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On the quotient sequence of sequences of integers
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1. Introduction. The set of positive integers is denoted by N. If m,n
∈ N then ωm(n) denotes the number of distinct prime factors of n not
exceeding m, while Ωm(n) denotes the number of prime factors of n not
exceeding m counted with multiplicity:

ωm(n) =
∑

p≤m
p|n

1, Ωm(n) =
∑

p≤m
pα‖n

α,

and we write
ωn(n) = ω(n), Ωn(n) = Ω(n).

The smallest and greatest prime factors of the positive integer n are denoted
by p(n), and P (n), respectively. The counting function of a set A ⊂ N,
denoted by A, is defined by

A(x) = |A ∩ [1, x]|, x ∈ N.
The upper density d(A) and the lower density d(A) are defined by

d(A) = lim sup
x→∞

A(x)
x

and d(A) = lim inf
x→∞

A(x)
x

,

respectively, and if d(A) = d(A), then the density d(A) of A is defined as

d(A) = d(A) = d(A).

The upper logarithmic density δ(A) is defined by

δ(A) = lim sup
x→∞

1
log x

∑

a∈A
a≤x

1
a
,
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and the definitions of the lower logarithmic density δ(A) and logarithmic
density δ(A) are similar.

A setA ⊂ N is said to be primitive if there are no a, a′ with a ∈ A, a′ ∈ A,
a 6= a′ and a | a′. There are two classical results on primitive sequences:
Behrend [2] proved that if A ⊂ {1, . . . , N} and A is primitive, then

(1.1)
∑

a∈A

1
a
< c1

logN√
log logN

(so that an infinite primitive sequence must be of 0 logarithmic density), and
Erdős [4] proved that if A ⊂ N is a (finite or infinite) primitive sequence
then

(1.2)
∑

a∈A

1
a log a

< c2.

These results have been extended in various directions; surveys of this field
are given in [1], [8], [9], [13].

For A ⊂ N and a ∈ A let QaA denote the set of integers q such that q > 1
and aq ∈ A, and write

(1.3) QA =
⋃

a∈A
QaA.

Then QA consists of the integers q > 1 that can be represented in the
form q = a′/a with a, a′ ∈ A. We call QA the quotient set of the set A.
By Behrend’s and Erdős’s theorems, the quotient set of a “dense” set A is
non-empty. We will also study the set Q∞A defined by

Q∞A =
∞⋂
n=1

∞⋃

a≥n
a∈A

QaA.

This set consists of the integers q > 1 which have infinitely many represen-
tations in the form q = a′/a with a, a′ ∈ A. We will call Q∞A the infinite
quotient set of A.

Pomerance and Sárközy [12] initiated the study of quotient sets of
“dense” sets. They investigated the arithmetic properties of QA and, in
particular, they proved the following theorem:

Theorem A. There exist constants c3 and N0 such that if N ∈ N,
N > N0, P is a set of primes not exceeding N with

(1.4)
∑

p∈P

1
p
> c3,
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A ⊂ {1, . . . , N} and

(1.5)
∑

a∈A

1
a
> 10 logN

(∑

p∈P

1
p

)−1/2

,

then there is a q ∈ QA such that q | ∏p∈P p.

They discussed various consequences of this theorem, and they also stud-
ied the occurrence of numbers of the form p− 1 (p prime) in QA.

In this paper our goal is to continue the study of the quotient set by
studying the density related properties of it.

2. The problems and results. Our first goal is to study the connection
between δ(A) and δ(QA). First we thought that for all A ⊂ N we have

(2.1) δ(QA) ≥ δ(A).

However, it is not so, as the following example shows: Let A be the set of
integers that can be represented in the form 2m, 3m or 5m with m ∈ N,
(m, 30) = 1. Then a simple computation shows that

δ(A) = δ(A) = d(A) =
62
225

and

δ(QA) = δ(QA) = d(QA) =
4
15

=
30
31
δ(A),

so that (2.1) does not hold. Later we prove that there is a connection between
the densities in (2.1), however, they can be far apart:

Theorem 1. (i) If a set A ⊂ N has positive upper logarithmic density
then QA also has positive upper logarithmic density.

