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A note on the Diophantine equation ax + by = cz

by

Zhenfu Cao (Harbin)

1. Introduction. Let Z, N, P be the sets of integers, positive integers
and primes respectively, and

PN = {pn | p ∈ P and n ∈ N}.
Clearly, P ⊆ PN. In [13] Nagell first proved that if max(a, b, c) ≤ 7, then all
the solutions (x, y, z) ∈ N3 of the equation

(1) ax + by = cz, a, b, c ∈ P, a > b

are given by

(a, b, c) = (3, 2, 5) : (x, y, z) = (1, 1, 1), (2, 4, 2);

(a, b, c) = (5, 2, 3) : (x, y, z) = (2, 1, 3), (1, 2, 2);

(a, b, c) = (5, 3, 2) : (x, y, z) = (1, 1, 3), (1, 3, 5), (3, 1, 7);

(a, b, c) = (3, 2, 7) : (x, y, z) = (1, 2, 1);

(a, b, c) = (7, 2, 3) : (x, y, z) = (1, 1, 2), (2, 5, 4);

(a, b, c) = (7, 3, 2) : (x, y, z) = (1, 2, 4);

(a, b, c) = (5, 2, 7) : (x, y, z) = (1, 1, 1);

(a, b, c) = (7, 5, 2) : (x, y, z) = (1, 2, 5).

Later, Mąkowski [11], Hadano [7], Uchiyama [23], Qi Sun and Xiaoming
Zhou [16], and Xiaozhuo Yang [24] determined all solutions (x, y, z) ∈ N3 of
equation (1), when 11 ≤ max(a, b, c) ≤ 23. In [1] we have given all solutions
(x, y, z) ∈ N3 of equation (1), when 29 ≤ max(a, b, c) ≤ 97 (60 solutions in
total), and we have proved the following:

Theorem A. If max(a, b, c) > 13, then equation (1) has at most one
solution (x, y, z) ∈ N3 with z > 1.
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A more general result was given in [2]. Let A,B ∈ N, A > B > 1 and
gcd(A,B) = 1. If the equation

(2) X2 +ABY 2 = pZ , X, Y, Z ∈ N, p ∈ P, and gcd(X,Y ) = 1,

has a solution (X,Y, Z), then there exists a unique solution (Xp, Yp, Zp)
which satisfies Zp ≤ Z, where Z runs over all solutions of (2). That
(Xp, Yp, Zp) is called the least solution of (2). From [2] we have

Theorem B. If x, y ∈ N satisfy the equation

(3) Ax2 +By2 = 2z, z > 2, x |∗A, y |∗B,
where the symbol x |∗A means that every prime divisor of x divides A, then

|Ax2 −By2| = 2X2, xy = Y2, 2z − 2 = Z2,

except for (A,B, x, y, z) = (5, 3, 1, 3, 5), (5, 3, 5, 1, 7) and (13, 3, 1, 9, 8).

Theorem C. If x, y ∈ N satisfy the equation

(4) Ax2 +By2 = pz, p ∈ P, x |∗A, y |∗B,
then

|Ax2 −By2| = Xp, 2xy = Yp, 2z = Zp,

or

|Ax2 −By2| = Xp|X2
p − 3ABY 2

p |, 2xy = Yp|3X2
p −ABY 2

p |, 2z = 3Zp,

the latter occurring only for

Ax2 +By2 = 34s+3
(

32s − 1
8

)
+
(

32s+2 − 1
8

)
=
(

32s+1 − 1
2

)3

= pz,

where s ∈ N.

From Theorems B and C, we have (cf. Lemma 6 of [15])

Theorem D. The equation

ax + by = cz, gcd(a, b) = 1, c ∈ P, a > b > 1,

has at most one solution when the parities of x and y are fixed , except for
(a, b, c) = (5, 3, 2), (13, 3, 2), (10, 3, 13). The solutions in case (5, 3, 2) are
given by (x, y, z) = (1, 1, 3), (1, 3, 5), (3, 1, 7), in case (13, 3, 2) by (1, 1, 4)
and (1, 5, 8), and in case (10, 3, 13) by (1, 1, 1) and (1, 7, 3) (cf. [14], [3]).

