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A note on the Diophantine equation a” 4 bY = ¢*
by

ZHENFU CAO (Harbin)

1. Introduction. Let Z, N, P be the sets of integers, positive integers
and primes respectively, and

PN = {p"|p € P and n € N}.

Clearly, P C PN. In [13] Nagell first proved that if max(a,b,c) < 7, then all
the solutions (x,vy, z) € N of the equation

(1) a®+b=c*, abceP, a>b

are given by

a,b, c 3,2,5) : (x,y,2) = (1,1,1),(2,4, 2);
a,b,c) =(5,2,3) : (z,y,2) = (2,1,3),(1,2,2);
a,b,c) =(5,3,2): (z,y,2) = (1,1,3),(1,3,5),(3,1,7);
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(a,b,¢) =(7,5,2) : (z,y,2) = (1,2,5).

Later, Makowski [11], Hadano [7], Uchiyama [23], Qi Sun and Xiaoming
Zhou [16], and Xiaozhuo Yang [24] determined all solutions (x,y,2) € N? of
equation (1), when 11 < max(a,b,c) < 23. In [1] we have given all solutions
(7,y,2) € N3 of equation (1), when 29 < max(a,b,c) < 97 (60 solutions in
total), and we have proved the following:

THEOREM A. If max(a,b,c) > 13, then equation (1) has at most one
solution (x,y,z) € N> with z > 1.
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A more general result was given in [2]. Let A,B € N; A > B > 1 and
ged(A, B) = 1. If the equation

(2) X2+ ABY? =p? X,Y,Z€N, peP, and ged(X,Y) =1,

has a solution (X,Y,Z), then there exists a unique solution (X,,Y),,Z,)
which satisfies Z, < Z, where Z runs over all solutions of (2). That
(Xp,Y,, Z,) is called the least solution of (2). From [2] we have

THEOREM B. If z,y € N satisfy the equation
(3) Az? + By*=2%, z>2 z|"A, y|*B,
where the symbol x |* A means that every prime divisor of = divides A, then
|Az? — By?| = 2X,y, xy=1Ys, 22— 2= 2o,
except for (A, B,z,y,z) = (5,3,1,3,5),(5,3,5,1,7) and (13,3,1,9,8).
THEOREM C. If z,y € N satisfy the equation
(4) Az + By’ =p*, peP z|"A, y|*B,
then
|A2z? — By?| = X,, 2xy=Y,, 2z= 27,
or
|Az® — By?| = X,|X] — 3ABY}?|, 2mxy=Y,[3X] — ABY}}|, 2z = 32,
the latter occurring only for

325 -1 325+2 -1 325+1 -1 3
A1‘2+By2:345+3< < >+< < >:< 5 ) :pz7

where s € N.

From Theorems B and C, we have (cf. Lemma 6 of [15])

THEOREM D. The equation

a® +b’ =c*,  ged(a,b) =1, c€P, a>b>1,

has at most one solution when the parities of x and y are fized, except for
(a,b,¢) = (5,3,2), (13,3,2), (10,3,13). The solutions in case (5,3,2) are
given by (z,y,2z) = (1,1,3),(1,3,5),(3,1,7), in case (13,3,2) by (1,1,4)
and (1,5,8), and in case (10,3,13) by (1,1,1) and (1,7,3) (cf. [14], [3]).

In [3], we obtained further results when the right sides of equation (3)
and equation (4) are replaced by 4k* and k* respectively, where k € N.

Recently, N. Terai [20, 21] conjectured that if a, b, ¢, p, q,r € N are fixed,
and a? + b7 = ¢", where p,q,r > 2, and gcd(a,b) = 1, then the Diophantine
equation

(5) aw_’_by:c,z’ x7y7Z€N7
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has only the solution (z,y,2) = (p, ¢, 7). The conjecture is clearly false. For
example, from Nagell’s result [13], we see that the equation 3% + 2¥ = 57
has two solutions (z,y,2) = (1,1,1), (2,4, 2), and the equation 7* 4 2¥ = 3*
also has two solutions (z,y,2) = (1,1,2),(2,5,4). Furthermore, if a = 1 or
b = 1, then the conjecture is also false. So, the condition max(a,b,c) > 7
should be added to the hypotheses of the conjecture.

For p = ¢ = r = 2 the above statement was conjectured previously
by Jesmanowicz. We shall use the term Terai-JeSmanowicz conjecture for
the above conjecture with the added condition that max(a,b,c) > 7. Some
recent results on the Terai—Jesmanowicz conjecture are as follows:

(a) If p = ¢ = r = 2, we may assume without loss of generality that 2| a.
Then we have
a=2st, b=s>—t> c¢=3s>+1%
where s,t € N, s > ¢, ged(s,t) =1 and 2| st. In 1982, we [4] proved that

(Cao.1) if 2| s,t = 1 (mod 4), or 2| s,t = 3 (mod 4) and s + t has
a prime factor of the form 4k — 1, then the Terai—JeSmanowicz conjecture
holds;

(Cao.2) if (s,t) = (1,6), (5,2) (mod 8), or (s,t) = (3,4) (mod 4) and
s + t has a prime factor of the form 4k — 1, then the Terai—Je$manowicz
conjecture holds (also see [5], pp. 366-367).