(ii) For all ε, δ > 0 there is a set A ⊂ N such that

(2.2) d(A) > 1− ε,
but

(2.3) d(QA) < δ.

Next we will study the following problem: what density assumptions are
needed to ensure that Q∞A is non-empty, resp. infinite? We will prove

Theorem 2. (i) If a set A ⊂ N has positive upper logarithmic density
then Q∞A is infinite.

(ii) For all ε(x)↘ 0 there is a set A ⊂ N such that

(2.4) A(x) > ε(x)x for x > x0,

but Q∞A is empty.
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By Theorem 2(i), if A has positive upper logarithmic density, then Q∞A
is non-empty, so that there are integers q > 1 which have infinitely many
representations in the form

(2.5) q = a′/a with a, a′ ∈ A.
This result can be sharpened by showing that under the same assumption,
there is a q > 1 which for infinitely many x has “many” representations of
the form (2.5) with a not exceeding x:

Theorem 3. If A has positive upper logarithmic density , then there is
a q ∈ Q∞A such that

(2.6) lim sup
x→∞

∑
t∈A,qt∈A,t≤x 1/t

log x
> 0.

By Theorem 2(i),

(2.7) δ(A) > 0

implies that Q∞A is infinite. Next we will sharpen this result by estimating
the counting function Q∞A (x) under assumption (2.7):

Theorem 4. (i) If A ⊂ N is a set of positive upper logarithmic density :

(2.8) δ(A) = η > 0,

then for x > x0 we have

(2.9)
∑

q∈Q∞A
q≤x

1
q
> exp{c(log log x)1/2 log log log x}

with a positive constant c = c(η).
(ii) For all ε, δ > 0 there is a set A ⊂ N such that

(2.10) d(A) > 1− ε
and

(2.11) Q∞A (y) <
y

log y
exp{(log log y)1/2+δ} for y > y0.

Note that, clearly, (i) implies that

Q∞A (y) >
y

log y
exp{c′(log log y)1/2 log log log y}

for infinitely many positive integers y.
Moreover, we remark that by using a result of Erdős [5], for all ε(x)↘ 0

one can construct a set A such that (2.10) holds and Q∞A (x) < x1−ε(x) for
infinitely many positive integers x.
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3. Proof of Theorem 1. (i) By a theorem of Davenport and Erdős [3],
δ(A) > 0 implies that there is an a ∈ A with

(3.1) δ(QaA) > 0.

By definition (1.3) we have QaA ⊂ QA and thus (3.1) implies δ(QA) > 0.
(ii) For some b ∈ N and K > 0 write

A = {n : n ∈ N, |Ωb(n)− log log b| < K
√

log log b}.
We will show that if b and K are large enough in terms of ε and δ, then this
set A satisfies (2.2) and (2.3).

If K is large enough in terms of ε, and then b is large enough in terms
of ε and K, then (2.2) holds by the Turán–Kubilius inequality [9] (see also
[5] and [10]). Moreover, if q ∈ QA, then q can be represented in the form
q = a′/a with a, a′ ∈ A, a < a′. It follows from the definition of A that

Ωb(q) = Ωb(a′/a) = Ωb(a′)−Ωb(a)

< (log log b+K
√

log log b)− (log log b−K
√

log log b)

= 2K
√

log log b

so that we have

QA ⊂ {q : q ∈ N, Ωb(q) < 2K
√

log log b}.
Again by the Turán–Kubilius inequality, if K is large enough in terms of δ
and then b is large enough in terms of K, then the upper density of this set
is < δ so that (2.3) also holds.

4. Proof of Theorem 2. (i) We argue by contradiction: assume that

(4.1) δ(A) = η > 0,

but Q∞A is finite so that there is a K > 0 with

(4.2) Q∞A ∩ [K,∞) = ∅.
It follows trivially from (4.1) that there is an infinite set K of positive integers
k such that, writing

(4.3) Ak = A ∩ (22k−1
, 22k ],

we have

(4.4)
1

log 22k

∑

a∈Ak

1
a
>
η

4
for all k ∈ K.

