, k∗) | l′3 since k | δl′3 and (b, δ) = 1. Therefore ck∗(bl′3) = ck∗(l′3)
because of (61), and we thus see that (62) becomes

x− t2
l′1

∑

0<a≤t1
a≡b,mod δ

∑

k|δl′3
(k/(k,δ),δ)=1

φ(k†)ck∗(l′3)
∏

j=1,2

µ{kj/(kj , δ)}
φ([kj , δ])

+O

(
xδl′3

logA6 x

∑

0<a≤t1
a≡b,mod δ

1
)
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=
x− t2
l′1

Sδ,l′1,l
′
2

∑

0<a≤t1
a≡b,mod δ

1 +O

(
x

logA6−A1 x

∑

0<a≤t1
a≡b,mod δ

1
)
, say,

because of (49). Therefore, summing over b to gauge the effect of M on
P1(x, t1, t2; l′1, l

′
2; δ) and then adding on (52), we conclude that

P2(x, t1, t2; l′1, l
′
2; δ) =

x− t2
l′1

Sδ,l′1,l
′
2

(
φ(δ)t1
δ

+O{d(δ)}
)

+O

(
xt1

logA6−A1 x

)
+O

(
x2

logA4 x

)

=
t1(x− t2)

l′1
· φ(δ)

δ
Sδ,l′1,l

′
2

+O

(
x2

logA7 x

)

by Lemma 1 and a trivial bound for Sδ,l′1,l
′
2
.

To determine the value of the singular series let us note that

Sδ,l′1,l
′
2

=
1

φ2(δ)

∑

k|δl′3
(k/(k,δ),δ)=1

φ(k†)ck∗(l′3)
∏

j=1,2

µ{kj/(kj , δ)}
φ{kj/(kj , δ)} ,

the summand in which is a multiplicative function of k when it is taken to
be zero for values of k not satisfying (k/(k, δ), k) = 1. Hence, by a simple
argument that takes into consideration (61) and the definition of l′3 in (41),
we have

Sδ,l′1,l
′
2

=
1

φ2(δ)

∏

pα‖δ
(1 + φ(p) + . . .+ φ(pα))

∏

p|l′3; p-δ

(
1 +

p− 1
(p− 1)2

)

=
δ

φ2(δ)
Gδ(l′3),

where

(63) Gδ(l′3) =
∏

p|l′3; p-δ

(
1 +

1
p− 1

)
.

Altogether, therefore, we arrive at

(64) P1(x, t1, t2; l′1, l
′
2; δ) =

Gδ(l′3)
l′1φ(δ)

t1(x− t2) +O

(
x2

logA7 x

)
,

to which we append the obviously zero determination of P1 when we allow
t2 to stray into the formerly debarred territory t2 > x.

We extract from (64) the behaviour of P (x, u, T ) in (43) by a Tauberian
argument that perforce is rather longer than its analogue in VIII. First, if

(65) P3(x, u, T ) = P3(x, u, T ; l′1, l
′
2; δ) =

x\
T

P (x, u, T1) dT1,
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then

P3(x, u, T ) =
∑

0<a≤u; a+T<p2≤x
Θ

log p1 log p2

p2−a\
T

dT1

=
∑

0<a≤u; a+T<p2≤x
Θ

(p2 − a− T ) log p1 log p2,

whereas, if

(66) P4(x, u, T ) = P4(x, u, T ; l′1, l
′
2; δ) =

x−u\
T

P1(x, u, u+ T1) dT1

and u ≤ x− T , then

P4(x, u, T ) =
∑

0<a≤u;u+T<p2≤x
Θ

log p1 log p2

p2−u\
T

dT1

=
∑

0<a≤u;u+T<p2≤x
Θ

(p2 − u− T ) log p1 log p2.

Secondly, by (45),

(67)
u\
0

P1(x, t, t+ T ) dt =
∑

0<a≤u; a+T<p2≤x
Θ

log p1 log p2

min(u,p2−T )\
a

dt,

which equals P3(x, u, T ) if u ≥ x− T but which equals

(68)
∑

0<a≤u; a+T<p2≤u+T
Θ

(p2 − a− T ) log p1 log p2

+
∑

0<a≤u;u+T<p2≤x
Θ

(u− a) log p1 log p2

=
∑

0<a≤u; a+T<p2≤x
Θ

(p2 − a− T ) log p1 log p2

−
∑

0<a≤u;u+T<p2≤x
Θ

(p2 − u− T ) log p1 log p2

= P3(x, u, T )− P4(x, u, T )
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if u ≤ x− T . Next (64) implies that the integral on the left of (67) is either
x−T\

0

P1(x, t, t+ T ) dt =
Gδ(l′3)
l′1φ(δ)

x−T\
0

t(x− T − t) dt+O

(
x2(x− T )

logA7 x

)

