On sums and differences of two coprime k th powers

by
Wenguang Zhai (Jinan)

1. Introduction. For a fixed integer $k \geq 3$, we consider the arithmetic functions

$$
\varrho_{k}^{ \pm}(n)=\sum_{n=|m|^{k} \pm|l|^{k},(m, l)=1} 1
$$

It is easy to show that

$$
\begin{equation*}
\sum_{n \leq x} \varrho_{k}^{ \pm}(n)=c_{k}^{ \pm} x^{2 / k}+b_{k}^{ \pm} x^{1 /(k-1)}+O\left(x^{1 / k}\right) \tag{1.1}
\end{equation*}
$$

for some constants $c_{k}^{ \pm}$and $b_{k}^{ \pm}$. This estimate can be slightly improved, but the problem of reducing the exponent $1 / k$ is unsolved. It is therefore natural to look for sharper estimates assuming the truth of the Riemann Hypothesis (RH).

Let $E_{k}^{ \pm}(x)$ denote the error term in (1.1) and $\theta_{k}^{ \pm}$denote the smallest $\alpha_{k}^{ \pm}$ such that

$$
\begin{equation*}
E_{k}^{ \pm}(x)=O\left(x^{\alpha_{k}^{ \pm}+\varepsilon}\right) \tag{1.2}
\end{equation*}
$$

It was noticed by E. Krätzel [6] that (under RH)

$$
\theta_{k}^{ \pm} \leq \frac{1}{k}-\frac{1}{k(3 k+2)}
$$

as a special case of a theorem due to Moroz [8].
W. G. Nowak [11] proved that if RH is true then

$$
\theta_{k}^{ \pm} \leq 127 /(140 k)
$$

for $3 \leq k \leq 7$ and

$$
\theta_{k}^{ \pm} \leq \frac{1}{k}-\frac{9 q+28}{(9 q+46) k^{2}}
$$

[^0]for $k \geq 8$, where q is a non-negative integer such that
$$
t_{q}<k \leq t_{q+1}, \quad t_{q}=\frac{2^{q+1} 74-36}{9 q+46} .
$$
W. Müller and W. G. Nowak [9] proved (under RH) that
$$
\theta_{k}^{ \pm} \leq 37 /(41 k)
$$
for $3 \leq k \leq 6$. W. G. Nowak [12] proved (under RH) that $\theta_{3}^{+} \leq 76 / 255$.
Recently, W. G. Nowak [13] proved (under RH) that
$$
\theta_{k}^{ \pm} \leq \frac{7 k+1}{k(7 k+4)}
$$
for $k \geq 3$. For $k=3$, he proved in [15] that $\theta_{3}^{+} \leq 5 / 18$. The bound $\theta_{3}^{-} \leq 5 / 18$ is also contained in the existing literature. See Nowak [16], for example.

The aim of this paper is to study this problem for $k \geq 4$. We have
Theorem 1. If RH is true, then for any exponent pair (κ, λ) such that $(3+\lambda) /(4+4 \kappa)<1-1 / k$ we have

$$
\begin{equation*}
\theta_{k}^{ \pm} \leq \max \left(\frac{1}{k}-\frac{1+2 \kappa-\lambda}{1+4 \kappa-\lambda} \cdot \frac{1}{k^{2}}, \frac{173}{200 k}\right) . \tag{1.3}
\end{equation*}
$$

From Theorem 1 we can get the following
Corollary. We have

$$
\begin{gathered}
\theta_{4}^{ \pm} \leq 173 / 800, \quad \theta_{5}^{ \pm} \leq 251 / 1450, \quad \theta_{6}^{ \pm} \leq 77 / 522, \\
\theta_{k}^{ \pm} \leq \frac{1}{k}-\frac{9}{13} \cdot \frac{1}{k^{2}} \quad(k \geq 7) .
\end{gathered}
$$

For θ_{4}^{+}, we can get a slightly better estimate. We have
Theorem 2. If $R H$ is true, then

$$
\begin{equation*}
\theta_{4}^{+} \leq 107 / 512 \tag{1.4}
\end{equation*}
$$

The structure of the paper is as follows. In Section 2, some preliminary lemmas are quoted. In Section 3, we study the properties of the function $Z_{k}^{ \pm}(s)$. We estimate an exponential sum involving the Möbius function in Section 4. The proofs of Theorem 1 and the Corollary are given in Section 5. We prove Theorem 2 in Section 6.

Notations. $\psi(t)=\{t\}-1 / 2,\{t\}$ is the fractional part of $t . e(t)=e^{2 \pi i t}$. $\mu(n)$ denotes the Möbius function. ε denotes a small positive constant which may be different at each occurrence. We use $\mathrm{SC}\left(\sum\right)$ to denote the summation conditions of the sum \sum if these conditions are complicated. For example, instead of

$$
F(x)=\sum_{a \leq n \leq x} f(n)
$$

we can write

$$
F(x)=\sum f(n), \quad \mathrm{SC}\left(\sum\right): a \leq n \leq x .
$$

The author wants to thank Professor W. G. Nowak for kindly sending reprints of some of his papers.

