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The determinant of the Laplacian on the n-sphere

by

H. Kumagai (Fukuoka)

1. Introduction and statement of results. Let ∆ be the Laplacian
on the compact Riemann manifold M . Then ∆ has a discrete spectrum

0 = λ0 < λ1 ≤ λ2 ≤ . . . ,

for which we introduce the zeta-function

Z(s) =
∞∑

n=1

1
λs

n

, Re s = σ > α

(0-energy level excluded), absolutely convergent in a half-plane in view of
the Weyl law. It is shown that Z(s) can be continued to the region including
0, and we can interpret the (otherwise) divergent “determinant”

det ′∆ =
∞∏

n=1

λn

as the zeta-regularized product (or the functional determinant)

det∆ = e−Z′(0)

which is the determinant of the Laplacian in the title, where we note that
since

Z ′(s) = −
∞∑

n=1

log λn

λs
n

, σ > α,

e−Z′(0) is formally equal to the product det′∆ of positive eigenvalues.
For compact Riemann surfaces with constant curvature the determinants

of the Laplacian have recently been studied extensively by D’Hoker–Phong
[5], [6], Sarnak [12], Voros [16] (for non-compact case, see e.g. Efrat [7]),
in view of their relevance to superstring theory. The main feature is the
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of the Laplacian.
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computation of determinants in terms of values of the Selberg zeta-function,
where multiple gamma functions play important roles.

For compact Riemann manifolds of higher dimensions, such as the unit
n-sphere

Sn−1 = {(x1, . . . , xn) ∈ Rn | x2
1 + . . .+ x2

n = 1},
the regularized determinants have also been studied, notably by Weisberger
[17], [18], Vardi [14] and Choi [1], [2].

They computed the determinant of the Laplacian of the unit n-sphere
Sn−1 with standard metric in terms of the values of the derivative of the
Hurwitz (Riemann) zeta-function at 0. The unit 2-sphere case which was
computed in all the above papers is of interest again due to its relation-
ship to superstring theory (see Vardi [14], Osgood, Phillips, Sarnak [10],
Weisberger [17], [18]).

Our purpose is to give a closed form evaluation of det∆n for any n,
and give a corrected version of Vardi’s Theorems 1.1 and 1.2 of [14], thus
compiling all existing special cases in higher dimensions.

We note that our elementary method applies to any dimension, while
Weisberger’s method seems to be restricted to the 2-dimensional case, and
Choi’s method seems too complicated to modify it to higher dimensions
(even 3).

We now set out to state our theorems. We recall from [13], [15] that the
eigenvalues of the standard Laplacian on the n-sphere are k(k+n− 1) with
multiplicity (

k + n

n

)
−

(
k + n− 2

n

)
(k = 0, 1, 2, . . .).

We form the zeta-function

Z(s) = Zn(s) =
∞∑

k=1

(
k+n

n

)
−

(
k+n−2

n

)
(k(k + n− 1))s

(zero mode excluded), which is absolutely convergent for Re s =: σ > n/2;
we shall prove in Lemma 3 that it can be continued to a half-plane including
the origin. Thus we can define the (regularized) determinant det∆n of the
Laplacian on the n-sphere by

det∆n = e−Z′(0).

We shall prove the following closed form of det∆n.

Theorem 1. For arbitrary dimension n,

det∆n = exp
(n−1∑

d=0

Tn,dH
′
n−1,d(0)

)
,

where H ′n−1,d(0) and Tn,d are as given in Lemmas 3 and 2, respectively :
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H ′n−1,d(0) = 2ζ ′(−d) +
d−1∑
l=0

(
d

l

)
(1− n)d−lζ ′(−l)

+ (−1)d
n−1∑
l=2

(n− l − 1)dlog l

− 2
d+ 1

(
−n− 1

2

)d+1 d∑
l=1
2 - l

(
d+ 1
l + 1

) l∑
j=1

2 - j

1
j
,

Tn,d =
1
n!

n∑
r=d+1

s(n, r)
(
r

d

)
(nr−d − (n− 2)r−d),

with s(n, r) denoting the Stirling numbers of the first kind defined by the
Newton expansion [4]

(x)n =
n∑

r=0

s(n, r)xr.