=
Gδ(l′3)
6l′1φ(δ)

(x− T )3 dt+O

(
x2(x− T )

logA7 x

)

or
Gδ(l′3)
l′1φ(δ)

u\
0

t(x− T − t) dt+O

(
x2(x− T )

logA7 x

)

=
Gδ(l′3)
l′1φ(δ)

{
1
2
u2(x− T )− 1

3
u3
}

+O

(
x2(x− T )

logA7 x

)

according as u ≥ x − T or u ≤ x − T , while in the latter instance it also
implies that

P4(x, u, T ) dt =
Gδ(l′3)u
l′1φ(δ)

x−u\
T

(x− u− T1) dT1 +O

(
x2(x− T )

logA7 x

)

=
Gδ(l′3)
2l′1φ(δ)

u(x− T − u)2 +O

(
x2(x− T )

logA7 x

)
.

Therefore, with the aid of (68), we deduce that

(69) P3(x, u, T ) =
Gδ(l′3)
6l′1φ(δ)

F (x, u, T ) +O

(
x2(x− T )

logA7 x

)
,

where

(70) F (x, u, T ) = (x− T )3

for u ≥ x− T but where

(71) F (x, u, T ) = 3u2(x−T )−2u3+3u(x−T−u)2 = (x−T )3−(x−u−T )3

for u ≤ x − T . Having obtained an Abelian version of what is needed, we
perform a “de la Vallée Poussin differentiation” by choosing H such that
0 < H < x− T, T and using the inequality

1
H
{P3(x, u, T )− P3(x, u, T +H)} ≤ P3(x, u, T )

≤ 1
H
{P3(x, u, T −H)− P3(x, u, T )}

that is an inference from (65). Since the function F (x, u, T ) defined by (70)
and (71) is a twice differentiable function having second derivatives x − T
or u according as u ≥ x− T or u ≤ x− T , this inequality with (69) leads to

P (x, u, T ) =
Gδ(l′3)
6l′1φ(δ)

· ∂
∂T

F (x, u, T ) +O{H(x− T )}+O

(
x2(x− T )

H logA7 x

)
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in view of (63). Hence, setting H = (x − T ) log−A7/2 x and confirming
through (44) that H < x log−A1 x < T for sufficiently large values of A7, we
complete (3) the estimation and thereby gain

(72) P (x, u, T ) =
Gδ(l′3)
2l′1φ(δ)

F1(x, u, T ) +O

(
x2

logA8 x

)

where

(73) F1(x, u, T ) =
{

(x− T )2 if u ≥ x− T,
(x− T )2 − (x− u− T )2 if u ≤ x− T.

Armed with (72), we are at long last able to return to (43), remarking
on account of (41) that l′3 can replace l′2 in the summatory conditions and
thus obtaining

J†3(x, u;Q) =
1
2

∑

δ<x/Q

1
φ(δ)

∑

l′3<l
′
1<x/(Qδ)

(l′1,l
′
3)=1

1
l′1
F1(x, u,Qδl′1)Gδ(l′3)(74)

+O

(
x2

logA8 x

∑

δ<x/Q

∑

l′1<l
′
3<x/(Qδ)

1
)

=
1
2

∑

δ<x/Q

1
φ(δ)

∑

l′3<l
′
1<x/(Qδ)

(l′1,l
′
3)=1

1
l′1
F1(x, u,Qδl′1)Gδ(l′3)

+O

(
x2

logA8−2A1 x

)

= J††3 (x, u;Q) +O

(
x2

logA9 x

)
, say,

because of (9). Since the coprimality condition is a distraction in the treat-
ment of J††3 (x, u;Q), we remove it by affecting the summand by the factor

∑

d|l′1; d|l′3
µ(d),

whence, setting l′1 = dl1, l′3 = dl3, and noting from (63) that

Gδ(dl3) = Gδ(d)Gdδ(l3),

(3) The lower bound for T in (44) is not strictly necessary but slightly reduces the
length of the demonstration.
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we deduce that

J††3 (x, u;Q) =
1
2

∑

δ<x/Q

1
φ(δ)

∑

d<x/(Qδ)

µ(d)
d

×
∑

l3<l1<x/(Qdδ)

1
l1
F1(x, u,Qdδl1)Gδ(dl3)

=
1
2

∑

δ<x/Q

1
φ(δ)

∑

d<x/(Qδ)

µ(d)Gδ(d)
d

×
∑

0<l3<l1<x/(Qdδ)

1
l1
F1(x, u,Qdδl1)Gdδ(l3)

=
1
2

∑

∆<x/Q

I(∆)
∑

l3<l1<x/(Q∆)

1
l1
F1(x, u,Q∆l1)G∆(l3)

where

I(∆) =
∑

dδ=∆

µ(d)Gδ(d)
dφ(δ)

.