Since the sum
∑

1/p is divergent, there is a positive integer L such that

(4.5)
∑

K<p≤L

1
p
> min

{
c3,

(
40
η

)2}
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(where c3 is the constant defined in Theorem A). Then if we write P = {p : p
prime, K < p ≤ L}, then (1.4) holds and, writing also N = 22k , by (4.4)
and (4.5) we have

∑

a∈Ak

1
a
>
η

4
logN > 10 logN

(∑

p∈P

1
p

)−1

so that Theorem A can be applied with 22k and Ak in place of N and A,
respectively. It follows that if k ∈ K is large enough, then there is a number
q(k) which can be represented in the form

q(k) = a′/a with a, a′ ∈ Ak, a 6= a′, a | a′

and which also satisfies

q(k) |
∏

p∈P
p =

∏

K<p≤L
p.

Since this product has only finitely many divisors, q(k) divides it, and since
k can assume infinitely many values (K being infinite), by the pigeon hole
principle there is a q0 such that

(4.6) q0 |
∏

K<p≤L
p

and q0 = q(k) for infinitely many values of k; denote the set of those k’s by
K0. Then q0 can be represented in the form

(4.7) q0 = a′/a with a, a′ ∈ Ak, a 6= a′ (for all k ∈ K0).

Since K0 is infinite and the sets Ak are disjoint, (4.7) implies q0 ∈ Q∞A , and
by (4.6) and (4.7) we have q0 > K, which contradicts (4.2) and completes
the proof of (i).

(ii) It is well known that if x > x0, then uniformly for 2 ≤ K ≤ √x we
have

|{n : n ≤ x, p(n) > K}| > c4x
∏

p≤K

(
1− 1

p

)
,

and by Mertens’s formula, this is > c5x/logK, which is > ε(x)x if K <
ec5/ε(x). It follows that if we define A = {n : p(n) > K(n)} with K(n) =
min{√n, ec6/ε(n)}, where c6 is a small positive constant, then A satisfies
(2.4).

Moreover, for this A we clearly have

(4.8) p(a)→∞ as a ∈ A, a→∞.
If q > 1 and q ∈ N, then if we represent q in the form q = a′/a with
a, a′ ∈ A, then a′ must have a prime factor ≤ q, and thus by (4.8), a′ must
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be bounded. This implies q 6∈ Q∞A so that Q∞A is empty, which completes
the proof of the theorem.

5. Proof of Theorem 3. Write δ(A) = η (> 0). For k ∈ N, let

Ak = {a : a ∈ A, 22k−1
< a ≤ 22k}.

Let K denote the set of positive integers k such that

(5.1)
∑

a∈Ak

1
a
>
η

4
log 22k .

Clearly, K is infinite. Let L denote the smallest positive integer such that

(5.2)
∑

p≤L

1
p
> min

{
c3,

(
80
η

)2}
,

and write
∏
p≤L p = V . For q, k ∈ N write

B(q,k) = {a : 22k−1
< a ≤ 22k , a ∈ A, aq ∈ A}.

We will show that for k ∈ K, k > k0 there is a q such that q |V and

(5.3)
∑

a∈B(q,k)

1
a
>

η

8V
log 22k .

We argue by contradiction: assume that for all q |V we have

(5.4)
∑

a∈B(q,k)

1
a
≤ η

8V
log 22k .

Write

(5.5) Ack = Ak \
⋃

q|V
B(q,k).

Then since k ∈ K, (5.1), (5.4) and (5.5) yield
∑

a∈Ac
k

1
a
≥
∑

a∈Ak

1
a
−
∑

q|V

∑

a∈B(q,k)

1
a

>

(
η

4
−
∑

q|V

η

8V

)
log 22k ≥

(
η

4
− η

8

)
log 22k =

η

8
log 22k .

By (5.2), it follows that

(5.6)
∑

a∈Ac
k

1
a
> 10

log 22k

√∑
p≤L 1/p

.