2. Some preliminary lemmas

Lemma 1. Let $F(x)$ be a real differentiable function such that $F^{\prime}(x)$ is monotonic and $\left|F^{\prime}(x)\right| \geq m>0, G(x)$ is a positive monotonic function satisfying $|G(x)| \leq G$ for $a \leq x \leq b$. Then

$$
\left|\int_{a}^{b} G(x) e^{i F(x)} d x\right| \leq 4 G m^{-1} .
$$

Lemma 2. Let \mathcal{X} and \mathcal{Y} be two finite sets of real numbers, $\mathcal{X} \subset[-X, X]$, $\mathcal{Y} \subset[-Y, Y]$. Then for any complex functions $u(x)$ and $v(y)$ we have

$$
\begin{aligned}
&\left|\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} u(x) v(y) e(x y)\right|^{2} \\
& \leq 20(1+X Y) \sum_{\substack{x, x^{\prime} \in \mathcal{X} \\
\mid x-x^{\prime} \leq Y^{-1}}}\left|u(x) u\left(x^{\prime}\right)\right| \sum_{\substack{y, y^{\prime} \in \mathcal{Y} \\
\mid y-y^{\prime} \leq X^{-1}}}\left|v(y) v\left(y^{\prime}\right)\right| .
\end{aligned}
$$

Lemma 3. Let $\alpha, \alpha_{1}, \alpha_{2}, z$ be real numbers such that $z \alpha \alpha_{1} \alpha_{2} \neq 0, \alpha \notin \mathbb{N}$. Let $M \geq 1, M_{1} \geq 1, M_{2} \geq 1$ and let a_{m} and $b_{m_{1} m_{2}}$ be complex numbers with $\left|a_{m}\right| \leq 1$ and $\left|b_{m_{1} m_{2}}\right| \leq 1$. Let $F=|z| M^{\alpha} M_{1}^{\alpha_{1}} M_{2}^{\alpha_{2}}$. If $F \geq M_{1} M_{2}$, then

$$
\begin{aligned}
\sum_{m \sim M} \sum_{m_{1} \sim M_{1}} \sum_{m_{2} \sim M_{2}} & a_{m} b_{m_{1} m_{2}} e\left(z m^{\alpha} m_{1}^{\alpha_{1}} m_{2}^{\alpha_{2}}\right) \\
\ll & M M_{1} M_{2} \log \left(2 M_{1} M_{2}\right)\left\{\left(M_{1} M_{2}\right)^{-1 / 2}\right. \\
& \left.+\left(F /\left(M_{1} M_{2}\right)\right)^{\kappa /(2(1+\kappa))} M^{-(1+\kappa-\lambda) /(2(1+\kappa))}\right\}
\end{aligned}
$$

Lemma 4. For any $J \geq 2$, we have

$$
\psi(t)=\sum_{1 \leq|h| \leq J} a(h) e(h t)+O\left(\sum_{|h| \leq J} b(h) e(h t)\right)
$$

with

$$
a(h) \ll|h|^{-1}, \quad b(h) \ll J^{-1} .
$$

Lemma 5. For fixed $k \geq 3$, let

$$
r_{k}^{+}(n)=\sum_{n=|m|^{k}+|l|^{k}} 1, \quad R_{k}^{+}(x)=\sum_{n \leq x} r_{k}(n) .
$$

Then $R_{k}^{+}(x)=H_{k}(x)+\Delta_{k 1}^{+}(x)+\Delta_{k 2}^{+}(x)$, where

$$
\begin{aligned}
H_{k}(x)= & c_{k}^{\prime} x^{2 / k}, \quad c_{k}^{\prime}=\frac{2 \Gamma^{2}(1 / k)}{k \Gamma(2 / k)} \\
\Delta_{k 1}^{+}(x)= & \frac{8 \Gamma(1 / k)}{k \pi} x^{1 / k-1 / k^{2}} \sum_{l=1}^{\infty} \frac{1}{k}\left(\frac{k}{2 \pi l}\right)^{1 / k} \cos 2 \pi\left(l x^{1 / k}-\frac{1}{4}\left(1+\frac{1}{k}\right)\right) \\
& +O(1)
\end{aligned}
$$

$$
\Delta_{k 2}^{+}(x)=-8 \sum_{x / 2 \leq n^{k} \leq x} \psi\left(\left(x-n^{k}\right)^{1 / k}\right)+O(1),
$$

$$
\Delta_{k 1}^{+}(x)+\Delta_{k 2}^{+}(x) \ll x^{1 / k-1 / k^{2}}
$$

Lemma 5a. Let

$$
r_{k}^{-}(n)=\sum_{n=|m|^{k}-|l|^{k}} 1, \quad R_{k}^{-}(x)=\sum_{n \leq x} r_{k}^{-}(n) .
$$