But, by (63), the multiplicative function I(∆) is given by the determination

I(pα) =
{

1/(p− 1)− 1/(p− 1) = 0 if α = 1,

1/φ(pα)− 1/(pφ(pα−1)) = 0 if α > 1

so that I(∆) = 0 unless ∆ = 1. Hence we arrive at the equation

(75) J††3 (x, u;Q) =
1
2

∑

l3<l1<x/Q

1
l1
F1(x, u,Ql1)G1(l3)

and complete the first half of the treatment of J†3(x, u;Q).

9. Estimations of J†3(x, u;Q) and S3(x, u;Q1, Q2)—the second
stages. Examining (75), (63), and (73), we discern the sum

U(v) =
1
2

∑

l3<l1<v

(v − l1)2l3
l1φ(l3)

and find it present in the relation

(76) J††3 (x, u;Q) = Q2{U(y)− U(y − h)},
where y = x/Q and h = u/Q as before. An investigation of U(y) must
therefore follow, the principal difficulty being to profit from the smoothing
element that is latent in the formation of the sum.
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First, dropping the subscript from l3 to lighten the notation, we have

(77) U(v) =
1
2

∑

l<v

l

φ(l)

∑

l<l1<v

(v − l1)2

l1
=

1
2

∑

l<v

l

φ(l)
V (v, l), say,

and

(78)
1
2
V (v, l) =

1
2
V1(v, v)− 1

2
V1(v, l),

where
1
2
V1(v, w) =

1
2

∑

l≤w

(v − l)2

l

for w ≤ v. To proceed from here, we must amplify and exploit the theory
behind Lemma 2, first using the Euler–Maclaurin sum formula to shew that,
for positive integers w,

1
2
V1(v, w) =

1
2
v2
∑

l≤w

1
l
− v

∑

l≤w
1 +

1
2

∑

l≤w
l(79)

=
1
2
v2
{

logw + γ +
1

2w
+ C(w)

}
− vw +

1
4
w2 +

1
4
w

where

(80) C(w) = O(1/w2).

This implies that, if we set

(81) R2(v) =
1
2
V1(v, v)− 1

2
v2 log v − 1

2
v2
(
γ − 3

2

)
− 1

2
v,

then, for positive integral values of v,

(82) R2(v) =
1
2
v2 C(v)

in contrast to the estimate

(83) R2(y)−R2(y − h) = O(hy−1/4)

supplied by Lemma 2. Hence, by (78), (79) and (81), we gain the equation

1
2
V (v, l) =

1
2
v2 log

v

l
− 3

4
v2 + vl − 1

4
l2 − v2

4l
+

1
2
v − 1

4
l

+R2(v)− 1
2
v2 C(l)

=
1
2
v2 log

v

l
− 3

4
v(v − l) +

1
4
l(v − l) +

1
4

(v − l)− v

4l
(v − l)

+R2(v)− 1
2
v2 C(l)
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and then, by way of (77) and (80), the intermediate estimate

U(v) =
1
2
v2
∑

l<v

l

φ(l)
log

v

l
− 3

4
v
∑

l<v

(v − l)l
φ(l)

+
1
4

∑

l<v

(v − l)l2
φ(l)

(84)

+
1
4

∑

l<v

(v − l)l
φ(l)

− 1
4
v
∑

l<v

(v − l)
φ(l)

+
∑

l<v

R2(v)l
φ(l)

− 1
2
v2
∑

l<v

C(l)l
φ(l)

=
{

1
2
v2
∑

l<v

l

φ(l)
log

v

l
− 3

4
v
∑

l<v

(v − l)l
φ(l)

+
1
4

∑

l<v

(v − l)l2
φ(l)

+
1
4

∑

l<v

(v − l)l
φ(l)

− 1
4
v
∑

l<v

(v − l)
φ(l)

}
+B6v

2

+
{∑

l<v

R2(v)l
φ(l)

+
1
2
v2
∑

l≥v

C(l)l
φ(l)

}

= U1(v) +B6v
2 + U2(v), say,

from which flows the required formula for U(y + h)− U(y).
The first component U1(v) is studied by previous contour integral meth-

ods in partnership with the function

(85) f(s) =
∞∑

l=1

1
ls−1φ(l)

= ζ(s)ζ(s+ 1)h(s) (σ > 1)

that appeared in I. With this procedure, we deduce that

U1(v) =
1

2πi

c+i∞\
c−i∞

f(s)
{

1
2s2 −

3
4s(s+ 1)

+
1

4(s+ 1)(s+ 2)

}
v2+s ds(86)

− 1
8πi

c+i∞\
c−i∞

f(s)
{

1
(s− 1)s

− 1
s(s+ 1)