In [3], we obtained further results when the right sides of equation (3)
and equation (4) are replaced by 4kz and kz respectively, where k ∈ N.

Recently, N. Terai [20, 21] conjectured that if a, b, c, p, q, r ∈ N are fixed,
and ap+ bq = cr, where p, q, r ≥ 2, and gcd(a, b) = 1, then the Diophantine
equation

(5) ax + by = cz, x, y, z ∈ N,
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has only the solution (x, y, z) = (p, q, r). The conjecture is clearly false. For
example, from Nagell’s result [13], we see that the equation 3x + 2y = 5z

has two solutions (x, y, z) = (1, 1, 1), (2, 4, 2), and the equation 7x + 2y = 3z

also has two solutions (x, y, z) = (1, 1, 2), (2, 5, 4). Furthermore, if a = 1 or
b = 1, then the conjecture is also false. So, the condition max(a, b, c) > 7
should be added to the hypotheses of the conjecture.

For p = q = r = 2 the above statement was conjectured previously
by Jeśmanowicz. We shall use the term Terai–Jeśmanowicz conjecture for
the above conjecture with the added condition that max(a, b, c) > 7. Some
recent results on the Terai–Jeśmanowicz conjecture are as follows:

(a) If p = q = r = 2, we may assume without loss of generality that 2 | a.
Then we have

a = 2st, b = s2 − t2, c = s2 + t2,

where s, t ∈ N, s > t, gcd(s, t) = 1 and 2 | st. In 1982, we [4] proved that

(Cao.1) if 2 ‖ s, t ≡ 1 (mod 4), or 2 ‖ s, t ≡ 3 (mod 4) and s + t has
a prime factor of the form 4k − 1, then the Terai–Jeśmanowicz conjecture
holds;

(Cao.2) if (s, t) ≡ (1, 6), (5, 2) (mod 8), or (s, t) ≡ (3, 4) (mod 4) and
s + t has a prime factor of the form 4k − 1, then the Terai–Jeśmanowicz
conjecture holds (also see [5], pp. 366–367).

Maohua Le [8, 9, 6] proved that

(Le.1) if 2 ‖ s, t ≡ 3 (mod 4) and s ≥ 81t, then the Terai–Jeśmanowicz
conjecture holds;

(Le.2) if 22 ‖ a and c ∈ PN, then the Terai–Jeśmanowicz conjecture holds;
(Le.3) if t = 3, s is even, and s ≤ 6000, then the Terai–Jeśmanowicz

conjecture holds.

K. Takakuwa and Y. Asaeda [17–19] considered the case s = 2s′,
t = 3, 7, 11, 15. For example, they proved that if 2 - s′, then the Terai–Jeśma-
nowicz conjecture holds.

(b) N. Terai [20–22] considered the cases (p, q, r) = (2, 2, 3); (2, 2, 5);
(2, 2, r), where r ∈ P. He proved that

(Terai.1) if a = m(m2 − 3), b = 3m2 − 1, c = m2 + 1 with m even and b
is a prime, and there is a prime l such that m2 − 3 ≡ 0 (mod l) and e ≡ 0
(mod 3), where e is the order of 2 modulo l, then equation (5) has only the
solution (x, y, z) = (2, 2, 3);

(Terai.2) if a = m|m4−10m2 +5|, b = 5m4−10m2 +1, c = m2 +1 with m
even and b is a prime, and there is an odd prime l such that ab ≡ 0 (mod l)
and e ≡ 0 (mod 5), where e is the order of c modulo l, then equation (5)
has only the solution (x, y, z) = (2, 2, 5).
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In addition, Scott [15] proved a result which implies the following.

