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On the quotient sequence of sequences of integers
by

RupoLF AHLSWEDE (Bielefeld), LEVON H. KHACHATRIAN (Bielefeld),
and ANDRAS SARKOzY (Budapest)

1. Introduction. The set of positive integers is denoted by N. If m,n
€ N then w,,(n) denotes the number of distinct prime factors of n not
exceeding m, while §2,,,(n) denotes the number of prime factors of n not
exceeding m counted with multiplicity:

n) = Z 1, 2,(n)= Z Q,

p<m p<m
pln plIn

and we write
wp(n)=wn), 2,(n)=02(n).
The smallest and greatest prime factors of the positive integer n are denoted

by p(n), and P(n), respectively. The counting function of a set A C N,
denoted by A, is defined by

A(z) =|AN[1,z]|, =xe€N.
The upper density d(A) and the lower density d(A) are defined by

d(A) = lim sup Alz) and d(A) = liminf A:(;E),

x—00 z T—00

respectively, and if d(A) = d(A), then the density d(A) of A is defined as
) =

d(A) = d(A) = d(A).
The upper logarithmic density 6(A) is defined by
_ 1
d(A) = limsup =,
z—oo lOgT < a
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and the definitions of the lower logarithmic density 0(.A) and logarithmic
density 0(A) are similar.

A set A C Nis said to be primitive if there are no a,a’ witha € A, a’ € A,
a # a and al|a’. There are two classical results on primitive sequences:
Behrend [2] proved that if A C {1,..., N} and A is primitive, then

1 log N
1.1 - <
(1.1) anAa “ vl1oglog N

(so that an infinite primitive sequence must be of 0 logarithmic density), and
Erdés [4] proved that if A C N is a (finite or infinite) primitive sequence
then

1
(1.2) > aloga <

a€A

These results have been extended in various directions; surveys of this field
are given in [1], [8], [9], [13].

For A C Nand a € A let Q% denote the set of integers g such that ¢ > 1
and aq € A, and write

(1.3) Q= %

acA
Then Q4 consists of the integers ¢ > 1 that can be represented in the
form ¢ = a’/a with a,a’ € A. We call Q4 the quotient set of the set A.
By Behrend’s and Erdés’s theorems, the quotient set of a “dense” set A is
non-empty. We will also study the set Q% defined by

QX =1 U o4

n=1 a>n
acA

This set consists of the integers ¢ > 1 which have infinitely many represen-
tations in the form ¢ = a’/a with a,a’ € A. We will call Q% the infinite
quotient set of A.

Pomerance and Sarkozy [12] initiated the study of quotient sets of
“dense” sets. They investigated the arithmetic properties of Q)4 and, in
particular, they proved the following theorem:

THEOREM A. There exist constants cz and Ny such that if N € N,
N > Ny, P is a set of primes not exceeding N with

(1.4) > LS cs,

peP
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Ac{1,...,N} and

—1/2
(1.5) Zi>1010gN<Z;> ,

acA peEP
then there is a q € Q 4 such that q | Hpepp.

They discussed various consequences of this theorem, and they also stud-
ied the occurrence of numbers of the form p — 1 (p prime) in Q4.

In this paper our goal is to continue the study of the quotient set by
studying the density related properties of it.

2. The problems and results. Our first goal is to study the connection
between 0(A) and §(Q.4). First we thought that for all A C N we have

(2.1) 5(Qa) = 3(A).

However, it is not so, as the following example shows: Let A be the set of
integers that can be represented in the form 2m, 3m or 5m with m € N,
(m,30) = 1. Then a simple computation shows that

S(A) = 5(A) = d(A) = %

and

_ 4 30—

(@) = (@) = d(Q) = 15 = 513(A)
so that (2.1) does not hold. Later we prove that there is a connection between
the densities in (2.1), however, they can be far apart:

THEOREM 1. (i) If a set A C N has positive upper logarithmic density
then Q4 also has positive upper logarithmic density.
(ii) For all €,0 > 0 there is a set A C N such that

(2.2) d(A) >1—¢,
but
(2.3) d(Qa) < 9.