}
v1+s ds

=
1

2πi

c+i∞\
c−i∞

f(s)
v2+s

s2(s+ 1)(s+ 2)
ds

− 1
2πi

c+i∞\
c−i∞

f(s)
v1+s

2(s− 1)s(s+ 1)
ds

=
1

2πi
{I1(v)− I2(v)}, say,

for c > 1 in the first place. Next, by (85) and by previous calculations that
shew that h(0) = 1 (vid. proof of Lemma 1 in I) and that the principal part
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of ζ(s+ 1)/s2 at s = 0 is 1/s3 + γ/s2 +B7/s, the residues of the integrand
in I1(v) at s = 1 and s = 0 are, respectively,

1
6
ζ(2)h(1)v3 =

ζ(2)ζ(3)v3

6ζ(6)

and

(87)
{

1
2
· d

2

ds2

(
ζ(s)h(s)v2+s

(s+ 1)(s+ 2)

)
+ γ

d

ds

(
ζ(s)h(s)v2+s

(s+ 1)(s+ 2)

)}

s=0
+B8v

2

=
1
4
ζ(0)h(0)v2 log2 v

− 1
2
ζ(0)h(0)

(
ζ ′(0)
ζ(0)

+
h′(0)
h(0)

+ γ − 3
2

)
v2 log v +B9v

2

= − 1
8
v2 log2 v − 1

4

(
ζ ′(0)
ζ(0)

+
h′(0)
h(0)

+ γ − 3
2

)
v2 log v +B9v

2

= − 1
8
v2 log2 v − 1

4
C1v

2 log v +B9v
2, say;

in like manner the residue of the integrand in I2(v) at s = 1 is

(88)
1
4
ζ(2)h(1)v2 log v +B10v

2 =
ζ(2)ζ(3)

4ζ(6)
v2 log v +B10v

2.

Also, if I∗1 (v) and I∗2 (v) denote the integrals obtained by moving the lines
of integration in I1(v) and I2(v) to σ = −1/4 and σ = 3/4, respectively, we
obtain

(89) I∗1 (y)− I∗1 (y − h) = O(hy3/4), I∗2 (y)− I∗2 (y − h) = O(hy3/4)

in emulation of the treatment of the residual integral in the proof of Lem-
ma 2.

The main problem associated with U2(v) is that we need an estimate for
U2(y)−U2(y−h) that involves a factor h, a consideration that impelled the
entrance of C(w) into earlier formulae. From the definition of U2(v) in (84),
we have

U2(y)− U2(y − h) = {R2(y)−R2(y − h)}
∑

l<y−h

l

φ(l)
(90)

+
1
2
{y2 − (y − h)2}

∑

l≥y

C(l)l
φ(l)

+
∑

y−h≤l<y

l

φ(l)
{R2(y)− (y − h)2C(l)}
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= O(hy3/4) +O(h) +
∑

y−h≤l<y

l

φ(l)
{R2(y)− (y − h)2C(l)}

= O(hy3/4) +
∑

y−h≤l<y

l

φ(l)
{R2(y)− (y − h)2C(l)}

by (83) and (80). Next, dismissing the case where the final sum above is
empty, we see there is one term only within it because h < 1 and then that
the corresponding value of l satisfies y − l ≤ h and (y − h)2 = l2 + O(lh).
Hence, in this instance, the last component of (90) is

l

φ(l)

{
R2(y)− 1

2 l
2C(l)

}
+O

(
h

φ(l)

)
=

l

φ(l)
{R2(y)−R2(l)}+O

(
h

φ(l)

)

= O(hy−1/4+ε) = O(hy3/4)

by (82) and (83) again, and we conclude that

(91) U2(y)− U2(y − h) = O(hy3/4).

The estimate we seek for J†3(x, u;Q1)−J†3(x, u;Q2) is at long last within
reach. Starting with the equation

J††3 (x, u;Q1)− J††3 (x, u;Q2) = Q2
1{U(x/Q1)− U(x/Q1 − u/Q1)}
−Q2

2{U(x/Q2)− U(x/Q2 − u/Q2)}
that stems from (76), we bring (84)–(91) into action in turn to get

J††3 (x, u;Q1)− J††3 (x, u;Q2)

=
ζ(2)ζ(3)

6ζ(6)

(
1
Q1
− 1
Q2

)
{x3 − (x− u)3}

− 1
8

{
x2
(

log2 x

Q1
− log2 x

Q2

)
− (x− u)2

(
log2 x− u

Q1
− log2 x− u

Q2

)}

− 1
4

(
C1 +

ζ(2)ζ(3)
ζ(6)

)
{x2 − (x− u)2} log

Q2

Q1
+O(Q1/4

2 ux3/4)

after some initial simplification. Hence, by (74) and some further simplifica-
tion, we secure the equation

J†3(x, u;Q1)− J†3(x, u;Q2)

=
ζ(2)ζ(3)

