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Periodic sequences of pseudoprimes
connected with Carmichael numbers

and the least period of the function lCx

by

A. Rotkiewicz (Warszawa)

The starting point of the present paper are the papers of Schinzel [10]
and of Conway, Guy, Schneeberger and Sloane [4].

Following recent papers ([1], [4], [6], [7]) a composite n is called a pseu-
doprime to base b if bn−1 ≡ 1 mod n. This definition does not coincide with
the definition given in my book [9], where I defined

(i) a pseudoprime as a composite number dividing 2n − 2,
(ii) a pseudoprime with respect to b as a composite number n dividing

bn − b,
(iii) an absolute pseudoprime as a composite number n that divides bn−b

for every integer b (see also Sierpiński [12]).

It is also worth pointing out that this terminology differs slightly from
that of literature of tests for primality (Brillhart, Lehmer, Selfridge, et al.),
where usual primes are included among the pseudoprimes.

Following recent papers a composite number n is called a Carmichael
number if an ≡ a mod n for every integer a ≥ 1. The smallest Carmichael
number is 561 = 3 · 11 · 17.

The set of Carmichael numbers coincides with the set of composite n
for which an−1 ≡ 1 mod n for every a prime to n (see Ribenboim [8],
pp. 118, 119, and Sierpiński [12], p. 217). By Korselt’s criterion [5], n is
a Carmichael number if and only if n is squarefree and p − 1 divides n− 1
for all primes dividing n.

In 1994 Alford, Granville and Pomerance [1] proved that there exist
infinitely many Carmichael numbers and that there are more than x2/7

Carmichael numbers up to x, for sufficiently large x. Recently, Conway,
Guy, Schneeberger and Sloane [4] introduced the following

1991 Mathematics Subject Classification: Primary 11A07; Secondary 11B39.

[75]



76 A. Rotkiewicz

Definition 1. Any composite number q such that bq ≡ b mod q is called
a prime pretender to base b.

Definition 2. By qb we denote the least prime pretender q to base b
and call such q the primary pretender.

First we shall prove the following

Theorem 1. For every b > 1 there exist infinitely many prime pretenders
to base b which are not pseudoprimes to base b. That is, there exist infinitely
many composite integers n with (b, n) > 1 and bn ≡ b mod n.

P r o o f. We begin with a definition. A prime p which divides bn − 1 and
does not divide bk − 1 for 0 < k < n is called a primitive prime factor of
bn − 1. By a theorem of Zsigmondy [13] such a prime factor p ≡ 1 mod n
exists for any n > 2 with the only exception 26 − 1 = 63.

Now we note that to prove Theorem 1 it is enough to find one prime
pretender q with the required property. For, suppose bq ≡ b mod q, bq−1 6≡
1 mod q and let p be a primitive prime factor of bq−1 − 1.

We have p = (q − 1)k + 1, where k is a positive integer. If k = 1 then
p = q, which is impossible, since q is composite, hence p > q and (p, q) = 1.
From bq−1 ≡ 1 mod p it follows that bq ≡ b mod p and from bq ≡ b mod q
we get bq ≡ b mod pq, hence bpq ≡ bp mod pq. But since q−1 | p−1 we have

pq | b(bq−1 − 1) | b(bp−1 − 1) = bp − b,
hence

bp ≡ b mod pq and bpq ≡ b mod pq.
From bq−1 6≡ 1 mod q, bq ≡ b mod q it follows that (b, q) > 1, hence (b, pq) >
1 and bpq−1 6≡ 1 mod pq.

It remains to find one prime pretender q with the required property. For
b = 2 such a q = 2 · 73 · 1103 was found by Lehmer in 1950, and Beeger [2]
showed the existence of infinitely many even prime pretenders to base 2.

If b > 2 is composite, such a q is equal to b, since bb ≡ b mod b, but bb−1 6≡
1 mod b, and if b is prime > 2, such a q is equal to 2b, since b2b ≡ b mod 2b,
b2b−1 6≡ 1 mod 2b (see Sierpiński [11]). Thus Theorem 1 is proved.

Already in 1958 Schinzel [10] proved that in the infinite sequence
q1, q2, . . . , there exist infinitely many terms equal to qb and that every term
of this sequence belongs to the sequence q1, q2, . . . , q561!, so we can find all
possible values of qb. We have of course qb ≤ 561 for every b. Schinzel [10]
also proved that there exists b such that qb = 561. He proved that qb 6= 4, 6
if and only if b ≡ 2, 11 mod 12 and put forward the following problem: Find
all distinct primary pretenders [11].

