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I. Introduction. In 1946, P. Erdős [2] proved that if a real-valued ad-
ditive arithmetical function f satisfies the condition: f(n + 1) − f(n) → 0,
n → ∞, then there exists a constant C such that f(n) = C log n for all
n in N∗. Later, I. Kátai [3, 4] was led to conjecture that it was possible
to determine additive arithmetical functions f and g satisfying the condi-
tion: there exist a real number l, a, c in N∗, and integers b, d such that
f(an + b) − g(cn + d) → l, n → ∞. This problem has been treated es-
sentially by analytic methods ([1], [7]). In this article, we shall provide, in
an elementary way, a characterization of real-valued additive arithmetical
functions f and g satisfying the condition:

(H) there exist a and b in N∗ with (a, b) = 1 and a finite set Ω such that

(1) lim
n→∞

min
ω∈Ω
|f(an+ b)− g(n)− ω| = 0.

II. Results. We have the following result:

Theorem. Let f and g be real-valued additive arithmetical functions
satisfying the condition (H). Then there exists a constant C such that the
set of values of the sequences g(n) − C logn, n in N∗, and f(n) − C log n,
(n, a) = 1, is finite.

Acknowledgments. The author thanks the referee who provided a real
simplification of the proof given in the first version of this article, and some
nice cosmetical modifications to the original text.

III. Proof of the Theorem. We shall always assume that f(pk) = 0
for all primes p dividing a and all k, since a change of these values does not
affect the assumption of the Theorem.
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The proof relies essentially on the following result which can be obtained
elementarily:

Theorem A. Let f and g be real-valued additive arithmetical functions
satisfying the condition: there exist a and b in N∗ with (a, b) = 1 such
that f(an + b) − g(n) = O(1). Then there exists a constant C such that
g(n)− C logn and f(n)− C log n remain bounded.

P r o o f. For an announcement of this result, see [6], and for a proof, [5].

Assertion 1. Let f and g satisfy the hypothesis (H). Then there exist a
constant C and bounded additive arithmetical functions g′ and f ′ such that
f(n) = C Log n+ f ′(n), g(n) = C Log n+ g′(n).

P r o o f. By our hypothesis, there exists a finite set Ω such that

lim
n→∞

min
ω∈Ω
|f(an+ b)− g(n)− ω| = 0.

This gives us that f(an+ b)− g(n) is bounded, and Assertion 1 is an imme-
diate consequence of Theorem A.

We only have to prove

Proposition. Let f and g be bounded real-valued additive arithmetical
functions satisfying the condition (H). Then the set of values of f(n) and
g(n) is finite.

To prove this, we introduce the functions fp(n) = f(pk) if pk ‖n for each
prime p, and similarly gp. Let Vp denote the set of values of the function
fp(an+ b)− gp(n). The next assertion is trivial:

Assertion 2. An additive function h(n) is bounded if and only if

(2)
∑
p

max
k
|h(pk)| <∞.

Main Lemma. Let q ≥ 2 and v be any element of the set
∑
p≤q Vp. Then

v is a limit point of f(an+ b)− g(n).

P r o o f. We have v =
∑
p≤q vp with vp = fp(anp + b)− gp(np). For every

n we have
f(an+ b)− g(n) =

∑
p

(fp(an+ b)− gp(n)).

We want to find infinitely many values of n for which this is in (v−ε, v+ε).
To achieve this, it is sufficient that

(3) fp(an+ b)− gp(n) = fp(anp + b)− gp(np)
for all p ≤ q, and

(4)
∑
p>q

|fp(an+ b)− gp(n)| < ε.



Additive arithmetical functions 231

For (3), it is sufficient that n contains p with the same exponent as np, and
an+ b with the same exponent as anp + b. Both are satisfied if

(5) n ≡ np (mod pkp+1),

where kp is the exponent of p in np(anp + b).
To treat (4), we first select a Q so that

∑

p>Q

max
k
|f(pk)|+ max

k
|g(pk)| < ε

(Assertion 2). Then the contribution of primes p > Q in (4) is < ε. Thus
(4) will hold if we achieve that

(6) fp(an+ b)− gp(n) = 0

for all q < p < Q. To do this, it is sufficient that p -n(an + b). Since this
excludes two residue classes for p - a and one for p | a, we can find bp such
that the assumption

(7) n ≡ bp (mod p)

guarantees (6).
Hence every n that satisfies the congruence (5) for all p ≤ q and (7) for

all q < p ≤ Q also satisfies |f(an + b) − g(n) − v| < ε. There are infinitely
many such numbers, and consequently v is a limit point.

End of proof of the Proposition. We know that the sumset
∑
p≤q Vp is

contained in Ω for all q; so the cardinalities of these sets are bounded. This
means that each Vp is finite, and with a finite number of exceptions |Vp| = 1.

Write

Fp = {0, f(p), f(p2), . . .}, Gp = {0, g(p), g(p2), . . .}.
The property that f and g have only a finite number of values is equivalent
to saying that Fp and Gp are always finite and are equal to {0} except for
finitely many primes. For most primes this will follow from the lemma below.

Lemma. For p - 2ab we have Vp = Fp ∪ (−Gp).

P r o o f. If p - b, then we cannot have both p |n and p | an+ b, thus Vp ⊂
Fp ∪ (−Gp) follows. To show the other inclusion, for a given k ≥ 1 take an
n such that pk ‖n; then p - an+ b and so

fp(an+ b)− gp(n) = −gp(n) = −g(pk).

Similarly, as p - a we can find an n with pk ‖ an+ b and we infer f(pk) ∈ Vp.
Finally, since p > 2 we can find an n with p -n(an+ b) to show 0 ∈ Vp.

For p | 2ab a complete description of Vp would split into several subcases,
but for our aims the following weaker assumption suffices.

Lemma. If Vp is finite, so are Fp and Gp.
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P r o o f. Write pr ‖ b. By considering n = pk we see that f(pr)−g(pk) ∈ Vp
for k > r, thus g(pk) ∈ −Vp + f(pr) and Gp is finite.

If p | a, then Fp = {0} by assumption. If p - a, then we can find n such
that pk ‖ an+ b and we obtain f(pk)− g(pr) ∈ Vp, f(pk) ∈ Vp + g(pr).

These lemmas show that Fp, Gp are always finite, and they are {0} when-
ever p - 2ab and |Vp| = 1, hence for all but finitely many p. This concludes
the proof of the Theorem.
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