6ζ(6)

(
1
Q1
− 1
Q2

)
{x3 − (x− u)3}

− 1
4
{x2 log x− (x− u)2 log(x− u)} log

Q2

Q1
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+
1
8
{x2 − (x− u)2}(log2Q2 − log2Q1)

− 1
4

(
C1
ζ(2)ζ(3)
ζ(6)

)
{x2 − (x− u)2} log

Q2

Q1
+O(Q3/4

2 ux3/4) +O

(
x2

logA x

)

and then attain this section’s goal by deducing that

S3(x, u;Q1, Q2) =
ζ(2)ζ(3)

3ζ(6)

(
1
Q1
− 1
Q2

)
{x3 − (x− u)3}(92)

+
1
4
{x2 − (x− u)2}(log2Q2 − log2Q1)

+
1
2

(
ζ(2)ζ(3)
ζ(6)

− C1 − 1
2

)

× {x2 − (x− u)2} log
Q2

Q1
− u(x− u) log

Q2

Q1

+O(Q1/4
2 ux3/4) +O(Q2u log x) +O

(
x2

logA x

)
,

to which we come via (23), (26), (27), (30), (38), and some cancellation
between terms.

10. Analysis of S∗(x, u;Q1, Q2) completed and the initial theo-
rems. The evaluation of S∗(x, u;Q1, Q2) easily results from (92) and
what went before. First, proceeding from S3(x, u;Q1, Q2) in (21) to
S∗3 (x, u;Q1, Q2) in (7) by partial summation, let us transform (92) into (4)

S∗3 (x, u;Q1, Q2)

=
ζ(2)ζ(3)

3ζ(6)
{x3 − (x− u)3} log

Q2

Q1

+
1
2
{Q2 logQ2 −Q1 logQ1 − (Q2 −Q1)}{x2 − (x− u)2}

+
1
2

(
ζ(2)ζ(3)
ζ(6)

− C1 − 1
2

)
(Q2 −Q1){x2 − (x− u)2}

− (Q2 −Q1)u(x− u)

+O(Q5/4
2 ux5/4 +O(Q2

2u log x) +O

(
x3

logA x

)

when (5) holds. Next place this and (20) in (8) to deduce that

(4) A comment in reverse is made in a succeeding footnote. To get a given value of A
in what follows, the previous value of A in (91) need only be taken to be A− A3, where
A is the new value.
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S∗(x, u;Q1, Q2)

=
ζ(2)ζ(3)

3ζ(6)
[3ux2 − 3x{x2 − (x− u)2}+ x3 − (x− u)3] log

Q2

Q1

+ 1
2 (Q2 logQ2 −Q1 logQ1){x2 − (x− u)2}

+
ζ(2)ζ(3)

2ζ(6)
(Q2 −Q1){x2 − (x− u)2 − 2ux}

− 1
2 (Q2 −Q1)

[(
C1 + 3

2

){x2 − (x− u)2}+ 2u(x− u)
]

+O(Q5/4
2 ux3/4) +O(Q2

2u log x) +O

(
x3

logA x

)

=
ζ(2)ζ(3)u3

3ζ(6)
log

Q2

Q1
+ (Q2 logQ2 −Q1 logQ1)

{
xu− 1

2u
2}

+
ζ(2)ζ(3)

2ζ(6)
(Q2 −Q1)u2 − (Q2 −Q1)

{(
C1 + 5

2

)
ux− ( 1

2C1 − 7
4

)
u2}

+O(Q5/4
2 ux3/4 +O(Q2

2u log x) +O

(
x3

logA x

)

= (Q2 logQ2 −Q1 logQ1)ux− (C2 + 1)(Q2 −Q1)ux

+O(Q5/4
2 ux3/4 +O(Q2

2u log x) +O

(
x3

logA x

)
,

wherein

(93) C2 = C1 +
3
2

=
ζ ′(0)
ζ(0)

+ γ +
∑
p

log p
p(p− 1)

by the implicit definition of C1 in (87) and by the value of h′(0)/h(0) in the
proof of Lemma 1, VIII. Hence we obtain

Theorem 1. Defining E(x; a, k) as in the Introduction, let us write

S∗(x, u;Q1, Q2) =
∑

Q1<k≤Q2

k
∑

0<a≤u
(a,k)=1

E2(x; a, k)

and suppose A, A1 are any positive absolute constants. Then, for x log−A1 x
< Q1 < Q2 ≤ x and u ≤ Q1, we have

S∗(x, u;Q1, Q2) = (Q2 logQ2 −Q1 logQ1)ux(94)

− (C2 + 1)(Q2 −Q1)ux+O(Q5/4
2 ux3/4)

+O(Q2
2u log x) +O

(
x3

logA x

)
,

where C2 is defined by (93) above.
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It is readily confirmed that the main terms in this formula together
amount to u times those in any formula for∑

Q1<k≤Q2

∑

0<a≤k
(a,k)=1

E2(x; a, k)

that is supplied by one of the more accurate enunciations of the Barban–
Montgomery theorem (vid., for example, I, in which the value of D2 in
Theorem 1 therein is seen to be C2 + 1 by the calculations appertaining to
(11) in VIII—vid. also [1]). Already, therefore, we observe a phenomenon
that is consistent with our conjectures in the Introduction regarding the
sum of E2(x; a, k) over incomplete sets of residues, mod k.