Next we will study the following problem: what density assumptions are
needed to ensure that Q% is non-empty, resp. infinite? We will prove

THEOREM 2. (i) If a set A C N has positive upper logarithmic density
then QY is infinite.
(ii) For all e(x) \, 0 there is a set A C N such that

(2.4) A(x) > e(x)x  for x > xo,
but QY is empty.



120 R. Ahlswede et al.

By Theorem 2(i), if A has positive upper logarithmic density, then Q%
is non-empty, so that there are integers ¢ > 1 which have infinitely many
representations in the form

(2.5) g=ad'/a witha,d € A.

This result can be sharpened by showing that under the same assumption,
there is a ¢ > 1 which for infinitely many x has “many” representations of
the form (2.5) with a not exceeding x:

THEOREM 3. If A has positive upper logarithmic density, then there is
aq € QF such that

(2.6) lim sup ZtEA,thA,tgx 1/t
. xTr— 00 logm

> 0.

By Theorem 2(i),
(2.7) 5(A) >0

implies that Q% is infinite. Next we will sharpen this result by estimating
the counting function Q% (z) under assumption (2.7):

THEOREM 4. (i) If A C N is a set of positive upper logarithmic density:

(2.8) d(A) =n>0,
then for x > xy we have
1
(2.9) Z = > exp{c(loglog x)'/? logloglog z}
q€EQR
q<z

with a positive constant ¢ = c(n).
(ii) For all €,0 > 0 there is a set A C N such that

(2.10) d(A)>1-¢
and
(211) Q) < g exp{(loglogy) >} fory > o

Note that, clearly, (i) implies that

Q% (y) > IO‘Z ; exp{c’(log log y)'/? log log log y/}

for infinitely many positive integers y.

Moreover, we remark that by using a result of Erdés [5], for all (z) \, 0
one can construct a set A such that (2.10) holds and Q% (z) < 2'~=®) for
infinitely many positive integers x.
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_ 3. Proof of Theorem 1. (i) By a theorem of Davenport and Erdés [3],
d(A) > 0 implies that there is an a € A with

(3.1) 5(Q%) > 0.
By definition (1.3) we have Q% C Q4 and thus (3.1) implies §(Q.4) > 0.

(ii) For some b € N and K > 0 write

A={n:neN, [(n) —loglogb| < K+/loglogb}.

We will show that if b and K are large enough in terms of € and 4, then this
set A satisfies (2.2) and (2.3).

If K is large enough in terms of ¢, and then b is large enough in terms
of € and K, then (2.2) holds by the Turan-Kubilius inequality [9] (see also

[5] and [10]). Moreover, if ¢ € Q 4, then ¢ can be represented in the form
g =d'/a with a,a’ € A, a < d’. It follows from the definition of A that

2(q) = 2p(a’/a) = 2y(a’) — 2p(a)
< (loglog b + K +/loglogb) — (loglogb — K \/log log b)
= 2K/loglogb
so that we have
QaC{q:qeN, 2(q) < 2K+/loglogb}.
Again by the Turdn—Kubilius inequality, if K is large enough in terms of §

and then b is large enough in terms of K, then the upper density of this set
is < ¢ so that (2.3) also holds.

4. Proof of Theorem 2. (i) We argue by contradiction: assume that

(4.1) 0(A) =n>0,
but Q% is finite so that there is a K > 0 with
(4.2) Q% N[K,o00) = 0.

It follows trivially from (4.1) that there is an infinite set K of positive integers
k such that, writing

(4.3) Ap=An (227 2%,
we have
1 1 9
(4.4) —— Y ->- forallkeK.
log 2 v, @ 4

Since the sum ) 1/p is divergent, there is a positive integer L such that

(4.5) > ; > min {03, (?)2}

K<p<L
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(where c3 is the constant defined in Theorem A). Then if we write P = {p : p
prime, K < p < L}, then (1.4) holds and, writing also N = 22°, by (4.4)
and (4.5) we have

