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On a problem of Alfréd Rényi

by
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1. Introduction. Every irrational number in (0, 1) can be uniquely
expanded into an Engel series

(1) x =
1
q1

+
1
q1q2

+ . . .+
1

q1q2 . . . qn
+ . . .

where the qi are positive integers satisfying 2 ≤ q1 ≤ q2 ≤ . . . We denote the
series in (1) by 〈q1, q2, . . .〉E. Erdős, Rényi and Szüsz [2] studied the metrical
properties of Engel’s expansions completing the results announced by Borel
[1] and Lévy [6].

The alternated version of Engel’s series is known as Pierce expansion:
for an irrational x in (0, 1] we have the unique expansion

(2) x =
1
q1
− 1
q1q2

+ . . .+
(−1)n+1

q1q2 . . . qn
+ . . .

In this case, the qn are positive integers satisfying 1 ≤ q1 < q2 < . . . We
denote the right-hand side of (2) by 〈q1, q2, . . .〉P. The qn, in both Engel and
Pierce cases, are called elements or partial quotients.

Both expansions were studied by Sierpiński [14]. The metrical theory of
Pierce expansions was studied by Shallit [12]. More recent contributions to
the subject are found in [7, 8, 11, 13].

In the first part of a 1962 paper [9], Rényi provided a shorter way of
reaching most of the results of [2]. Of these, the more spectacular is initially
due to Borel [1], and states that for almost all x ∈ (0, 1], the elements of
their Engel series satisfy

(3) lim
n→∞

n
√
qn(x) = e.

In [12] Shallit proved that the same holds for Pierce expansions. These (and
other) coincident results indicate that the growth of the sequence of elements
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of Engel’s series and Pierce expansions is about the same (with measure 1).
This had already been noted by Rényi and by Williams [15].

In the second part of [9], Rényi proved for Engel’s series that:

(i) For almost all x the sequence qn(x) is strictly increasing for n ≥
n0(x).

(ii) The probability of qn(x) being strictly increasing from the very begin-
ning is exactly 1/2.

The first problem cannot be directly translated into Pierce expansions
as the sequence of partial quotients qn is already strictly increasing. Nev-
ertheless, we can ask about the measure of the set of those x at which
the “jump” between two consecutive elements is greater than a fixed pos-
itive integer k. Of course, this generalization also applies to Engel’s series.
Galambos [4, p. 298] proved that for almost all x ∈ (0, 1],

lim
n→∞

log(qn − qn−1)
n

= 1,

a result that obviously implies the generalization of Rényi’s first problem.
Rényi’s problem (ii) in its original setting is easy to solve, but its gen-

eralization is not so easy to tackle. That is the aim of the present article:
to extend result (ii) above, for both Engel and Pierce cases, by computing
the exact measure of the set of all x at which the jump between consecutive
elements is greater than or equal to k from the very beginning (Section 4).

In Section 2 we summarize some results on Pierce and Engel series, and
Section 3 consists of two lemmas needed in the following.

2. Some metrical results. The results of this section alongside with
their proofs can be found in [2, 12]. All values x will always refer to real
numbers in (0, 1], and λA will denote the Lebesgue measure of the set A ⊂
[0, 1].

Given a finite sequence of positive integers of length r, a1, . . . , ar, satis-
fying a1 < . . . < ar in the case of Pierce and 2 ≤ a1 ≤ . . . ≤ ar in the case
of Engel (admissible or realizable sequences), a cylinder of rank r is the set

Cr(a1, . . . , ar) = {x : q1(x) = a1, . . . , qr(x) = ar}.
In the case of Pierce expansions, cylinders are intervals with endpoints
〈a1, . . . , ar〉P and 〈a1, a2, . . . , ar + 1〉P taken in proper order, and length

|Cr(a1, . . . , ar)| = 1
a1 . . . ar(ar + 1)

.

(|I| denotes the length of the interval I.)
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For Engel’s case, cylinders are intervals with endpoints 〈a1, . . . , ar〉E and
〈a1, . . . , ar − 1〉E and length

|Cr(a1, . . . , ar)| = 1
a1 . . . ar(ar − 1)

.