Among other comments about this theorem, we should mention that the
lower bound of summation must be imposed in the present context because
of our emphasis on the behaviour of E(x; a, k) over a set of a for which
a < k. Also we should note that, if Q1 be not too close to Q2, then the
larger principal term of the formula predominates for Q2 = o(x) even when
the first two remainder terms are replaced by the more compact but inferior
O(Q5/4

2 ux3/4 log x), a substitution, however, that is to be avoided if the
remainder terms shall not eclipse the lesser principal term in any part of the
natural range Q2 < x/ log x.

A matter of some substance concerns the sum S∗(x;u1, u2;Q1, Q2) de-
fined in (4), for which Theorem 1 provides a useful asymptotic formula when
u1 < u2 < Q and u2 − u1 is not too small compared with u2. Yet the in-
convenient latter condition is in fact superfluous because modifications in
the proof of Theorem 1 enable one to shew without undue difficulty that
the substitution of u2 − u1 for u in the right-hand side of (94) furnishes a
valid asymptotic formula for S∗(x;u1, u2;Q1, Q2). Indeed, although to have
essayed at the beginning to go straight for a proof of the more general re-
sult would have obscured an already complicated exposition, the attentive
reader will readily apprehend the alterations needed, including in particular
the use of differences of the type

ΦQ(x− u1)− ΦQ(x− u2)

=
∑

l≤(x−u1)/Q

(x− u1 − lQ)2al −
∑

l≤(x−u2)/Q

(x− u2 − lQ)2al

instead of ΦQ(x) − ΦQ(x − u) as before; the hardest aspect of the revised
treatment probably concerns the analogue of J (2)

3 (x, u;Q) in (34). In sum-
mation, we therefore state

Theorem 2. Let
S∗(x;u1, u2;Q1, Q2) =

∑

Q1<k≤Q2

k
∑

u1<a≤u2
(a,k)=1

E2(x; a, k)
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and suppose A, A1 are any positive absolute constants. Then, for x log−A1 x
< Q1 < Q2 ≤ x and 0 ≤ u1 < u2 ≤ Q1, we have

S∗(x;u1, u2;Q1, Q2) = (Q2 logQ2 −Q1 logQ1)(u2 − u1)x

− (C2 + 1)(Q2 −Q1)(u2 − u1)x

+O{Q5/4
2 (u2 − u1)x3/4}

+O{Q2
2(u2 − u1) log x}+O

(
x3

logA x

)
,

where C2 is defined in (93) above.

The proof of our final theorem about S%(x,Q) will stem from Theorem 2
both in its general form and in its special form as Theorem 1. However,
Theorem 1 alone suffices for the derivation of a slightly weaker form of this
last proposition, which therefore is approachable by those not wishing to
verify the demonstration of Theorem 2 through the programme indicated
above.

But ere we end this section we must fulfil an earlier promise to state an
asymptotic formula for S(x, u;Q1, Q2), which, being the unweighted form
of S∗(x, u;Q1, Q2), is in appearance closer than the latter to the sum in
the Barban–Montgomery theorem. Obtained from Theorem 1 by partial
summation (5), this is contained in

Theorem 3. Let S(x, u;Q1, Q2) be defined as in (6). Then, subject to
the conditions laid down in Theorem 1, we have

S(x, u;Q1, Q2) =
1
2

(log2Q2 − log2Q1)ux− C2ux log
Q2

Q1
+O(Q1/4

2 ux3/4)

+O(Q2u log x) +O

(
x2

logA x

)
.

11. Asymptotic formula for S%(x,Q). Theorem 2 is applied in this
section through the agency of the sums

(95) S†(x;u1, u2;Q1, Q2) =
∑

Q1<k≤Q2

1
k

∑

u1<k≤u2
(a,k)=1

E2(x; a, k)

and

S†(x, u;Q1, Q2) = S†(x; 0, u;Q1, Q2),

which by means of partial summation are seen to conform to the estimate in

(5) To obtain Theorem 3 for a given value of A we need to use the value A+A1 for its
counterpart in Theorem 1. A comparable comment applies to the derivation of Lemma 4
below.
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Lemma 4. Subject to the conditions imposed in Theorem 2, we have

S†(x;u1, u2;Q1, Q2) =
(

logQ1

Q1
− logQ2

Q2

)
(u2 − u1)x

− (C2 − 1)
(

1
Q1
− 1
Q2

)
(u2 − u1)x

+O{Q−3/4
1 (u2 − u1)x3/4}

+O

(
(u2 − u1) log x log

Q2

Q1

)
+O

(
x

logA x

)
.