1 1\ !
Z a>410gN>1010gN<Zp>

ac Ay peP

so that Theorem A can be applied with 22" and Ay, in place of N and A,
respectively. It follows that if k € K is large enough, then there is a number
q(k) which can be represented in the form

q(k):a//a with a,a’ € Ax,a # d', a|d

and which also satisfies

aq®) [ITr= ]I »r

pEP K<p<L

Since this product has only finitely many divisors, ¢(k) divides it, and since
k can assume infinitely many values (K being infinite), by the pigeon hole
principle there is a gg such that

(4.6) ol II »

K<p<L

and gy = ¢q(k) for infinitely many values of k; denote the set of those k’s by
Ko. Then gg can be represented in the form

(4.7) g =2a'Ja with a,a’ € Ay, a#a’ (for all k € Ky).

Since Ky is infinite and the sets Ay, are disjoint, (4.7) implies go € Q% , and
by (4.6) and (4.7) we have ¢o > K, which contradicts (4.2) and completes
the proof of (i).

(ii) It is well known that if = > zg, then uniformly for 2 < K < \/z we
have

{nin <, pn) > K} > e [ (1—1>,
p<i NP
and by Mertens’s formula, this is > c¢sx/log K, which is > e(x)z if K <
/(@) Tt follows that if we define A = {n : p(n) > K(n)} with K(n) =
min{/n, e®/¢(M} where g is a small positive constant, then A satisfies
(2.4).
Moreover, for this A we clearly have

(4.8) pla) o0 asa€ A, a— oo

If ¢ > 1 and ¢ € N, then if we represent ¢ in the form ¢ = a’/a with
a,a’ € A, then o' must have a prime factor < ¢, and thus by (4.8), a’ must
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be bounded. This implies ¢ ¢ Q% so that Q% is empty, which completes
the proof of the theorem.

5. Proof of Theorem 3. Write §(A) = n (> 0). For k € N, let
Ay, ={a:a € A, 22" ca< 22k}.
Let K denote the set of positive integers k such that
1 7 ok

1 - > - .

(5.1) Z - > log 2
a€Ay

Clearly, K is infinite. Let L denote the smallest positive integer such that

(5.2) gl > min {03, (?)2},

and write Hp<Lp = V. For ¢,k € N write

By =1{a: 22" «a <2 ac A age A}
We will show that for k € K, k > ko there is a ¢ such that ¢|V and
1
(5.3) Y o> Tlog2?

a 8V
aEB(qﬁk)

We argue by contradiction: assume that for all ¢ |V we have

1 n ok
A4 - < —log2°.
(54) Z a8V ©8
a€B(q,k)
Write
(5.5) A = A\ | Bigny-
qlV

Then since k € I, (5.1), (5.4) and (5.5) yield

Yiey iy oy

aEAi aE.Ak qlV CLGB(q?k.)
n n 2k non ok 7 2k
—— Y — Jlog2® > (- ——=]1log2® = —log2° .
~ (4 st) g = (4 8) °8 g 8
alv
By (5.2), it follows that
1 log 22"
(5.6) P | e
e @ >p<r 1/
ac Ay p<L /P

By (5.2) and (5.6), we may apply Theorem A with 22" Af and {p : p
prime, p < L} in place of N, A and P, respectively. It follows that if k € K
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and k is large enough, then there is a ¢’ which can be represented in the
form
(5.7) ¢ =d/a witha,d € A}, a#d, a|d
and which also satisfies
(5.8) /| [[r=V
p<L
For these a and ¢’ we have a € Ay and aq’ € A, and thus
(59) a € B(q’,k)’
It follows from (5.5), (5.8) and (5.9) that a ¢ Ajf,. This contradicts (5.7),
which proves that, indeed, for all k¥ € K, k < kg there is a ¢ such that
q|V and (5.3) holds. To each k € K, k > ko assign a ¢ = ¢(k) with these
properties. Since K is infinite and, as (k) | V, ¢(k) may assume only finitely
many distinct values, there is a qp (with g |V’) which has infinitely many
representations in the form gy = ¢(k). For this gy we have
1 1 n
oD DR
log2*"  Gmea® 8V
a§22k

for infinitely many k& € N, which proves (2.6) and completes the proof of
Theorem 3.