By (5.2) and (5.6), we may apply Theorem A with 22k , Ack and {p : p
prime, p ≤ L} in place of N , A and P, respectively. It follows that if k ∈ K
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and k is large enough, then there is a q′ which can be represented in the
form

(5.7) q′ = a′/a with a, a′ ∈ Ack, a 6= a′, a | a′
and which also satisfies

(5.8) q′ |
∏

p≤L
p = V.

For these a and q′ we have a ∈ Ak and aq′ ∈ Ak, and thus

(5.9) a ∈ B(q′,k).

It follows from (5.5), (5.8) and (5.9) that a 6∈ Ack. This contradicts (5.7),
which proves that, indeed, for all k ∈ K, k < k0 there is a q such that
q |V and (5.3) holds. To each k ∈ K, k > k0 assign a q = q(k) with these
properties. Since K is infinite and, as q(k) |V , q(k) may assume only finitely
many distinct values, there is a q0 (with q0 |V ) which has infinitely many
representations in the form q0 = q(k). For this q0 we have

1
log 22k

∑

a∈A, aq0∈A
a≤22k

1
a
>

η

8V

for infinitely many k ∈ N, which proves (2.6) and completes the proof of
Theorem 3.

6. Proof of Theorem 4(i). Combinatorial lemmas

Lemma 1. For all µ > 0 there are numbers r0 and c = c(µ) > 0 such
that if r ∈ N, r > r0, U is a finite set with |U| = r, and U1, . . . ,Uk are
subsets of U with

(6.1) k > µ2r,

then there is a j (1 ≤ j ≤ k) such that

(6.2) |{i : 1 ≤ i ≤ k, Ui ⊂ Uj}| > exp{c√r log r}.
P r o o f. This is Theorem 2 of [7].

Lemma 2. For all µ > 0 there are numbers r0 and c = c(µ) > 0 such
that if r ∈ N, r > r0, T is a finite set with |T | = t,

T = U ∪ V, U ∩ V = ∅, |U| = r,

and T1, . . . , Tl are subsets of T with

(6.3) l > µ2t,

then there is an h (1 ≤ h ≤ l) such that

(6.4) |{i : 1 ≤ i ≤ l, Ti ∩ U ⊂ Th ∩ U , Ti ∩ V = Th ∩ V}| > exp{c√r log r}.
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P r o o f. By the pigeon hole principle, it follows from (6.3) that V has a
subset V0 such that

(6.5) |{h : 1 ≤ h ≤ l, Th ∩ V = V0}| ≥ l

2|V|
>
µ2t

2|V|
= µ2|U| = µ2r.

Let Th1 , . . . , Thk (h1 < . . . < hk) be the subsets of T with Thi ∩ V = V0,
i = 1, . . . , k, so that (6.1) holds by (6.5). Write Ui = Thi ∩ U for 1 ≤ i ≤ k.
By Lemma 1, there is a j (1 ≤ j ≤ k) such that (6.2) holds. Then clearly Thj
satisfies (6.4) with hj in place of h, which completes the proof of Lemma 2.

7. Proof of Theorem 4(i). Arithmetic lemmas

Lemma 3. For all γ > 0 there are constants c = c(γ) > 0, N0 and R0

such that if N > N0, A ⊂ {1, . . . , N},
(7.1)

∑

a∈A

1
a
> γ logN

and R0 ≤ R ≤ N , then, writing

(7.2) f(A, R, n) = |{a : a ∈ A, a |n, P (n/a) ≤ R}|
and

A∗(R, c) = |{a : a ∈ A, f(A, R, a) > exp(c(log logR)1/2 log log logR)}|,
we have

(7.3)
∑

a∈A∗(R,c)

1
a
>

1
2

∑

a∈A

1
a
.

P r o o f. We argue by contradiction: assume that contrary to (7.3) we
have

(7.4)
∑

a∈A∗(R,c)

1
a
≤ 1

2

∑

a∈A

1
a
.

We will show that if c = c(γ) (> 0) is small enough (in terms of γ) then
(7.4) leads to a contradiction.