The sets with which the metrical theory concerns itself are, in general, ex-
pressed as unions of disjoint cylinders. In the case of Pierce expansions, this
computation depends on the value of sums of the type

Ar(m,n) =
∑

m≤q1<...<qr≤n

1
q1 . . . qr

,

where m and n are two positive integers (m < n) and 0 < r ≤ n − m.
That is, the sum extends over the set of Pierce admissible sequences of
length r whose elements are in the range [m,n]. The consideration of Engel’s
admissible sequences gives rise to the same type of sums, where repetitions
are allowed, that is, sums of the type

Br(m,n) =
∑

m≤q1≤...≤qr≤n

1
q1 . . . qr

.

In this case, each sum depends on r, 0 ≤ r <∞.
Since for fixed m, n the numbers Ar are nothing but the elementary

symmetric functions for the polynomial whose roots are
{

1
m ,

1
m+1 , . . . ,

1
n

}
,

the generating function of the complex variable z for the sequence {Ar} is

(4)
(

1+
z

m

)(
1+

z

m+ 1

)
. . .

(
1+

z

n

)
= A0+A2z

2+. . .+An−m+1z
n−m+1.

It can also be proved that, in the case of an Engel admissible sequence the
generating function for {Br} is the rational function

(5)
1(

1− z

m

)(
1− z

m+ 1

)
. . .

(
1− z

n

) = B0 +B1z +B2z
2 + . . .

2.1. The shift transform. An alternative approach to the theory of En-
gel’s and Pierce’s series is based on the introduction of the shift transforms
TP and TE of which we shall make a very limited use. This is the bridge which
links these systems of representation of real numbers to ergodic theory and
dynamical systems (see [3, Ch. 5] or the more recent [10]). If x = 〈q1, q2, . . .〉
and if T refers to either TP or TE, the equation

T 〈q1, q2, . . .〉 = 〈q2, q3, . . .〉
may be taken as the definition of each of the shift transforms. It is easy
to see that the restriction of the transforms to a cylinder C1(m) takes the
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forms TE(x) = mx − 1 and TP(x) = 1 −mx. Now, if I = (x, y) is an open
interval, I ⊂ C1(m), its image under T is an interval of length

|Ty − Tx| = m(y − x)⇔ |TI| = m|I|.
As this last equality is true for intervals it must be true for Lebesgue mea-
surable sets. Thus for every measurable set A,

(6) A ⊂ C1(m)⇒ λTA = mλA.

3. Some preliminary lemmas. Consider a fixed positive integer k ≥ 1.

Lemma 1 (Pierce expansions). For positive integers m and n (m ≤ n), let

Xm,n = {x : q1(x) ≥ m and ∃j (j ≥ 1), qj(x) = n and qj+1(x) < n+ k}.
Then

λXm,n =
1
m

(
1

n+ 1
− 1
n+ k

)
.

P r o o f. Xm,n is the disjoint union of the intervals whose endpoints are

〈q1, . . . , qj−1, n, n+ 1〉P, 〈q1, . . . , qj−1, n, n+ k〉P,
for all admissible values of q1, . . . , qj−1. Consequently, the total measure is

1
n

(
1

n+ 1
− 1
n+ k

) ∑

m≤q1<...<qj−1≤n−1

1
q1 . . . qj−1

;

setting z = 1 in (4), this last sum is
(

1 +
1
m

)(
1 +

1
m+ 1

)
. . .

(
1 +

1
n− 1

)
=

n

m
.

Thus, the measure we seek equals

1
n

(
1

n+ 1
− 1
n+ k

)
n

m
=

1
m

(
1

n+ 1
− 1
n+ k

)
.

For Engel’s series we obtain:

Lemma 2 (Engel’s series). For positive integers m and n (m ≤ n), let

Ym,n = {x : q1(x) ≥ m and ∃j (j ≥ 1), qj(x) = n and qj+1(x) < n+ k}.
Then

λYm,n =
1
m

(
1− 1

n

)(
1

n− 1
− 1
n− 1 + k

)
.