6. Proof of Theorem 4(i). Combinatorial lemmas

LEMMA 1. For all g > 0 there are numbers ro and ¢ = c(u) > 0 such
that if m € N, r > ro, U is a finite set with |{U| = r, and Uy, ..., Uy are
subsets of U with

(6.1) k> 2,
then there is a j (1 < j < k) such that
(6.2) Hi:1<i<k, U CU;}| > exp{cy/rlogr}.

Proof. This is Theorem 2 of [7].

LEMMA 2. For all 1 > 0 there are numbers ro and ¢ = c¢(p) > 0 such
that if 7 € N, r > 1o, T is a finite set with |T| =t,

T=UUY, UNV=0D U =nr,
and T, ...,7; are subsets of T with
(6.3) 1> p2t,
then there is an h (1 < h <) such that
(6.4) {i:1<i<l, TNUCT,NU, TNV =T,NV} > exp{cy/rlogr}.



Quotient sequences 125

Proof. By the pigeon hole principle, it follows from (6.3) that V has a
subset Vy such that
l 2t
oVl = v
Let Tp,y...,Tp, (h1 < ... < hg) be the subsets of 7 with 7, NV = )V,
i=1,...,k, so that (6.1) holds by (6.5). Write U; = 7;,, NU for 1 <i < k.
By Lemma 1, there is a j (1 < j < k) such that (6.2) holds. Then clearly 7j,
satisfies (6.4) with h; in place of h, which completes the proof of Lemma 2.

(6.5) {h:1<h<l, T,NV =V} > = 2l = por,

7. Proof of Theorem 4(i). Arithmetic lemmas

LEMMA 3. For all v > 0 there are constants ¢ = c¢(y) > 0, Ny and Ry
such that if N > No, AC{1,...,N},

1
(7.1) Z o> vlog N
acA
and Ry < R < N, then, writing
(7.2) f(AR,n)=Ha:a€ A, a|ln, P(n/a) < R}|
and

A*(R,c)={a:a € A, f(A R,a)> exp(c(loglog R)*?logloglog R)}|,
we have
1 1 1
(7.3) E i E -
a a
ac€A*(R,c) acA

Proof. We argue by contradiction: assume that contrary to (7.3) we
have

1 1 1
acA*(R,c) acA

We will show that if ¢ = ¢(y) (> 0) is small enough (in terms of v) then
(7.4) leads to a contradiction.
Write A° = A\ A*(R, c) so that

(7.5)  A°={a:ac A, f(A R, a)<exp(c(loglog R)*/?logloglog R)}
and, by (7.1) and (7.4),
1 11 7
. ) D .
(7.6) Za_22a>2log]\f
acAc acA

Write every a € A° as the product of a square (r(a))? and a squarefree
integer s(a):
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(where p(n) denotes the Mébius function) Then (7.6) can be rewritten as

710gN<Z ( ZrQ Z

acA (E)AC
Since Yo7, 1/r? = 7%/6 < 2, it follows that there is an integer ro such that
1 Y
7.7 —— > —log N.
(7.7) Z s(a) Z g8
acA°
r(a)=ro
Write S = {s : there is an a € A® with r(a) = ro, s(a) = s}. Then, by (7.7),
L v
ses
and clearly
(7.9) Sc{l,...,N},
(7.10) every s € S is squarefree.

Set dg(n) =[{s:s€ S, s|n}| and let d(n) = [{d: d € N, d|n}| denote the
divisor function. Then it is well known that for large N we have

(7.11) > d(n) <2NlogN.

Write
H(N,R) ={n:n <N, wg(n) > iloglog R}.
Now we will show that there is an integer n with
(7.12) ne€H(N,R), ds(n)> 3l2d(n).