Theorem E. If c = 2, then the Terai–Jeśmanowicz conjecture is true.
If c is an odd prime, then there is at most one other solution to the Terai–
Jeśmanowicz conjecture.

In this note, we deal with the Terai–Jeśmanowicz conjecture for the
special case p = q = 2, r odd. We have

Theorem. If p = q = 2, 2 - r, c ≡ 5 (mod 8), b ≡ 3 (mod 4) and
c ∈ PN, then the Terai–Jeśmanowicz conjecture holds.

Corollary 1 to Theorem. Let

a = m|m2 − 3n2|, b = n|3m2 − n2|, c = m2 + n2,

where m,n ∈ N, gcd(m,n) = 1. If m ≡ 2 (mod 4), n ≡ 1 (mod 4) and
m2 + n2 ∈ PN, then equation (5) has only the solution (x, y, z) = (2, 2, 3).

Corollary 2 to Theorem. Let

(6) a = m|m4−10m2n2 +5n4|, b = n|5m4−10m2n2 +n4|, c = m2 +n2,

where m,n ∈ N with gcd(m,n) = 1, m2 + n2 ∈ PN and m ≡ 2 (mod 4).
If one of the following cases holds, then equation (5) has only the solution
(x, y, z) = (2, 2, 5):

Case 1: m >
√

2n and n ≡ 3 (mod 4);
Case 2: m >

√
10n;

Case 3: n = 1.

From Corollary 1, we see that if m ≡ 2 (mod 4) and m2 + 1 ∈ P, then
the equation

(m(m2 − 3))x + (3m2 − 1)y = (m2 + 1)z, x, y, z ∈ N,
has only the solution (x, y, z) = (2, 2, 3).

2. Preliminaries. We will use the following lemmas.

Lemma 1. If 2 - r and r > 1, then all solutions (X,Y, Z) of the equation

X2 + Y 2 = Zr, X, Y, Z ∈ Z, gcd(X,Y ) = 1,

are given by

X + Y
√−1 = λ1(X1 + λ2Y1

√−1)r, Z = X2
1 + Y 2

1 ,

where λ1, λ2 ∈ {−1, 1}, X1, Y1 ∈ N and gcd(X1, Y1) = 1.

Lemma 1 follows directly from a theorem in the book of Mordell [12],
pp. 122–123.
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Lemma 2. For any k ∈ N and any complex numbers α, β, we have

αk + βk =
[k/2]∑

j=0

[
k
j

]
(α+ β)k−2j(−αβ)j ,

where [
k
j

]
=

(k − j − 1)!k
(k − 2j)! j!

∈ N (j = 0, 1, . . . , [k/2]).

It is Formula 1.76 in [10].

Lemma 3. Let a, b, c, p, q, r ∈ N satisfy the hypotheses of the Terai–
Jeśmanowicz conjecture. If p = q = 2, 2 - r, and if c ≡ 5 (mod 8), 2 | a,
then (

a

c

)
= −1,

(
b

c

)
= 1,

and so 2 |x in equation (5). Here
(∗
c

)
denotes the Legendre–Jacobi symbol.

P r o o f. Since p = q = 2, 2 - r, we have

(7) a2 + b2 = cr, a, b, c ∈ N, gcd(a, b) = 1.

By Lemma 1, we deduce from (7) that

(8) a+ b
√−1 = λ1(m+ λ2n

√−1)r, c = m2 + n2,

where λ1, λ2 ∈ {−1, 1}, m, n ∈ N and gcd(m,n) = 1. From (8), we have

2λ1a = (m+ λ2n
√−1)r + (m− λ2n

√−1)r,

2λ1b
√−1 = (m+ λ2n

√−1)r − (m− λ2n
√−1)r.