Maohua Le [8, 9, 6] proved that

(Le.1) if 2| s,t =3 (mod 4) and s > 81¢, then the Terai-Jesmanowicz
conjecture holds;

(Le.2) if 22 || @ and ¢ € PN, then the Terai-Jesmanowicz conjecture holds;

(Le.3) if t = 3,s is even, and s < 6000, then the Terai—Je$manowicz
conjecture holds.

K. Takakuwa and Y. Asaeda [17-19] considered the case s = 2,
t =3,7,11,15. For example, they proved that if 21 s’, then the Terai-Jesma-
nowicz conjecture holds.

(b) N. Terai [20-22] considered the cases (p,q,7) = (2,2,3);(2,2,5);
(2,2,7), where r € P. He proved that

(Terai.1) if a = m(m? — 3),b = 3m? — 1,¢ = m? + 1 with m even and b
is a prime, and there is a prime [ such that m? —3 =0 (mod [) and e = 0
(mod 3), where e is the order of 2 modulo [, then equation (5) has only the
solution (z,y, z) = (2,2, 3);

(Terai.2) if a = m|m* —10m2 +5|,b = 5m* —10m?+1,c = m? +1 with m
even and b is a prime, and there is an odd prime [ such that ab =0 (mod 1)
and e = 0 (mod 5), where e is the order of ¢ modulo I, then equation (5)
has only the solution (z,y,2) = (2,2, 5).
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In addition, Scott [15] proved a result which implies the following.

THEOREM E. If ¢ = 2, then the Terai-Jesmanowicz conjecture is true.
If ¢ is an odd prime, then there is at most one other solution to the Terai—
Jesmanowicz conjecture.

In this note, we deal with the Terai—JeSmanowicz conjecture for the
special case p = q¢ = 2,7 odd. We have

THEOREM. If p = ¢ = 2, 24r, ¢ = 5 (mod 8), b = 3 (mod 4) and
c € PN, then the Terai—Jesmanowicz conjecture holds.

COROLLARY 1 TO THEOREM. Let

a=m|m?—3n?, b=nl3m*—-n?, c=m?+n?

where m,n € N, ged(m,n) = 1. If m = 2 (mod 4), n = 1 (mod 4) and
m? +n? € P, then equation (5) has only the solution (x,y,z) = (2,2,3).

COROLLARY 2 TO THEOREM. Let
(6) a=mm*-10m*n*+5n*, b=n|5m*—10m*n*+n?|, c=m?+n?,

where m,n € N with ged(m,n) = 1, m? +n? € PY and m = 2 (mod 4).
If one of the following cases holds, then equation (5) has only the solution
(z,y,2) = (2,2,5):

CASE 1: m > /2n and n = 3 (mod 4);

CASE 2: m > \/En;

CASE 3: n=1.

From Corollary 1, we see that if m = 2 (mod 4) and m? + 1 € P, then
the equation

(m(m? —3))" + (3m? — 1)V = (m* +1)*, =z,y,z €N,
has only the solution (z,y,2) = (2,2, 3).

2. Preliminaries. We will use the following lemmas.
LEMMA 1. If 247 and r > 1, then all solutions (X,Y, Z) of the equation
X?24+Y?=27", X, Y,Z€Z, ged(X,Y) =1,
are given by
X+YV-1=MX1+XY1V-1)", Z=X}+Y3
where A1, A2 € {—1,1}, X7,Y; € N and ged(X1,Y7) = 1.

Lemma 1 follows directly from a theorem in the book of Mordell [12],
pp. 122-123.
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LEMMA 2. For any k € N and any complexr numbers a, 3, we have
[k/2] i ' '
b+ 5= [ j] (a+8) (—ap)’,

=0

where

[ky:%_j_n%eN (G =0,1,...,[k/2]).

J (k —25)! 4!
It is Formula 1.76 in [10].

LEMMA 3. Let a,b,c,p,q,7 € N satisfy the hypotheses of the Terai—
Jesmanowicz conjecture. If p = q = 2, 2¢r, and if ¢ =5 (mod 8), 2|a,

then
0 ()
c c

and so 2|z in equation (5). Here (%) denotes the Legendre—Jacobi symbol.
Proof. Since p = g = 2, 2{r, we have
(7) a>+b2=c", a,bccN, ged(a,b) =1.
By Lemma 1, we deduce from (7) that
(8) a+bvV/=1=X(m+dnvV/—=1)", c=m?>+n?
where A1, Ay € {—1,1}, m,n € N and ged(m,n) = 1. From (8), we have
2\1a = (m + Xanv/=1)" + (m — Agnv/—1)",
2A10V/—1 = (m + Aonv/=1)" — (m — Aanv/—1)".
Hence, by Lemma 2 we have

(9) Ma =5 (Ti/z [;] (2m)"% (—m? — n2)!