Then $R_{k}^{-}(x)=a_{k}^{-} x^{2 / k}+b_{k}^{-} x^{1 /(k-1)}+\Delta_{k 1}^{-}(x)+\Delta_{k 2}^{-}(x)$, with

$$
\begin{aligned}
\Delta_{k 1}^{-}(x) & =c_{k}^{-} \sum_{l=1}^{\infty} l^{-1-1 / k} \sin \left(2 \pi l x^{1 / k}+\frac{\pi}{2 k}\right) \\
\Delta_{k 2}^{-}(x) & =4 \Sigma_{k 1}(x)-4 \Sigma_{k 2}(x)+O(1) \\
\Sigma_{k 1}(x) & =\sum_{x^{1 / k}<m \leq \lambda x^{1 / k}} \psi_{1}\left(\left(m^{k}-x\right)^{1 / k}\right) \\
\Sigma_{k 2}(x) & =\sum_{1<m \leq \delta x^{1 / k}} \psi_{0}\left(N_{k}(m, x)\right)
\end{aligned}
$$

Here δ is an arbitrarily small positive constant, $\lambda=\lambda(\delta) \rightarrow \infty$ as $\delta \rightarrow 0$, and

$$
\begin{array}{ll}
\psi_{0}(v)=\psi_{1}(v)=v-[v]-1 / 2 & \text { for } v \notin \mathbb{Z} \\
\psi_{0}(v)=\psi_{1}(v)=1 / 2 & \text { for } v \in \mathbb{Z} .
\end{array}
$$

The function $v=N_{k}(w, x)$ is defined by the equation

$$
(v+w)^{k}-v^{k}=x \quad\left(v, w, x \in \mathbb{R}^{+}, w<x^{1 / k}\right)
$$

Lemma 6. We have the following estimates:

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{r_{k}^{ \pm 2}(n)}{n^{\sigma}} \ll 1, \quad \sum_{n=1}^{\infty} \frac{r_{k}^{ \pm}(n)}{n^{\sigma}} \ll 1, \quad \sigma>2 / k ; \\
\sum_{n \leq x} \frac{r_{k}^{ \pm}(n)}{n^{2 / k}} \ll \log x ; \quad \sum_{n \leq x} \frac{r_{k}^{ \pm}(n)}{n^{\sigma}} \ll x^{2 / k-\sigma}, \quad 0<\sigma<2 / k .
\end{gathered}
$$

Lemma 1 is formula (2.3) of Ivić [4]. Lemma 2 is Proposition 1 of Fouvry and Iwaniec [2]. Lemma 3 is Theorem 2 of Baker [1]. Lemma 4 can be found
in Vaaler [17]. Lemma 5 is contained in Section 3.3 of [5]. Lemma 5a is formula (5) of Müller and Nowak [10]. Lemma 6 immediately follows from Lemmas 5 and 5a by partial summation.
3. Expression of the error term. In this section we shall give an expression of $E_{k}^{ \pm}(x)$ subject to RH. Following the work of W. G. Nowak [13], we first study the functions

$$
Z_{k}^{ \pm}(s)=\sum_{n=1}^{\infty} \frac{r_{k}^{ \pm}(n)}{n^{s}} .
$$

The following Lemma 7 and Lemma 7a play the key roles in our proofs, from which we can obtain better mean-value results on $Z_{k}^{ \pm}(s)$. Thus we improve Nowak's previous results on the two functions.

Lemma 7. Suppose $|t| \geq 2$ and $M \geq(10 k)^{10 k}|t|^{k}$. Then

$$
\int_{M}^{2 M} \Delta_{k 1}^{+}(x) x^{i t} d x \ll M, \quad \int_{M}^{2 M} \Delta_{k 2}^{+}(x) x^{i t} d x \ll M .
$$