4. Rényi’s second problem generalized. When dealing with Pierce
expansions, the closest one can get to the second of Rényi’s problems is to
ask for the measure of the set G of numbers whose partial quotients jump
more than two units from the very beginning. A direct argument based on
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the inclusion and exclusion formula may be used to show that the measure
of the complement of G in [0, 1] is 1/e. Thus

(7) λG = 1− 1
e
.

Besides being tedious in its details, the proof in terms of the inclusion and
exclusion formula is impossible to extend to larger values of the jump k, so
we are forced to take a different route. We give the details only for Pierce
expansions as the modifications for Engel’s series are trivial.

We call

E(k)
m = {x : q1(x) ≥ m, ∀j, qj+1(x) ≥ qj(x) + k}.

With this notation, the set G above is E(2)
2 . Let us write pkm = λE

(k)
m . In the

following we consider k as a given positive integer, and to simplify notation,
we drop the superscript (k) in pkm and in E

(k)
m .

Since for each m, Em − Em+1 ⊂ C1(m) and TP(Em − Em+1) = Em+k,
by (6) we have λEm+k = m · λ(Em − Em+1). That is to say, pm+k =
m(pm − pm+1), which rendered into homogeneous form gives

(8) pm+k +mpm+1 −mpm = 0.

This is a finite difference equation of order k, linear with polynomial coeffi-
cients, which we will solve after establishing a few necessary lemmas.

Lemma 3. For all m,

mpm + pm+1 + pm+2 + . . .+ pm+k−1 = C, C constant.

P r o o f. Write the recurrence (8) as

(9) mpm = mpm+1 + pm+k.

Use (9) recursively to get

mpm + pm+1 + . . .+ pm+k−1 = mpm+1 + pm+1 + . . .+ pm+k−1 + pm+k

= (m+ 1)pm+1 + pm+2 + . . .+ pm+k.

Thus, for all m, mpm + pm+1 + . . .+ pm+k−1 = C.

Lemma 4. The sequence pm satisfies:

(a) limm→∞ pm = 0;
(b) limm→∞mpm = 1.

P r o o f. Assertion (a) is trivial as pm = λEm and Em ⊂ (0, 1/m]. As for
(b), if q1(x) ≥ m and x 6∈ Em, then there exists a place j such that qj(x) = n
and qj+1(x) < n+ k, that is, x ∈ Xm,n for some n. By the covering rule,

λ

((
0,

1
m

]
− Em

)
≤ λ

∞⋃
n=m

Xm,n ≤
∞∑
n=m

λXm,n.
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By Lemma 1, this last sum is
∞∑
n=m

1
m

(
1

n+ 1
− 1
n+ k

)
=

1
m

(
1

m+ 1
+ . . .+

1
m+ k − 1

)
.

Consequently,

pm ≥ 1
m
− 1
m

(
1

m+ 1
+ . . .+

1
m+ k − 1

)
,

and (b) follows.

An immediate consequence of Lemma 4 is:

Lemma 5. The constant in Lemma 3 is 1, that is, for all m we have

(10) mpm + pm+1 + pm+2 + . . .+ pm+k−1 = 1.

For the particular values m = 2 and k = 1 the expression above gives
2p2 = 1, that is, λE(1)

2 = p2 = 1/2, which is result (ii) of Rényi’s paper for
Engel’s series.

We now turn to solve the recurrence (8).

Proposition 1.

pm = C

1\
0

tm−1et+t
2/2+...+tk−1/(k−1) dt

is a particular solution of the recurrence equation

(11) pm+k +mpm+1 −mpm = 0,

where C is an arbitrary constant.