In 1997 Conway, Guy, Schneeberger and Sloane [4] proved that there are
only 132 distinct primary pretenders, and that qb is a periodic function of b
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whose least period is the 122-digit number

19 5685843334 6007258724 5340037736 2789820172 1382933760 4336734362-

2947386477 7739548319 6097971852 9992599213 2923650684 2360439300.

Let lb denote the least pseudoprime to base b. By a theorem of Cipolla [3]
the number ((n!)2p − 1)/((n!)2 − 1), where p is any odd prime such that p
does not divide (n!)2− 1, is a pseudoprime to base n!. If k is a pseudoprime
to base n!, then (n!)k−1 ≡ 1 mod k, hence (k, n!) = 1 and k ≥ ln! > n. Thus
the number of distinct values of lb is unbounded, since ln! > n and lb is not
a periodic function of b.

We introduce the following definition.

Definition 3. Let C be a given Carmichael number. Then

lCx =
{
lx if (x,C) = 1,
1 if (x,C) > 1.

We have:
l561
1 = l1 = 4, l561

2 = l2 = 341, l561
3 = 1, l561

4 = l4 = 15, l561
5 = l5 = 4,

l561
6 = 1, l561

7 = l7 = 6, l561
8 = l8 = 9, l561

9 = 1, l561
10 = l10 = 9.

We have aC−1 ≡ 1 mod C for every a coprime to C. Let b ≡ a mod C!. Then
bh−1− 1 ≡ ah−1− 1 mod C!, hence, for every h ≤ C, ah−1 ≡ 1 mod h if and
only if bh−1 ≡ 1 mod h, hence lCa = lCb for (a,C) = 1 and b ≡ a mod C!.
Thus in the sequence {lCa }∞a=1, the numbers greater than 1 appear with
period C!, while the ones appear with period C. Since lcm(C!, C) = C!, the
sequence {lCx }∞x=1 is periodic with period C! and the function lCx has period
C!. The following problems arise.

Problem 1. Find the least period of the function lCx .

Problem 2. Find all composite numbers n which are values of the func-
tion lCx .

Now we introduce the following

Definition 4. The Carmichael number C has property D if there exists
a natural base a coprime to C such that lCa = C.

Definition 5. The Carmichael number C has property A if there exists
a Carmichael number C1 < C such that C1 |C.

Definition 6. The Carmichael number C has property B if there does
not exist a Carmichael number C1 < C such that C1 |C.

Denote by Cn the nth Carmichael number. Among first 55 Carmichael
numbers 7 have property A. These are: C15 = 7·13·19·37, C19 = 7·13·19·73,
C21 = 7·13·31·61, C22 = 7·13·19·109, C24 = 5·17·29·113, C39 = 7·13·19·433,



78 A. Rotkiewicz

C43 = 7 · 13 · 19 · 577. Five numbers: C15, C19, C22, C39, C43 are divisible by
C3 = 7·13·19 and 5·17·29 = C4 |C24, 7·13·31 = C5 |C24, 7·13·31 = C5 |C21.
The other 48 Carmichael numbers have property B.

Theorem 2. A Carmichael number C has property D if and only if it
has property B.

P r o o f. First, we prove that if a Carmichael number C has property B
then it has property D.

Let C = p1 . . . pk. For each pi let ei be such that peii < C < pei+1
i , and

let gi be a primitive root modulo peii . By the Chinese remainder theorem,
let a be such that

a ≡ 0 mod p for all p < C, p 6= p1, . . . , pk,(1)

a ≡ gi mod peii (1 ≤ i ≤ k).(2)

Suppose that an−1 ≡ 1 mod n for n composite. Then (a, n) = 1. From
(1) it follows that n > C or

(3) n =
k∏

i=1

pαii , where αi ≥ 0.

From pα1
1 . . . pαkk = n ≤ C < pei+1

i , peii < C < pei+1
i we get αi ≤ ei for

i = 1, . . . , k.
Since a is a primitive root modulo peii and αi ≤ ei, it follows that a is

also a primitive root modulo pαii , hence

(4) n ≡ 1 mod ϕ(pαii ).

If αi > 1 then n ≡ 1 mod pi(pi − 1) and 0 ≡ 1 mod pi, which is im-
possible. Thus αi ≤ 1 (1 ≤ i ≤ k), and by (4), n is a Carmichael number.
But since we assumed that C has property B we have n = C and C has
property D.