Write Ac = A \ A∗(R, c) so that

(7.5) Ac = {a : a ∈ A, f(A, R, a) ≤ exp(c(log logR)1/2 log log logR)}
and, by (7.1) and (7.4),

(7.6)
∑

a∈Ac

1
a
≥ 1

2

∑

a∈A

1
a
>
γ

2
logN.

Write every a ∈ Ac as the product of a square (r(a))2 and a squarefree
integer s(a):

a = (r(a))2s(a), |µ(s(a))| = 1



126 R. Ahlswede et al.

(where µ(n) denotes the Möbius function). Then (7.6) can be rewritten as

γ

2
logN <

∑

a∈A

1
(r(a))2s(a)

=
∞∑
r=1

1
r2

∑

a∈Ac
r(a)=r

1
s(a)

.

Since
∑∞
r=1 1/r2 = π2/6 < 2, it follows that there is an integer r0 such that

(7.7)
∑

a∈Ac
r(a)=r0

1
s(a)

>
γ

4
logN.

Write S = {s : there is an a ∈ Ac with r(a) = r0, s(a) = s}. Then, by (7.7),

(7.8)
∑

s∈S

1
s
>
γ

4
logN,

and clearly

S ⊂ {1, . . . , N},(7.9)

every s ∈ S is squarefree.(7.10)

Set dS(n) = |{s : s ∈ S, s |n}| and let d(n) = |{d : d ∈ N, d |n}| denote the
divisor function. Then it is well known that for large N we have

(7.11)
N∑
n=1

d(n) < 2N logN.

Write

H(N,R) =
{
n : n ≤ N, ωR(n) > 1

2 log logR
}
.

Now we will show that there is an integer n with

(7.12) n ∈ H(N,R), dS(n) >
γ

32
d(n).

Clearly we have∑

n∈H(N,R)

dS(n) =
∑

n∈H(N,R)

∑

s∈S
s|n

1 =
∑

s∈S

∑

n≤N, s|n
ωR(n)> 1

2 log logR

1

=
∑

s∈S

∑

st≤n
ωR(st)> 1

2 log logR

1 ≥
∑

s∈S
S<N1−γ/10

∑

t≤N/S
ωR(t)> 1

2 log logR

1.

By the Turán–Kubilius inequality [11], for R0 ≤ R ≤ N the inner sum is
> 1

2
N
S so that, by (7.8), for large N we have

∑

n∈H(N,R)

dS(n) ≥ N

2

∑

s∈S
s<N1−γ/10

1
s
≥ N

2

(∑

s∈S

1
s
−

∑

N1−γ/10≤S≤N

1
s

)
(7.13)

>
N

2

(
γ

4
logN − γ

8
logN

)
=

γ

16
N logN.
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Now assume that contrary to our statement there is no n satisfying (7.12).
Then it follows from (7.11) that

∑

n∈H(N,R)

dS(n) ≤
∑

n∈H(N,R)

γ

32
d(n) ≤ γ

32

N∑
n=1

d(n) <
γ

16
N logN,

which contradicts (7.13), and this completes the proof of the existence of an
n satisfying (7.12). Consider such an n, and write

n1 =
∏

p|n
p.

Then as n ∈ H(N,R) we clearly have
(7.14) ωR(n1) = ωR(n) > 1

2 log logR,
and, by (7.10), it follows from (7.12) that

(7.15) dS(n1) = dS(n) >
γ

32
d(n) ≥ γ

32
d(n1).

Let si1 < . . . < sil (with l = dS(n1)) be the elements of S dividing n1. Write
T = {p : p prime, p |n1}, t = |T | = ω(n1),

U = {p : p prime, p ≤ R, p |n1},
r = |U| = ωR(n1) and Tj = {p : p prime, p | sij} for j = 1, . . . , l.

Then T1, . . . , Tl are subsets of T and, by (7.15), their number is

(7.16) l = dS(n1) >
γ

32
d(n1) =

γ

32
2t.