Corollary. We have

(i) det∆1 = 4π2,
(ii) det∆2 = A4e1/6,
(iii) det∆3 = π exp(ζ(3)/π2),
(iv) det∆4 = 1

3e
−(2/3)ζ′(−3)A13/3e83/144,

and similarly for higher dimensions, where A denotes the Glaisher–Kinkelin
constant defined by

logA = lim
n→∞

(
log(1122 . . . nn)−

(
n2

2
+
n

2
+

1
12

)
log n+

n2

4

)
= −ζ ′(−1)+

1
12
.

From Theorem 1 we immediately deduce

Theorem 2. For arbitrary dimension n,

(i) there are computable rational numbers αn, βn, γn, τn,1, . . . , τn,n−1 with
τn,n−1 = −4/(n− 1)!, αn 6= 0, such that

det∆n = αβn
n eγn

n−1∏
m=0

eτn,mζ′(−m);

(ii) there are computable rational numbers An, Bn, Cn, Qn,1, . . . , Qn,n

with Qn,n = 2n+1/(2n − 1), An 6= 0, such that

det∆n = ABn
n eCn

n∏
m=1

Γm(1/2)Qn,m ,

where Γn(x) denotes the multiple gamma function (cf. Choi [1], Vardi [14]).
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We intentionally use the same notation as in Vardi [14], but they may
have slightly different meanings.

2. Proofs

Lemma 1. For λ = 0, 1, 2, . . . , α > 0 and |z| < α we have
∞∑

m=2

zm

m+ λ
ζ(m,α) =

λ∑
k=0

(
λ

k

)
ζ ′(−k, α− z)z−k − ζ ′(−λ, α)z−λ

−
λ−1∑
m=0

z−m

λ−m
ζ(−m,α)

− z

λ+ 1
(ψ(λ+ 1)− ψ(α) + γ),

where ψ = Γ ′/Γ denotes the Euler digamma function.

Lemma 2. We have the decomposition

Z(s) = Zn(s) =
∞∑

k=1

(
k+n

n

)
−

(
k+n−2

n

)
(k(k + n− 1))s

=
n−1∑
d=0

Tn,dHn−1,d(s),

where

(1) Tn,d =
1
n!

n∑
r=d+1

s(n, r)
(
r

d

)
(nr−d − (n− 2)r−d),

s(n, r) denoting the Stirling numbers of the first kind and

(2) Hd(s) = Hn,d(s) =
∞∑

k=1

kd

(k(k + n))s
.

Lemma 3 (cf. Proposition 3.1 of Vardi [14]).

H ′d(0) = H ′n,d(0) =
n∑

k=1

(k − n)d log k − 1
2d

· (−n)d+1

d+ 1

d∑
l=1
2 - l

(
d+ 1
l + 1

) l∑
j=1

2 - j

1
j

+ ζ ′(−d) + (−n)d
d∑

r=0

(
d

r

)
ζ ′(−r)
(−n)r

.

We split the proof of Lemma 3 into a few sublemmas. Lemma 4 gives
a detailed decomposition of Hd(s), which gives an analytic continuation for
σ > −1 of Hd(s) as well as a handy formula for H ′d(s). Then in Lemma 5
we obtain by a limit process a closed form evaluation of H ′d(0), and in
Lemma 6 we collect auxiliary formulas that enable us to simplify the formula
in Lemma 5.



Determinant of the Laplacian 203

Lemma 4. For σ > −1, we have

Hd(s) =
d∑

l=0

(
d

l

)(
−n

2

)d−l(
ζ(2s− l, 1 + n/2)(i)

+
∞∑

r=1

(n/2)r

r!
· Γ (s+ r)

Γ (s)
ζ(2s− l + r, 1 + n/2)

)

+
d∑

l=0

(
d

l

) ∞∑
m=1

(
−n

2

)d−l+m
Γ (s+m)
m!Γ (s)

ζ(2s− l +m, 1 + n/2)

+
d∑

l=0

(
d

l

) ∞∑
m=1

(
−n

2

)d−l+m
Γ (s+m)
m!Γ (s)

×
∞∑

r=1

(n/2)r

r!
· Γ (s+ r)

Γ (s)
ζ(2s− l + r +m, 1 + n/2),

H ′d(s) =
d∑

l=0

(
d

l

)(
−n

2

)d−l(
2ζ ′(2s− l, 1 + n/2)(ii)

+
∞∑

r=1

(−n/2)r

r!
· Γ (s+ r)

Γ (s)
(ψ(s+ r)− ψ(s))