Hence, by Lemma 2 we have

λ1a =
1
2

(r−1)/2∑

j=0

[
r
j

]
(2m)r−2j(−m2 − n2)j(9)

= m

(r−1)/2∑

j=0

[
r
j

]
(4m2)(r−1)/2−j(−m2 − n2)j ,

λ1b =
1

2
√−1

(r−1)/2∑

j=0

[
r
j

]
(2λ2n

√−1)r−2j(m2 + n2)j(10)

= λ2n

(r−1)/2∑

j=0

[
r
j

]
(−4n2)(r−1)/2−j(m2 + n2)j .

Since c ≡ 5 (mod 8), and 2 | a, we see from (8) and (9) that 2 ‖m, 2 -n.
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So by (9) and (10), we have
(
a

c

)
=
(
λ1a

c

)
=
(
m(4m2)(r−1)/2

m2 + n2

)
=
(

m

m2 + n2

)
= −

(
m/2

m2 +n2

)
= −1,

(
b

c

)
=
(
λ1b

c

)
=
(
λ2n(−4n2)(r−1)/2

m2 + n2

)
=
(

n

m2 + n2

)
= 1.

This completes the proof of Lemma 3.

3. Proof of the Theorem and its corollaries

Proof of Theorem. Since c ≡ 5 (mod 8) and b ≡ 3 (mod 4), we have
2 | a. By Lemma 3, we find that 2 |x. From (5), we have 3y ≡ 1 (mod 4).
Hence 2 | y. Then by Theorem D, we deduce that equation (5) has at most
one solution (x, y, z), except for

(a, b, c) = (5, 3, 2), (13, 3, 2), (10, 3, 13).

Clearly, (a, b, c) 6= (5, 3, 2) since max(a, b, c) > 7, and the equations
13p + 3q = 2r and 10p + 3q = 13r are all impossible since p, q, r ≥ 2 (see [23]
and [14]). Thus, (5) has only the solution (x, y, z) = (2, 2, r). The Theorem
is proved.

Proof of Corollary 1. If m > n/
√

3, then we find that b = n(3m2 − n2)
≡ 3 (mod 4). By the Theorem, Corollary 1 holds.

If m < n/
√

3, then

a = m(3n2 −m2), b = n(n2 − 3m2), c = m2 + n2.

By Lemma 3 and Theorem D, if 2 | y, then Corollary 1 holds. Now assume
that 2 - y. From (5),

(11)
(
n(n2 − 3m2)

3n2 −m2

)
=
(

b

3n2 −m2

)y
=
(
m2 + n2

3n2 −m2

)z
.

Since m ≡ 2 (mod 4) and n ≡ 1 (mod 4), we have

(12)
(
n(n2−3m2)

3n2−m2

)
=
(
n2−3m2

3n2−m2

)
=
(

3n2−m2

n2−3m2

)
=
(

8m2

n2−3m2

)
=−1,

(13)
(
m2 + n2

3n2 −m2

)
=
(

3n2 −m2

n2 +m2

)
=
( −4m2

n2 +m2

)
= 1.

From (11)–(13), we get −1 = 1, a contradiction. This proves the corollary.

Proof of Corollary 2. From the Theorem, it suffices to prove Cases 2
and 3 of Corollary 2. Now we assume that

a = m|m4 − 10m2n2 + 5n4|, b = 5m4 − 10m2n2 + n4, c = m2 + n2,
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m >
√

10n and n ≡ 1 (mod 4). Clearly, m4 − 10m2n2 + 5n4 ∈ N. If 5 -n,
then we have(

b

m4 − 10m2n2 + 5n4

)

=
(
m4 − 10m2n2 + 5n4

5m4 − 10m2n2 + n4

)

=
(

5
5m4 − 10m2n2 + n4

)(
5m4 − 50m2n2 + 25n4

5m4 − 10m2n2 + n4

)

=
( −40m2n2 + 24n4

5m4 − 10m2n2 + n4

)
=
(

5m2 − 3n2

5m4 − 10m2n2 + n4

)

=
(

5m4 − 10m2n2 + n4

5m2 − 3n2

)
=
(−7m2 + n2

5m2 − 3n2

)

=
(

5
5m2 − 3n2

)(−7(5m2 − 3n2)− 16n2

5m2 − 3n2

)
=
(

5m2 − 3n2

5

)
= −1.