P r o o f. We will use Laplace’s method (see [5, pp. 579–583]) which as-
sumes that there exists a solution of the form

(12) pm =
b\
a

tm−1ω(t) dt,

where the limits a and b and the function ω(t) are to be determined. Using
(12) and integrating by parts we get

pm+k =
b\
a

tm−1(tkω(t)) dt,

mpm = [tmω(t)]ba −
b\
a

tmω′(t) dt,

mpm+1 = [tm(tω(t))]ba −
b\
a

tm(ω(t) + tω′(t)) dt.
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Replacing all these expressions in the original equation (11) yields
b\
a

tm−1(tkω(t)) dt+ [tm(tω(t))]ba −
b\
a

tm(ω(t) + tω′(t)) dt

−
(

[tmω(t)]ba −
b\
a

tmω′(t) dt
)

= 0.

Grouping integrated parts and integrals we obtain

[tm+1ω(t)− tmω(t)]ba +
b\
a

tm−1{(t− t2)ω′(t) + (tk − t)ω(t)} dt = 0.

The method is to annihilate the integrand in order to obtain ω(t) and to
annihilate the bracketed part to determine the possible values of a and b.
We start with the integrand:

(t− t2)ω′(t) + (tk − t)ω(t) = 0,

a linear homogeneous differential equation with separable variables,

ω′

ω
=
t− tk
t− t2 =

1− tk−1

1− t = 1 + t+ t2 + . . .+ tk−2,

and thus
ω(t) = Cet+t

2/2+...+tk−1/(k−1),

where C is an arbitrary constant.
Now, replacing ω(t) with the value just found, we annihilate the inte-

grated part seeking values a and b of t that make

tmCet+t
2/2+...+tk−1/(k−1)(t− 1) = 0.

Besides ±∞ depending on the parity of k, the only solutions are a = 0
and b = 1, which are precisely the values we are going to use to obtain a
particular solution of our equation:

pm = C

1\
0

tm−1et+t
2/2+...+tk−1/(k−1) dt.

We are now ready for the main result of this section:

Theorem 1. The measure of Em is

pm = e−(1+1/2+...+1/(k−1))
1\
0

tm−1et+t
2/2+...+tk−1/(k−1) dt.

P r o o f. By (10) from Lemma 5, we have the following set of initial
conditions:

mpm + pm+1 + pm+2 + . . .+ pm+k−1 = 1 (m = 1, 2, . . .).
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Replacing pm gives

C

1\
0

(mtm−1 + tm + . . .+ tm+k−2)et+t
2/2+...+tk−1/(k−1) dt = 1.

Since
d

dt
{tmet+t2/2+...+tk−1/(k−1)}

= (mtm−1 + tm + . . .+ tm+k−2)et+t
2/2+...+tk−1/(k−1),

we get

C

1\
0

(mtm−1 +tm+. . .+tm+k−2)et+t
2/2+...+tk−1/(k−1) dt = e1+1/2+...+1/(k−1).

Therefore, the infinite set of initial conditions above is consistent with the
value of C given by

C = e−(1+1/2+...+1/(k−1)).

The solution for this particular C is thus unique and corresponds to the
measure we sought.

Now, as an immediate corollary of Theorem 1, taking m = 1 and k = 2,
and taking complements in (0, 1], we obtain (7).

5. Conclusions. We establish the measure of different sets of real num-
bers in (0, 1] defined through properties satisfied by all the elements of their
Pierce or Engel expansions. This settles the generalized version of a prob-
lem set by A. Rényi [9] concerning the measure of similar sets defined using
Engel’s series. We come out with quite nice and neat measures between zero
and one. Specifically, replacing m by 1 in Theorem 1, the set E(k)

1 of real
numbers whose Pierce expansions present elements with a minimum jump
of k units has measure

λE
(k)
1 = e−

∑k−1
j=1 1/j

1\
0

e
∑k−1
j=1 t

j/j dt.
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[4] J. Galambos, The Asymptotic Theory of Extreme Order Statistics, Wiley, New
York, 1978; 2nd ed.: Robert Krieger, Malabar, FL, 1987.

[5] K. Jordan, Calculus of Finite Differences, 3rd ed., Chelsea, New York, 1979. (First
ed. Budapest, 1939).
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