Moreover, by (7.14) we have
(7.17) |U| = r = ωR(n1) = ωR(n) > 1

2 log logR.
If R0 is large enough in terms of γ then, since R ≥ R0, by (7.16) and (7.17)
all the conditions in Lemma 2 hold with γ/32 in place of µ. Thus by Lemma
2 and (7.17), there is an h (1 ≤ h ≤ l) such that
(7.18) |{j : 1 ≤ j ≤ l, Tj ∩ U ⊂ Th ∩ U , Tj ∩ V = Th ∩ V}|

> exp{c√r log r} > exp{c′(log logR)1/2 log log logR}
with positive constants c = c(γ), c′ = c′(γ). If Tj ∩U ⊂ Th ∩U and Tj ∩V =
Th ∩ V then

(7.19) r2
0sij | r2

0sih and P

(
r2
0sih
r2
0sij

)
≤ R.

Here r2
0sij ∈ Ac ⊂ A (for all j) and a = r2

0sih ∈ Ac, so that by (7.18) and
(7.19) we have

f(A, R, a) = |{a : a ∈ A, a | a, P (a/a) ≤ R}|
> exp{c′(log logR)1/2 log log logR}.

This contradicts the definition (7.5) of Ac if we choose c = c′ there, and this
completes the proof of Lemma 3.
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Lemma 4. For all γ > 0, if N > N0, A ⊂ {1, . . . , N}, ∑a∈A 1/a >
γ logN and R1 ≤ R ≤ N , then, writing

Q′(R) = {q : P (q) ≤ R and there is an a ∈ A with aq ∈ A},
we have

(7.20)
∑

q∈Q′(R)

1
q
> exp(c′(log logR)1/2 log log logR)

where c′ = c/2 with the constant c = c(γ) > 0 defined in Lemma 3.

P r o o f. Write

S =
∑

a∈A

f(A, R, a)
a

where f(A, R, a) is defined by (7.2). Assume that contrary to (7.20) we have
∑

q∈Q′(R)

1
q
≤ exp(c′(log logR)1/2 log log logR).

Then

S =
∑

a∈A

f(A, R, a)
a

=
∑

a∈A

1
a

∑

a′∈A, a′q=a
P (q)≤R

1 =
∑

a′∈A

1
a′

∑

a′q∈A
P (q)≤R

1
q

(7.21)

≤
∑

a′∈A

1
a′

∑

q∈Q′(R)

1
q

≤ exp(c′(log logR)1/2 log log logR)
∑

a′∈A

1
a′
.

On the other hand, by Lemma 3 we have

S =
∑

a∈A

f(A, R, a)
a

>
∑

a∈A∗(R,c)

exp(c(log logR)1/2 log log logR)
a

= exp(c(log logR)1/2 log log logR)
∑

a∈A∗(R,c)

1
a

>
1
2

exp(c(log logR)1/2 log log logR)
∑

a∈A

1
a
.

If c′ = c/2 and R is large enough then this lower bound contradicts the
upper bound in (7.21), which completes the proof of Lemma 4.

Lemma 5. For all γ > 0 there are constants N0, U0 such that if N > N0,
A ⊂ {1, . . . , N},

(7.22)
∑

a∈A

1
a
> γ logN
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and U0 ≤ U ≤ exp((logN)2), then, writing

Q∗(U) = {q : q ≤ U and there is an a ∈ A with aq ∈ A},
we have

(7.23)
∑

q∈Q∗(U)

1
q
> exp(c′′(log logU)1/2 log log logU)

where c′′ = c′/2 with the constant c′ = c′(γ) defined in Lemma 4.

P r o o f. Define R by
U = exp((logR)2)

so that 1
2 log logU = log logR. If U is large enough then, by Lemma 4, (7.22)

implies that
∑

q∈Q′(R)

1
q
> exp(c′(log logR)1/2 log log logR)(7.24)

= exp
(

(1 +O(1))
c′√
2

(log logU)1/2 log log logU
)
.

Moreover, we clearly have

Q′(R) \Q∗(U) ⊂ {q : U < q, P (q) ≤ R},
so that

(7.25)
∑

q∈Q∗(U)

1
q
≥

∑

q∈Q′(R)

1
q
−

∑

q∈Q′(R)
q 6∈Q∗(U)

1
q
≥

∑

q∈Q′(R)

1
q
−

∑

U<q
P (q)≤R

1
q
.