If 5 |n then we also have
(

b

m4 − 10m2n2 + 5n4

)
= −1

by a similar method. Moreover
(

c

m4 − 10m2n2 + 5n4

)
=
(
m4 − 10m2n2 + 5n4

m2 + n2

)
=
(

16
m2 + n2

)
= 1.

Hence, from (5) we have 2 | y. From Lemma 3 we deduce similarly that 2 |x.
Then Theorem D implies Case 2. For Case 3 the only remaining case is
m = 2. Then a = 38, b = 41, c = 5. As above we find 2 |x, 2 | y, and Case 3
follows from Theorem D.

4. An open problem. Let r > 1 be a given odd number, and let

a = m

∣∣∣∣
(r−1)/2∑

j=0

[
r
j

]
(4m2)(r−1)/2−j(−m2 − 1)j

∣∣∣∣,

b =
∣∣∣∣

(r−1)/2∑

j=0

[
r
j

]
(−4)(r−1)/2−j(m2 + 1)j

∣∣∣∣,

c = m2 + 1,

where m ∈ N with m2 + 1 ∈ P and m ≡ 2 (mod 4). Clearly, (a, b, c) is
a solution of equation (7). Is it possible to prove the Terai–Jeśmanowicz
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conjecture by the method of this paper under the above condition? When
r = 3, 5, the answer to the question is “yes”.
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[9] —, A note on Jeśmanowicz’ conjecture, Colloq. Math. 69 (1995), 47–51.

[10] R. Lid l and H. Niederre i ter, Finite Fields, Addison-Wesley, Reading, MA, 1983.
[11] A. Mąkowski, On the diophantine equation 2x + 11y = 5z , Nord. Mat. Tidskr. 7

(1959), 81–96.
[12] L. J. Morde l l, Diophantine Equations, Academic Press, 1969.
[13] T. Nage l l, Sur une classe d’équations exponentielles, Ark. Mat. 3 (1958), 569–582.
[14] M. Per i sastr i, A note on the equation ax − by = 10z , Math. Student 37 (1969),

211–212.
[15] R. Scott, On the equations px − by = c and ax + by = cz , J. Number Theory 44

(1993), 153–165.
[16] Q. Sun and X. M. Zhou, On the Diophantine equation ax + by = cz , Chinese Sci.

Bull. 29 (1984), 61 (in Chinese).
[17] K. Takakuwa, On a conjecture on Pythagorean numbers, III , Proc. Japan Acad.

Ser. A Math. Sci. 69 (1993), no. 9, 345–349.
[18] K. Takakuwa and Y. Asaeda, On a conjecture on Pythagorean numbers, ibid.

69 (1993), no. 7, 252–255.
[19] —, —, On a conjecture on Pythagorean numbers, II , ibid. 69 (1993), no. 8, 287–290.
[20] N. Tera i, The Diophantine equation ax + by = cz , ibid. 70 (1994), 22–26.
[21] —, The Diophantine equation ax + by = cz , II , ibid. 71 (1995), 109–110.
[22] —, The Diophantine equation ax + by = cz , III , ibid. 72 (1996), 20–22.
[23] S. Uchiyama, On the Diophantine equation 2x = 3y + 13z , Math. J. Okayama

Univ. 19 (1976/77), 31–38.



Diophantine equation ax + by = cz 93

[24] X. Z. Yang, On the Diophantine equation ax + by = cz , Sichuan Daxue Xuebao 4
(1985), 151–158 (in Chinese).

Department of Mathematics
Harbin Institute of Technology
Harbin 150001, P.R. China
E-mail: zfcao@hope.hit.edu.cn

Received on 21.9.1998
and in revised form on 7.5.1999 (3472)