Now we shall prove that if C has property D then it has property B. It is
enough to prove that if C does not have property B, then C does not have
property D. But this is obvious, since then there exists C1 < C, where C1

is a Carmichael number such that C1 |C, hence aC1−1 ≡ 1 mod C1, where
C1 < C, C1 |C and C does not have property D.

I raised the question: Do there exist infinitely many Carmichael numbers
with property D?

A. Schinzel proved that the answer to this question is in the affirmative
and the following theorem holds:

Theorem 3. There exist infinitely many Carmichael numbers with prop-
erty D. There exist infinitely many Carmichael numbers with property A.



Periodic sequences of pseudoprimes 79

Theorem of Alford, Granville and Pomerance (see [1], p. 708).
There are arbitrarily large sets of Carmichael numbers such that the product
of any subset is itself a Carmichael number.

Proof of Theorem 3 (due to A. Schinzel). Let {C1, . . . , Cn} be a set from
the Theorem of Alford, Granville and Pomerance. Then each of the numbers
C1Cn, C2Cn, . . . , Cn−1Cn has property A.

It is easy to see that (Ci, Cj) = 1 for i 6= j. Indeed, if (Ci, Cj) = d > 1
then a Carmichael number Ci · Cj would be divisible by d2 > 1, which is
impossible.

Let c be the least divisor of a Carmichael number C, which is itself
a Carmichael number. Then c is a Carmichael number with property D.
Indeed, if c = C then this is true. If c < C then c has property B and by
Theorem 2 also property D.

Thus if in an arbitrarily large set {C1, . . . , Cn} we denote by ci the least
divisor of Ci, which is itself a Carmichael number, then in the sequence
c1, . . . , cn we have (ci, cj) = 1, where each Carmichael number ci has prop-
erty B and by Theorem 2 also property D. Since n can be arbitrarily large,
there exist infinitely many Carmichael numbers with property D and The-
orem 3 is proved.

Now we solve Problem 1.
Let p!k = p1 . . . pk denote the product of the first k primes.
Let % denote the least period of the function lCx (x = 1, 2, . . .) and

[a1, . . . , an] denote the least common multiple of the integers a1, . . . , an.
The following theorem holds:

Theorem 4. If a Carmichael number C has property D then the function
lCx (x = 1, 2, . . .) has period C! and the least period of lCx is % = p!mp!r,
where pm is the largest prime such that 2pm < C and pr is the largest prime
such that p2

r < C.
If a Carmichael number C does not have property D, let C1 denote

the least Carmichael number such that C1 |C.Then the function lCx (x =
1, 2, . . .) has period [C1!, C] and the least period of lCx is equal to [p!mp!r, C],
where pm denotes the largest prime such that 2pm < C1, and pr is the largest
prime number such that p2

r < C1.

First we prove the following

Lemma 1. Let C = p1 . . . pk, g be a primitive root mod p2, where p2 < C,
and gi be a primitive root mod p2

i . Let x be such that (it exists, in view of
the Chinese remainder theorem)
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(5)

x ≡ gp mod p2,

x ≡ 0 mod q for all primes q < p, (q, C) = 1,

x ≡ gi mod p2
i for pi 6= p, 1 ≤ i ≤ k.

Then lCx = p2.
Let p be a given prime such that 2p < C, where p is odd. Let x be such

that

(6)

x ≡ 3 mod 4,

x ≡ 1 mod p,

x ≡ 0 mod q for all q, where q is prime, 2 < q < p, (q, C) = 1,

x ≡ gi mod p2
i for pi 6= p, 1 ≤ i ≤ k.

Then lCx = 2p.

P r o o f. If x ≡ gp mod p2 then xp−1 ≡ g(p−1)p ≡ 1 mod p2, hence xp−1 ≡
1 mod p2, xp

2−1 ≡ 1 mod p2 and p2 is a pseudoprime to base x.
Now we prove that there does not exist a composite n such that

xn−1 ≡ 1 mod n, where n < p2. If such an n existed then it would be divis-
ible by a prime q < p. If (q, C) = 1 this is impossible, since by congruence
(5) we have x ≡ 0 mod q.

Now we consider the case q |C = p1 . . . pk. Then

n = ppα1
1 . . . pαkk , where pα1

1 . . . pαkk < p, αi ≥ 0, or

n = pβ1
1 . . . pβkk , where pβ1

1 . . . pβkk < p2, βi ≥ 0.