Clearly we have

)SIRECEED SED ST SENED SR

n€H(N,R) ne€H(N,R) s€S seS n<N, s|n
sn wr(n)>3loglog R

S NS SEEEEN SHED S

sES st<n ses t<N/S
wR(st)>%loglogR S<Nt=7/10 wR(t)> loglog R

By the Turdn-Kubilius inequality [11], for Ry < R < N the inner sum is
> 1% so that, by (7.8), for large N we have

NP VICCEL IS £ (O )

neH(N,R) sesS seS N1-7/10<S< N
s<N1=v/10 o

N (v gl 0
>2(410g]\7 8logN>—16NlogN.
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Now assume that contrary to our statement there is no n satisfying (7.12).
Then it follows from (7.11) that

N
Soodst) < Y 32 312 <—NlogN

neH(N,R) neH(N,R)
which contradicts (7.13), and this completes the proof of the existence of an
n satisfying (7.12). Consider such an n, and write

~I»

pln

Then as n € H(N, R) we clearly have
(7.14) wr(n1) = wg(n) > 3loglog R,
and, by (7.10), it follows from (7.12) that

(7.15) ds(m) = ds(n) > Ldin) > Ld(m).

Let s;, <...<s;, (withl = dg(n1)) be the elements of S dividing n;. Write
7 ={p:pprime, p|ni}, t=17|=w(n),
U={p:pprime, p <R, p|ni},
r=|U| =wr(n1) and T; ={p:pprime, p|s;} forj=1,... L

Then 7y, ...,7; are subsets of 7 and, by (7.15), their number is

Y Voot
Moreover, by (7.14) we have
(7.17) U] =7 =wr(n) =wgr(n) > %loglogR.
If Ry is large enough in terms of 7 then, since R > Ry, by (7.16) and (7.17)
all the conditions in Lemma 2 hold with /32 in place of . Thus by Lemma
2 and (7.17), there is an h (1 < h <) such that

(718) Wj:1<ji<lL, GnUCT,NU, T;NY =T, NV}
> exp{cy/rlogr} > exp{c/(loglog R)*/?logloglog R}

with positive constants ¢ = ¢(vy), ¢ = (7). U T,NU C T,NU and T; NV =
7, NV then

(7.19) rosi, |1gs;, and P(Tos“”> <R.
OS'LJ
Here r§s;, € A° C A (for all j) and @ = r§s;, € A%, so that by (7.18) and
(7.19) we have
f(A R @) =[{a:a € A ala, P@a/a) < R}
> exp{c(loglog R)/? loglog log R}.
This contradicts the definition (7.5) of A€ if we choose ¢ = ¢’ there, and this
completes the proof of Lemma 3.
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LEMMA 4. For all v > 0, if N > Nog, A C {1,...,N}, > . cal/a >
vlog N and Ry < R < N, then, writing

Q'(R) ={q: P(q) < R and there is an a € A with aq € A},
we have
1
(7.20) Z = > exp(c(loglog R)'/?log log log R)
q€Q’(R)
where ¢ = ¢/2 with the constant ¢ = c¢(v) > 0 defined in Lemma 3.

Proof. Write

acA
where f(A, R, a) is defined by (7.2). Assume that contrary to (7.20) we have

1
Z ~ < exp(c(loglog R)*?logloglog R).

9€Q’(R)
Then
f(A R, a)
(7.21) S = Z Z Y- Z Z
a€A acA “ a’€A, d' qg=a aea? a'geA
P(@)<R P(q)<R
1 1
<y Ly !
a’€A” qeQ'(R)
1
< exp(c’(loglog R) 1/2 log loglog R) XE: —

On the other hand, by Lemma 3 we have
o Z f(A R, a) - Z exp(c(loglog R)

a

1/2]ogloglog R)

acA a€A*(R,c)

1
:exp(c(loglogR)l/2logloglogR) Z o
acA*(R,c)

1 1
> — exp(c(loglog R)1/2 logloglog R) Z —.
2 a
acA
If ¢ = ¢/2 and R is large enough then this lower bound contradicts the
upper bound in (7.21), which completes the proof of Lemma 4.

LEMMA 5. For all v > 0 there are constants Ng, Uy such that if N > Ny,
AcA{l,...,N},

1
(7.22) Z Pl vlog N
acA
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and Uy < U < exp((log N)?), then, writing
Q*(U) ={q:q <U and there is an a € A with aq € A},
we have
(7.23) Z E > exp(c” (loglog U)Y/? loglog log U)
qeQ*(U)
where " = ¢’ /2 with the constant ¢ = /() defined in Lemma 4.