It remains to estimate the last sum.
Write σ = 1/logR so that Uσ = R. Then, since

∑

p≤x

1
p

= log log x+O(1),

we have

(7.26)
∑

U<q
P (q)≤R

1
q
<

∑

U<q
P (q)≤R

1
q

(
q

U

)σ
< U−σ

∑

P (q)≤R
q−1+σ

=
1
R

∏

p≤R
(1− p−1+σ)−1 =

1
R

exp
{
−
∑

p≤R
log(1− p−1+σ)

}

=
1
R

exp
{
O
(∑

p≤R
p−1+σ

)}
≤ 1
R

exp
{
O
(
Rσ
∑

p≤R
p−1
)}

=
1
R

exp{O(log logR)} =
(logR)O(1)

R
= o(1) (as R→∞).
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For large U , (7.23) follows from (7.24), (7.25) and (7.26), and this completes
the proof of Lemma 5.

8. Completion of the proof of Theorem 4(i). By (2.8), there is an
infinite set N1 < N2 < . . . of positive integers such that Nk+1 > N2

k for
k = 1, 2, . . . , and, writing

A ∩ (Nk−1, Nk] = Ak for k = 2, 3, . . . ,

we have ∑

a∈Ak

1
a
>
η

4
logNk.

Then for large k, by using Lemma 5 with η/4, Nk, Ak and x in place of
γ,N,A and U , respectively, we find that, writing

Q∗k(x) = {q : q ≤ x and there is an a ∈ Ak with aq ∈ Ak},
for x > x0 and large enough k we have

(8.1)
∑

q∈Q∗
k
(x)

1
q
> exp{c′′(log log x)1/2 log log log x}.

Since for every large k there is such a set Q∗k(x) and we have Q∗k(x) ⊂
{1, . . . , [x]}, by the pigeon hole principle there is a set

(8.2) Q0(x) ⊂ {1, . . . , [x]}
which can be represented in the form

(8.3) Q0(x) = Q∗k(x)

for an infinite set K of positive integers k. If q ∈ Q0(x) and k ∈ K, then
q can be represented in the form q = a′/a, a ∈ Ak, a′ = aq ∈ Ak. Since
Ak ⊂ A, the sets Ak are disjoint, and K is infinite, (8.2) implies

(8.4) Q0(x) ⊂ Q∞A ∩ [1, x].

(2.9) follows from (8.1), (8.3) and (8.4), and this completes the proof of
Theorem 4(i).

9. Proof of Theorem 4(ii). Let K be a large but fixed number, and
let A denote the set of integers a such that

|Ωb(a)− log log b| < (log log b)1/2+δ/2

for all K < b ≤ a. We will show that if K is large enough then A satisfies
(2.10) and (2.11).

Indeed, it follows from Erdős’s result [6, p. 4] that if K is large enough
in terms of δ and ε then (2.10) holds.
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Moreover, if q ∈ Q∞A and q > K, then q can be represented infinitely
often as q = a′/a with a, a′ ∈ A, a | a′, q < a < a′. Then by the construction
of A,

Ω(q) = Ωq(q) = Ωq

(
a′

a

)
= Ωq(a′)−Ωq(a)

< (log log q + (log log q)1/2+δ/2)− (log log q − (log log q)1/2+δ/2)

= 2(log log q)1/2+δ/2.

Thus by a theorem of Sathe [14] and Selberg [15] we have

Q∞A (y) ≤ K + |{q : K < q ≤ y, q ∈ Q∞A }|
≤ K +

∑

i≤2(log log y)1/2+δ/2

|{q : q ≤ y, Ω(q) = i}|

= O

(
1 +

∑

i≤2(log log y)1/2+δ/2

y

log y
· (log log y)i−1

(i− 1)!

)

= O

(
y

log y
(log log y)2(log log y)1/2+δ/2

)

= o

(
y

log y
exp((log log y)1/2+δ)

)
,

which proves (2.11).
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