The transition from the sums just defined to the sum

(96) S%(x;Q1, Q2) =
∑

Q1<k≤Q2

∑

0<a≤%k
(a,k)=1

E2(x; a, k)

for % = %(x) ≤ 1 begins with the integrals

(97) W%(x;Q1, Q2) =
Q2\
Q1

S†(x, %t; t,Q2) dt

and

(98) X%(x;Q1, Q2) =
Q1\
0

S†(x, %t;Q1, Q2) dt,

the sum of which is

Q2\
Q1

∑

t<k≤Q2

1
k

∑

0<a≤%t
(a,k)=1

E2(x; a, k) dt+
Q2\
0

∑

Q1<k≤Q2

∑

0<a≤%t
(a,k)=1

E2(x; a, k) dt

=
∑

Q1<k≤Q2

1
k

( ∑

0<a≤%k
(a,k)=1

E2(x; a, k)
k\

max(a/%,Q1)

dt

+
∑

0<a≤%Q1
(a,k)=1

E2(x; a, k)
Q1\
a/%

dt
)

=
∑

Q1<k≤Q2

1
k

{ ∑

0<a≤%k
(a,k)=1

(
k −max

(
a

%
,Q1

))
E2(x; a, k)
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+
∑

0<a≤%Q1
(a,k)=1

(
Q1 − a

%

)
E2(x; a, k)

}

=
1
%

∑

Q1<k≤Q2

∑

0<a≤%k
(a,k)=1

(
%− a

k

)
E2(x; a, k).

But, from (96) and similar reasoning,

S(1)
% (x;Q1, Q2) =

%\
0

Sσ(x;Q1, Q2) dσ =
∑

Q1<k≤Q2

∑

0<a≤%k
(a,k)=1

E2(x; a, k)
%\
a/k

dσ

=
∑

Q1<k≤Q2

∑

0<a≤%k
(a,k)=1

(
%− a

k

)
E2(x; a, k)

so that

S(1)
% (x;Q1, Q2) = %{W%(x;Q1, Q2) +X%(x;Q1, Q2)}(99)

= %Z%(x;Q1, Q2), say.

To infer the required features of S(1)
% (x;Q1, Q2) from this equation we

suppose in the first instance that

log−A−1 x ≤ % ≤ 1− log−A−1 x

and avail ourselves of the inequality

(100)
1
H
{S(1)

% (x;Q1, Q2)− S(1)
%−H(x;Q1, Q2)}
≤ S%(x;Q1, Q2)

≤ 1
H
{S(1)

%+H(x;Q1, Q2)− S(1)
% (x;Q1, Q2)}

for

(101) H = 1
2 log−A−1 x.

Next, concentrating for brevity on the right-hand side of (100) with the help
of (99), we proceed from the equation

(102) S
(1)
%+H(x;Q1, Q2)− S(1)

% (x;Q1, Q2)

= (%+H)Z%+H(x;Q1, Q2)− %Z%(x;Q1, Q2)

= (%+H){Z%+H(x;Q1, Q2)− Z%(x;Q1, Q2)}+HZ%(x;Q1, Q2)

to the estimation of Z%(x;Q1, Q2) by a special case of Lemma 4. Accordingly,
since condition (5) on Q1, Q2 is still being imposed, we infer from (97) and
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(98) that both

W%(x;Q1, Q2) =
Q2\
Q1

x%

{(
log t
t
− logQ2

Q2

)
t− (C2 − 1)

(
1
t
− 1
Q2

)
t

}
dt

+O
(
x3/4%

Q2\
Q1

t1/4 dt
)

+O

(
% log x

Q2\
Q1

t log
Q2

t
dt

)

+O

(
x2

log2A+1 x

)

= x%
Q2

Q1

[
t log t− t− t2 logQ2

2Q2
− (C2 − 1)t+

(C2 − 1)t2

2Q2

]

+O(Q5/4
2 %x3/4) +O(Q2

2% log x) +O

(
x2

log2A+1 x

)

= x%

(
1
2
Q2 logQ2 −Q1 logQ1 − Q2

1 logQ2

2Q2

− 1
2

(C2 + 1)Q2 + C2Q1 − (C2 − 1)Q2
1

2Q2

)

+O(Q5/4
2 %x3/4) +O(Q2

2% log x) +O

(
x2

log2A+1 x

)

and

X%(x;Q1, Q2) = x%

Q2\
Q1

t

{
logQ1

Q1
− logQ2

Q2
− (C2 − 1)