× ζ(2s− l + r, 1 + n/2) + 2ζ ′(2s− l + r, 1 + n/2)
)

+
d∑

l=0

(
d

l

)(
−n

2

)d−l

×
∞∑

r=1

(−n/2)r

r!
· Γ (s+ r)

Γ (s)
((ψ(s+ r)− ψ(s))

× ζ(2s− l + r, 1 + n/2) + 2ζ ′(2s− l + r, 1 + n/2))

+
d∑

l=0

(
d

l

)(
−n

2

)d−l ∞∑
m=1

(−n/2)m

m!
· Γ (s+m)

Γ (s)
(ψ(s+m)− ψ(s))

×
∞∑

r=1

(n/2)r

r!
· Γ (s+ r)

Γ (s)
ζ(2s− l + r +m, 1 + n/2)

+
d∑

l=0

(
d

l

)(
−n

2

)d−l ∞∑
m=1

(−n/2)m

m!
· Γ (s+m)

Γ (s)

×
∞∑

r=1

(n/2)r

r!
· Γ (s+ r)

Γ (s)
((ψ(s+ r)− ψ(s))

× ζ(2s− l + r +m, 1 + n/2) + 2ζ ′(2s− l + r +m, 1 + n/2)).
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P r o o f. To prove (i), applying the binomial theorem, we obtain

(3) Hd(s) =
d∑

l=0

(
d

l

)(
−n

2

)d−l

Gl(s),

where

(4) Gl(s)

=
∞∑

r=0

Γ (s+ r)
r!Γ (s)

(
n

2

)r 1
(k + n/2)r

∞∑
m=0

Γ (s+m)
m!Γ (s)

(
−n

2

)m 1
(k + n/2)m

.

Substituting this in (3) and changing the order of summation, we deduce
that

Hd(s) =
d∑

l=0

(
d

l

) ∞∑
m=0

(
−n

2

)d−l+m
Γ (s+m)
m!Γ (s)

(5)

×
∞∑

r=0

(n/2)r

r!
· Γ (s+ r)

Γ (s)
ζ(2s− l + r +m, 1 + n/2),

the process being legitimate by absolute convergence.
For σ > −1, we use the estimate

ζ(2s− l + r +m, 1 + n/2) � (1 + n/2)−2σ+l−r−m

for 2σ − l + r +m > 1 to conclude that the sums over m and r in (5) are
absolutely convergent for σ > −1, thus giving an analytic continuation of
Hd(s).

The formula (i) follows by dividing the sums suitably.
The formula (ii) follows directly from (i) by applying Leibniz’s rule,

thereby completing the proof.

Lemma 5. We have

H ′d(0) =
∑+

+
∑−

+
d∑

l=0

(
d

l

)(
−n

2

)d−l 1
2

(
n

2

)l+1 l∑
m=1

(−1)m

m(l + 1−m)
,

where ∑+
=

d∑
l=0

(
d

l

)(
−n

2

)d−l(
2ζ ′(−l, 1 + n/2)

+
∞∑

r=1
r 6=l+1

(n/2)r

r
ζ(r − l, 1 + n/2) +

(n/2)l+1

l + 1
· 1
2

l∑
j=1

1
j

)

and
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∑−
=

d∑
l=0

(
d

l

)(
−n

2

)d−l( ∞∑
m=1

m6=l+1

(−n/2)m

m
ζ(m− l, 1 + n/2)

+
(−n/2)l+1

l + 1
· 1
2

l∑
j=1

1
j

)
.

Lemma 6. We have the evaluations

(i)
d∑

l=0

(
d

l

)(
−n

2

)d−l l∑
m=0

(
l

m

)
ζ ′(−m)

(
n

2

)l−m

= ζ ′(−d),

(ii)
d∑

l=0

(
d

l

)(
−n

2

)d−l l∑
m=0

(
l

m

)
ζ ′(−m, 1 + n)

(
−n

2

)l−m

=
d∑

m=0

(
d

m

)
(−n)d−mζ ′(−m, 1 + n).