Both cases are impossible.
In the first case we have xp

α1
1 ...p

αk
k
−1 ≡ 1 mod p, where pα1

1 . . . pαkk − 1
< p− 1, but this is impossible, since by (5), x ≡ gp ≡ g mod p, where g is a
primitive root mod p.

If n = pβ1
1 . . . pβkk then from x ≡ gi mod p2

i , x
n−1 ≡ 1 mod n it follows

that n − 1 ≡ 0 mod pi(pi − 1), hence pi | 1. Thus βi ≤ 1 and n − 1 ≡
0 mod (pi − 1) and n is a Carmichael number, but this is impossible since
n < p2 < C, xn−1 ≡ 1 mod n and C has property D.

Now we prove the second part of the lemma. From x ≡ 3 mod 4, x ≡
1 mod p we get x ≡ 1 mod 2p, hence x2p−1 ≡ 1 mod 2p and 2p is a pseudo-
prime to base x.

Now we show that there does not exist a composite number n < 2p such
that xn−1 ≡ 1 mod n. We have n 6= 4. Indeed, if n = 4 then x3 ≡ 1 mod 4,
hence x ≡ 1 mod 4, which is impossible, since by (6), x ≡ 3 mod 4.

If there exists a composite n such that xn−1 ≡ 1 mod n, where n < 2p,
then n is divisible by a prime q < p. If (q, C) = 1 and q is odd then this is
impossible since by (6), x ≡ 0 mod q for all 2 < q < p, (q, C) = 1. Now we
consider the case when q |C.
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Then
n = 2pα1

1 . . . pαkk , where αi ≥ 0, n < 2p, or

n = pβ1
1 . . . pβkk , where βi ≥ 0, n < 2p.

Both cases are impossible. In the first case x2m−1 ≡ 1 mod 2m, where
m |C = p1 . . . pk. Since x ≡ gi mod p2

i we have 2m− 1 ≡ 0 mod pi(pi − 1) if
βi ≥ 2, hence pi | 1, which is impossible.

If αi ≤ 1 then 2m− 1 ≡ 0 mod (pi − 1), which is impossible since pi − 1
is even.

In the second case we have xn−1 ≡ 1 mod n, where n = pβ1
1 . . . pβkk ,

βi ≥ 0, n |C. From x ≡ gi mod p2
i we have n − 1 ≡ 0 mod pi(pi − 1). If

βi ≥ 2 then pi | 1, which is impossible. Thus βi ≤ 1, n− 1 ≡ 0 mod (pi − 1),
n is a Carmichael number and in view of n < 2p < C this is impossible,
since C has property D.

Proof of Theorem 4. First we note that the number n = pα1
1 . . . pαll ,

where αi ≥ 2 for some i, l > 1, is not a value of the function lCx . Indeed, if
xp

α1
1 ...p

αl
l
−1 ≡ 1 mod pα1

1 . . . pαll then xn−1≡1 mod pαii and since (pi, n− 1)
= 1, from the congruence xn−1 ≡ 1 mod n it follows that xpi−1 ≡ 1 mod pαii
and from αi ≥ 2 we see that p2

i is a pseudoprime to base x. From l >
1, p2

i < n it follows that n is not a value of lCx . Let C be a Carmichael
number with property D. By Lemma 1 there exist x1, . . . , xm such that
lCx1

= 2p1, . . . , l
C
xm = 2pm and y1, . . . , yr, such that lCy1

= p2
1, . . . , l

C
yr = p2

r,
where pm is the largest prime such that 2pm < C and pr is the largest prime
such that p2

r < C. There exist some other squarefree numbers m such that
lCx = m, where m ≤ C, for example m = C. Thus every value of lCx divides
% = [2p1, . . . , 2pm, p2

1, . . . , p
2
r] = p!mp!r.

We have aC−1 ≡ 1 mod C for every a coprime to C.
Let b ≡ a mod %, where % = p!mp!r. Then bh−1 − 1 ≡ ah−1 − 1 mod %

for every h ≤ C. Since every value of lCx divides %, for every h ≤ C we have
ah−1 ≡ 1 mod h if and only if bh−1 ≡ 1 mod h, hence lCa = lCb for (a,C) = 1
and b ≡ a mod %. Thus in the sequence {lCx }∞x=1, the numbers greater than
1 appear with period %. On the other hand, the ones appear with period C.
Since [%,C] = %, the sequence {lCx }∞x=1 is periodic with period %. Now we
prove that % is the least period of lCx . It is enough to show that no proper
divisor %′ of % is a period of lCx . If %′ | %, %′ < % then for some 1 ≤ i ≤ m we
have pi - %′ or for some j with 1 ≤ j ≤ r ≤ m we have p2