Jj=0
(r—1)/2
—m Z [ ] (4m?)(r=1/2=3 (2 _ p2)d,

(r 1)/2

(10) b = 2} Z [ ] (22any/ 1) (2 + n?)’
_— ) | |

Since ¢ = 5 (mod 8), and 2|a, we see from (8) and (9) that 2| m, 2{n.
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So by (9) and (10), we have
a\ _ (Ma\ _ (m@am?)TVEN  m N (my2 N
c) \c¢ ) m? + n? S \m24+n2) \m2+n2) 7
b [ Ab\  Aan(—4n?)mD/2N n .
c) \c ) m?2 + n? S \m2+4+n2)

This completes the proof of Lemma 3.

3. Proof of the Theorem and its corollaries

Proof of Theorem. Since ¢ = 5 (mod 8) and b = 3 (mod 4), we have
2|a. By Lemma 3, we find that 2|z. From (5), we have 3¥ = 1 (mod 4).
Hence 2 |y. Then by Theorem D, we deduce that equation (5) has at most
one solution (z,y, z), except for

(a,b,c) = (5,3,2), (13,3,2), (10,3, 13).

Clearly, (a,b,c) # (5,3,2) since max(a,b,c¢) > 7, and the equations
13P +39 = 2" and 107 + 37 = 13" are all impossible since p, g, > 2 (see [23]
and [14]). Thus, (5) has only the solution (z,y, z) = (2,2,r). The Theorem
is proved.

Proof of Corollary 1. If m > n/+/3, then we find that b = n(3m? — n?)
=3 (mod 4). By the Theorem, Corollary 1 holds.
Ifm < n/\/g, then

a=m(3n* —m?), b=nn?>-3m?), c=m?+n’

By Lemma 3 and Theorem D, if 2|y, then Corollary 1 holds. Now assume
that 2{y. From (5),

(11) n(n* —3m?)\ b Yoo mP+n? o
3n2—m2 ) \3n2-m2) \3n2-m2) "’
Since m =2 (mod 4) and n =1 (mod 4), we have
(12) n(n*—3m?)\ (n?*—3m?\ [3n*-m?\ _ 8m? _
3n2—m?2 ) \3n2-m2) \n2-3m2) \n2-3m2)
(13) m? + n? _ 3n? —m? _ —4m? 1
3n? —m? n? + m? n? +m?

From (11)—(13), we get —1 = 1, a contradiction. This proves the corollary.

Proof of Corollary 2. From the Theorem, it suffices to prove Cases 2
and 3 of Corollary 2. Now we assume that

a =m|m* —10m?n? + 5nt|, b=>5m* —10m*n® +n*, c=m?+n?
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m > 1/10n and n = 1 (mod 4). Clearly, m* — 10m?n? + 5n* € N. If 5{n,
then we have

b
<m4 - IOan2 + 5n4)
B — 10m?2n? + 5nt
5m4 — 10m2n2 + nt

_ — 50an2 + 25n*
5mi — 1Omzn2 + n4 — 10m2n2 4+ n4

—40m?2n? + 24n* 5m — 3n?
5m? — 10m2n2 4+ nt — 10m2n2 4+ n4

B 5m* —10mn +nt —7m? +n?
N 5m2 — 3n2

5m?2 — 3n?

5 - n?) — 16n? 5m? — 3n?
5m?2 — 3n? 5m - 3n2 5

If 5| n then we also have

b
— 1
<m4 — 10m?2n? + 5n4>

by a similar method. Moreover

c _(m* —10m?n® +5n*\ 16 _,
m* — 10m2n2 + 5nt ) m? + n? S \m2+4n2)

Hence, from (5) we have 2|y. From Lemma 3 we deduce similarly that 2| x.
Then Theorem D implies Case 2. For Case 3 the only remaining case is
m = 2. Then a = 38,b = 41,¢ = 5. As above we find 2|z, 2|y, and Case 3
follows from Theorem D.

4. An open problem. Let r > 1 be a given odd number, and let
(r=1)/2

o r 2\(r—=1)/2—35(_, 2 _1\j
a=m | (4 1)71,
S || ameyemvessem -y
7=0
(r—1)/2 ,
b= (=) (=125 2_,_13'7
> 7] (m? + 1)
7=0
c:mQ—l—l,

where m € N with m? +1 € P and m = 2 (mod 4). Clearly, (a,b,c) is
a solution of equation (7). Is it possible to prove the Terai-Jesmanowicz
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conjecture by the method of this paper under the above condition? When
r = 3,5, the answer to the question is “yes”.
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