Proof of Lemma 3 . Substituting from Lemma 1, we see that∑+
+

∑−
=

d∑
l=0

(
d

l

)(
−n

2

)d−l(
−1

2
· (n/2)l+1 + (−n/2)l+1

l + 1

l∑
j=1

1
j

)

+
d∑

l=0

(
d

l

)(
−n

2

)d−l l∑
m=0

(
l

m

)
ζ ′(−m)

(
n

2

)l−m

+
d∑

l=0

(
d

l

)(
−n

2

)d−l l∑
m=0

(
l

m

)
ζ ′(−m, 1 + n)

(
n

2

)l−m

and

H ′d(0) = ζ ′(−d) +
d∑

m=0

(
d

m

)
(−n)d−mζ ′(−m, 1 + n)

− 2
d+ 1

(
−n

2

)d+1 d∑
l=1
2 - l

(
d+ 1
l + 1

) l∑
j=1

2 - j

1
j
.

Using Lemma 6, and expressing

ζ ′(−m, 1 + n) = ζ ′(−m) +
n∑

r=2

rm log r

completes the proof.
Proof of Theorem 2. (i) is a restatement of Theorem 1 and is a corrected

form of Theorem 1.4 of Vardi [14], while (ii) follows from (i) and Theorem
1.1 of Vardi [14], and is a corrected form of Theorem 1.3 of Vardi [14].
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3. Remarks

Remark 1 (The unit circle S0). The determinant det∆1 of S0 with
standard Laplacian ∆1 = d2/dx2 is

det∆1 = (2π)2.

Remark 2 (The unit disc S1). Vardi’s formula for F ′2(0) in Proposition
4.4 of [14] is correct. As a matter of fact, the proof of Theorem 1.4 (p. 505)
gives the incorrect value of F ′2(0):

F ′2(0) = 4ζ ′(−1) + ζ ′(0)− 1/2,

but in the statement of Proposition 4.4, the author omitted ζ ′(0) by mistake
to give a correct value. Accordingly, the formulas containing F ′2(0) would
have been as follows. The second formula in Proposition 4.5 would read

(6) eζ′(−1) = (det∆2)−1/4e1/8,

the formula for Γ2(1/2) in Theorem 1.1 would read

(7) Γ2(1/2) = (det∆2)3/8(det∆1)1/82−11/16e−1/16π−3/16

and that in Theorem 1.2 would read

det∆2 = Γ2(1/2)8/321/2(e/π)1/16.

The formulas for det∆2 as given in Vardi (except for the one in Theorem
1.2 in which the factor π−2/3 is missing) are in conformity with the formulas
of Weisberger [17], [18] and of Choi [1], [2] and Quine and Choi [11]. The
error comes from the incorrect argument in Proposition 3.1 which lacks the
evaluation of the infinite series B(0), which looks rather difficult. In the
statement of Proposition 3.1 this term B(0) is missing, but the value given
there is very close to the correct one.

Choi’s argument in the case n = 2 (see [1]) follows exactly Voros’ and
gives the correct value of det∆2. His statement on p. 166 of [1] is rather
misleading because he says there that his value coincides with that of Vardi.
However, Choi’s correct value does not coincide with (6), but rather with
the value given in Theorem 1 (Corollary (ii)).

For general metrics, see e.g. [9].

Remark 3 (The unit sphere). The only correct existing formula is Choi’s
main theorem [1], [2] and Quine and Choi [11]. Choi’s method uses the
shifted generating Dirichlet series process of Voros’, which requires a con-
siderable amount of calculation with sophisticated multiple gamma function,
and it looks rather hopeless to go on further to higher dimensions with Voros’
method. Actually, the proof occupies the main body of Choi’s thesis.

Vardi’s general closed formulas in his Theorems 1.1 and 1.2 are wrong.
Choi’s remark in [1] was again rather misleading in that he calculates the
same value (unknown in the literature) in two ways using both his results
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and Vardi’s results, and concludes that they give different values. This leaves
a possibility that both might be wrong, but this defect was rescued in [8],
and Choi’s result for det∆3 is correct and coincides with ours.

Since our closed formula (Corollary) gives correct values for both det∆2

and det∆3, it is of considerable trust.

Remark 4 (Higher dimensions). After presenting our results at the
Japan-Korea Number Theory Conference, Dec. 24–27, 1997 held at Saga
University, we learned about the paper of Quine and Choi [11], which gives a
closed formula for det∆n for any n. Their method avoids the computation of
the infinite series involving the Hurwitz zeta-function by an ingenious trick
of introducing a regularization lemma (Lemma 1), in which cancellation of
terms in our Lemma 5 is effected by showing G′(0) = 0, and the proof is
subtler than ours. We believe, however, that our method has its own right,
clarifying how those cancel one another.
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