Proof. Define R by
U = exp((log R)?)
so that % loglogU = loglog R. If U is large enough then, by Lemma 4, (7.22)
implies that

1
(7.24) E = > exp(c(loglog R)*/? logloglog R)
; q
q€Q’(R)

= exp ((1 +0(1))

Moreover, we clearly have

Q(R)\Q"(U) c{q:U <q, Plg) < R},

c
—(loglog U)'/?1ogloglog U ).
,\/7

so that
1 1 1 1 1
(7.25) Z; 25—25225—25'
€Q*(U) 9€Q’(R) q€Q’'(R) q€Q’(R) U<q
qgQ* (U) P(q)<R
It remains to estimate the last sum.
Write o = 1/log R so that U = R. Then, since
1
Z — =loglogz + O(1),
p<z
we have
1 1/q\° - 1
) Y Lo ¥ () < Y g
U<q q U<q q\U P(¢)<R
P(q)<R P(q)<R
L H p 1) 7exp{ Z log(1 —1+a)}
p<R p<R
1 —1+0 1 o -1
= gee{o( L)} < pen{o(r X v}
p<R p<R
(log R)©M)

= %exp{O(log logR)} = =o(l) (as R— o0).

R
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For large U, (7.23) follows from (7.24), (7.25) and (7.26), and this completes
the proof of Lemma 5.

8. Completion of the proof of Theorem 4(i). By (2.8), there is an
infinite set N3 < Ny < ... of positive integers such that N1 > NZ for
k=1,2,..., and, writing

AN (Ng—1, Ni| = Ag for k=2,3,...,
we have

1
E - > QlogNk.
a 4
a€Ay

Then for large k, by using Lemma 5 with n/4, N, Ax and z in place of
v, N, A and U, respectively, we find that, writing

Qi (z) = {q: ¢ <z and there is an a € Ay, with aq € Ay},

for x > zy and large enough k we have

1

(8.1) Z = > exp{c¢’(loglog z)*/? log log log x’}.

34

q€Q; (z)

Since for every large k there is such a set Qj(z) and we have Qj(x) C
{1,...,[z]}, by the pigeon hole principle there is a set
(82) QO(:U) - {1,,[:1?}}
which can be represented in the form
(8.3) Qo(z) = Qi(x)

for an infinite set K of positive integers k. If ¢ € Qo(x) and k € K, then
g can be represented in the form ¢ = a’/a, a € Ay, ’ = aq € Ay. Since
A C A, the sets Ay are disjoint, and K is infinite, (8.2) implies

(8.4 Qolr) C QF 1 [1,4]

(2.9) follows from (8.1), (8.3) and (8.4), and this completes the proof of
Theorem 4(i).

9. Proof of Theorem 4(ii). Let K be a large but fixed number, and
let A denote the set of integers a such that
1£2,(a) — loglogb| < (loglogb)*/*+9/2

for all K < b < a. We will show that if K is large enough then A satisfies
(2.10) and (2.11).

Indeed, it follows from Erdés’s result [6, p. 4] that if K is large enough
in terms of 6 and ¢ then (2.10) holds.
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Moreover, if ¢ € Q% and ¢ > K, then ¢ can be represented infinitely
often as ¢ = a’/a with a,a’ € A, a|d’, ¢ < a < a’. Then by the construction
of A,

) = () = 2,(% ) = ) - 240

< (loglog g + (loglog ¢)'/?*%/2) — (loglog ¢ — (loglog q)*/**%/2)

= 2(log log q)1/2+%/2,

Thus by a theorem of Sathe [14] and Selberg [15] we have
Qi) <K+ H{g:K<q<y, g€ QL}

<K+ > {g:a <y, 2(q) =1}
i<2(loglog y)1/2+58/2
1 1 1—1
o1+ > y_ (loglogy)
, logy  (i—1)!
i<2(log log y)1/2+6/2
logy

—o( L exp((logtogn) /).

which proves (2.11).
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