j - %′, pj | %′.
Let lCa = 2pi and suppose that pi - %′.
We have a2pi−1 ≡ 1 mod 2pi, hence a ≡ 1 mod 2pi.
Since %′ is a period of lCx we have a2pi−1 ≡ (a+%′)2pi−1 mod 2pi and from

a2pi−1 ≡ 1 mod 2pi we get (a+ %′)2pi−1 ≡ 1 mod 2pi, hence a+ %′ ≡ 1 mod
2pi and since a ≡ 1 mod 2pi we have %′ ≡ 0 mod 2pi, which is impossible,
since pi - %′.
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Suppose that p2
j - %′ (1 ≤ j ≤ r). We can assume that pj | %′ since m ≥ r.

Let lCb = p2
j . We have

bp
2
j−1 ≡ 1 mod p2

j , hence bpj−1 ≡ 1 mod p2
j .

Thus if %′ is a period of lCx then bpj−1 ≡ (b+ %′)pj−1 ≡ 1 mod p2
j .

Thus
(b+ %′)pj ≡ b+ %′ mod p2

j ,

hence

bpj +
(
pj
1

)
bpj−1%′ +

(
pj
2

)
bpj−2%′2 + . . . ≡ b+ %′ mod p2

j .

Since bpj ≡ b mod p2
j , pj | %′, p2

j - %′, we get pjbpj−1%′ ≡ %′ mod p2
j , and since

pj | %′, p2
j - %′ we have pjbpj−1 ≡ 1 mod pj , which is impossible.

If C does not have property D then let C1 < C denote the least divisor
of C which is a Carmichael number. Then C1 has property D. Since in the
sequence {lCx }∞x=1 the number 1 appears with period C, the function lCx has
period [C1!, C].

Analogously to the case when C has property D we prove that the least
period of lCx is %1 = [p!mp!r, C], where pm denotes the largest prime such
that 2pm < C1, and pr is the largest prime number such that p2

r < C1.

References

[1] W. R. Al ford, A. Granvi l l e and C. Pomerance, There are infinitely many Car-
michael numbers, Ann. of Math. (2) 140 (1994), 703–722.

[2] N. G. W. H. Beeger, On even numbers m dividing 2m − 2, Amer. Math. Monthly
58 (1951), 553–555.

[3] M. Cipo l la, Sui numeri composti P , che verificano la congruenza di Fermat
aP−1 ≡ 1 (mod P ), Ann. di Mat. (3) 9 (1904), 139–160.

[4] J. H. Conway, R. K. Guy, W. A. Schneeberger and N. J. A. S loane, The
primary pretenders, Acta Arith. 78 (1997), 307–313.

[5] A. Korse l t, Problème chinois, L’intermédiare des mathématiciens 6 (1899),
142–143.

[6] C. Pomerance, A new lower bound for the pseudoprime counting function, Illinois
J. Math. 26 (1982), 4–9.

[7] C. Pomerance, I. L. Se l f r idge and S. S. Wagsta f f, The pseudoprimes to 25·109,
Math. Comp. 35 (1980), 1003–1026.

[8] P. Ribenboim, The New Book of Prime Number Records, Springer, New York,
1996.

[9] A. Rotk iewicz, Pseudoprime Numbers and Their Generalizations, Student Asso-
ciation of Faculty of Sciences, Univ. of Novi Sad, 1972.

[10] A. Sch inze l, Sur les nombres composés n qui divisent an − a, Rend. Circ. Mat.
Palermo (2) 7 (1958), 37–41.

[11] W. Sierp ińsk i, A remark on composite numbers m which are factors of am − a,
Wiadom. Mat. 4 (1961), 183–184 (in Polish; MR 23#A87).



Periodic sequences of pseudoprimes 83

[12] W. Sierp ińsk i, Elementary Theory of Numbers, Monografie Mat. 42, PWN, War-
szawa, 1964 (2nd ed., North-Holland, Amsterdam, 1987).

[13] K. Zs igmondy, Zur Theorie der Potenzreste, Monatsh. Math. 3 (1892), 265–284.

Institute of Mathematics
Polish Academy of Sciences
Śniadeckich 8
00-950 Warszawa, Poland
E-mail: rotkiewi@impan.gov.pl

Received on 26.5.1998
and in revised form on 24.5.1999 (3391)