(
1
Q1
− 1
Q2

)}
dt

+O(Q5/4
1 %x3/4) +O

(
Q2

1% log x log
Q2

Q1

)

+O

(
x2

log2A+1 x

)

=
1
2
x%

(
Q1 logQ1− Q

2
1 logQ2

Q2
− (C2 − 1)Q1 +

(C1 − 1)Q2
1

Q2

)

+O(Q5/4
2 %x3/4) +O(Q2

2% log x) +O

(
x2

log2A+1 x

)
,

which in combination yield

Z%(x;Q1, Q2) =
1
2
x%{Q2 logQ2 −Q1 logQ1 − (C2 + 1)(Q2 −Q1)}(103)

+O(Q5/4
2 %x3/4) +O(Q2

2% log x) +O

(
x2

log2A+1 x

)
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by (99). Similarly, since the definitions (97), (98) and (95) imply that

W%+H(x;Q1, Q2)−W%(x;Q1, Q2) =
Q2\
Q1

S†(x; %t, (%+H)t; t,Q2) dt

and

X%+H(x;Q1, Q2)−X%(x;Q1, Q2) =
Q2\
0

S†(x; %t, (%+H)t;Q1, Q2) dt

and since the formulae given by Lemma 4 for the integrands are the same
as for the case % = 0, the method of deriving (103) immediately produces

(104) Z%+H(x;Q1, Q2)− Z%(x;Q1, Q2)

=
1
2
xH{Q2 logQ2 −Q1 logQ1 − (C2 + 1)(Q2 −Q1)}

+O(Q5/4
2 Hx3/4) +O(Q2

2H log x) +O

(
x2

log2A+1 x

)
.

Equipped with (103) and (104), we return to (100) and (102) and first
deduce that

S%(x;Q1, Q2) ≤ x%{Q2 logQ2 −Q1 logQ1 − (C2 + 1)(Q2 −Q1)}
+ (Q5/4

2 %x3/4) +O(Q2
2% log x)

+O

(
x2

H log2A+1 x

)
+O(Hx2 log x),

whence
S%(x;Q1, Q2) ≤ x%{Q2 logQ2 −Q1 logQ1 − (C2 + 1)(Q2 −Q1)}

+O(Q5/4
2 %x3/4) +O(Q2

2% log x) +O

(
x2

logA x

)
,

by (101). The left side of (100) gives rise in like manner to a comparable
inequality in the other direction and we therefore obtain

S%(x;Q1, Q2) = x%{Q2 logQ2 −Q1 logQ1 − (C2 + 1)(Q2 −Q1)}(105)

+O(Q5/4
2 %x3/4) +O(Q2

2% log x) +O

(
x2

logA x

)

under the stated conditions.
Two easy steps are needed to complete the treatment of the sum S%(x,Q)

introduced in (2), where restriction (9) is no longer apposite. First, if Q ≤
x log−A−1 x, then by Gallagher’s form of the Barban–Davenport–Halberstam
theorem (vid. the Introduction in I) we have trivially

S%(x,Q) ≤ S1(x,Q) = O(x2 log−A x)
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and thus

S%(x,Q) = x%{Q logQ− (C2 + 1)Q}+O

(
x2

logA x

)
,

whereas, in the opposite case, we write Q1 = x log−A−1 x,Q2 = Q in (5)
to get

S%(x,Q) = S%(x,Q1) + S%(x;Q1, Q) = S%(x;Q1, Q) +O

(
x2

logA x

)

= x%{Q logQ− (C2 + 1)Q}+O(Q5/4%x3/4)

+O(Q2% log x) +O

(
x2

logA x

)

by repeating the previous reasoning and then by (105), the restriction Q ≤ x
being then all that is needed. Lastly, being valid for % = %0 = 1− log−A−1 x
and also for % = 1 by the Barban–Montgomery theorem, this formula is
seen to be true for %0 < % ≤ 1 because S%0(x,Q) ≤ S%(x,Q) ≤ S1(x,Q) and
1− % ≤ 1− %0 = log−A−1 x; similarly, but more easily, we extend the range
downwards to % = 0. Thus we have reached our objective in establishing

Theorem 4. For % = %(x) satisfying 0 ≤ % ≤ 1, let

S%(x,Q) =
∑

k≤Q

∑

0<a≤%k
(a,k)=1

E2(x; a, k),

where E(x; a, k) is defined in the Introduction. Then, for Q ≤ x,

S%(x,Q) = x%{Q logQ− (C2 + 1)Q}+O(Q5/4%x3/4)

+O(Q2% log x) +O

(
x2

logA x

)
,

in which A is any positive absolute constant and C2 is defined by (92) above.

This result does not exhaust the theorems in the genre to which it be-
longs. But enough has been said to indicate how the others might be estab-
lished.
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