Proof. We first prove the first assertion. Obviously

$$
\begin{align*}
& \int_{M}^{2 M} \Delta_{k 1}^{+}(x) x^{i t} d x \tag{3.1}\\
& = \\
& c_{1}(k) \sum_{l=1}^{\infty} \frac{1}{l^{1+1 / k}} \int_{M}^{2 M} x^{1 / k-1 / k^{2}} \cos 2 \pi\left(l x^{1 / k}-\frac{1}{4}\left(1+\frac{1}{k}\right)\right) x^{i t} d x \\
& \quad+O(M) \\
& \ll
\end{aligned} \begin{aligned}
& \left.M+\sum_{l=1}^{\infty} \frac{1}{l^{1+1 / k}} \int_{M}^{2 M} x^{1 / k-1 / k^{2}} e\left(l x^{1 / k}-\frac{1}{4}\left(1+\frac{1}{k}\right)+\frac{t \log x}{2 \pi}\right) d x \right\rvert\, \\
& \left.\quad+\sum_{l=1}^{\infty} \frac{1}{l^{1+1 / k}} \int_{M}^{2 M} x^{1 / k-1 / k^{2}} e\left(-l x^{1 / k}+\frac{1}{4}\left(1+\frac{1}{k}\right)+\frac{t \log x}{2 \pi}\right) d x \right\rvert\, .
\end{align*}
$$

Let
$f_{1}(x)=l x^{1 / k}-\frac{1}{4}\left(1+\frac{1}{k}\right)+\frac{t \log x}{2 \pi}, \quad f_{2}(x)=-l x^{1 / k}+\frac{1}{4}\left(1+\frac{1}{k}\right)+\frac{t \log x}{2 \pi}$.
Then

$$
\left|f_{1}^{\prime}(x)\right| \gg l M^{1 / k-1}, \quad\left|f_{2}^{\prime}(x)\right| \gg l M^{1 / k-1}
$$

Hence the first assertion of Lemma 7 follows from (3.1) by Lemma 1.
Now we consider the second assertion. We write

$$
\begin{equation*}
\Delta_{k 2}^{+}(x)=-8 \sum^{1} \sum^{2} \psi\left(\left(x-n^{k}\right)^{1 / k}\right)+O_{\varepsilon}(1), \tag{3.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{SC}\left(\sum^{1}\right): 1 \leq v \leq \frac{\log \varepsilon M^{1 / k}}{\log 2} \\
& \mathrm{SC}\left(\sum^{2}\right): x\left(1-2^{-v}\right)<n^{k} \leq x\left(1-2^{-v-1}\right)
\end{aligned}
$$

and ε is a fixed small positive constant. It suffices to estimate

$$
\int_{v}=\int_{M}^{2 M} \sum^{2} \psi\left(\left(x-n^{k}\right)^{1 / k}\right) x^{i t} d x
$$

for each fixed v.
We take $J=M^{1 / k} 2^{-v}$ in Lemma 4. Change the order of summation and integration and then use Lemma 5 to get

$$
\begin{align*}
\int_{v}= & \int_{M}^{2 M} \sum^{2} \psi\left(\left(x-n^{k}\right)^{1 / k}\right) x^{i t} d x \tag{3.3}\\
= & \sum^{3} \int_{a(n)}^{b(n)} \psi\left(\left(x-n^{k}\right)^{1 / k}\right) x^{i t} d x \\
= & \sum^{3} \sum_{1 \leq|h| \leq J} \frac{1}{2 \pi i h} \int_{a(n)}^{b(n)} e\left(h\left(x-n^{k}\right)^{1 / k}\right) x^{i t} d x \\
& +O\left(\sum^{3} \sum_{1 \leq|h| \leq J} \frac{1}{J}\left|\int_{a(n)}^{b(n)} e\left(h\left(x-n^{k}\right)^{1 / k}\right) x^{i t} d x\right|\right)+O\left(M 2^{-v}\right)
\end{align*}
$$

where

$$
\mathrm{SC}\left(\sum^{3}\right): M\left(1-2^{-v}\right)<n^{k} \leq 2 M\left(1-2^{-v-1}\right)
$$

and $[a(n), b(n)]$ is a subinterval of $[M, 2 M]$.
Let $f_{3}(x)=h\left(x-n^{k}\right)^{1 / k}+(t \log x) /(2 \pi)$. Then

$$
\left|f_{3}^{\prime}(x)\right|=\left|\frac{1}{k} h\left(x-n^{k}\right)^{1 / k-1}+\frac{t}{2 \pi x}\right| \gg h M^{1 / k-1} 2^{v(1-1 / k)}
$$

Again by Lemma 1,

$$
\begin{equation*}
\int_{v} \ll \sum^{3} \sum_{h} \frac{1}{h}\left(h M^{1 / k-1} 2^{v(1-1 / k)}\right)^{-1}+M 2^{-v} \ll M 2^{-v(1-1 / k)} \tag{3.4}
\end{equation*}
$$

Hence the second assertion follows.
Lemma 8. $Z_{k}^{+}(s)$ has the following properties:
(1) $Z_{k}^{+}(s)$ has an analytic continuation to $\sigma>1 / k-1 / k^{2}$ with the exception of one simple pole at $s=2 / k$.
(2) We have

$$
Z_{k}^{+}(\sigma+i t) \ll \min \left(\log |t|, \frac{1}{\sigma-2 / k}\right), \quad \sigma \geq 2 / k,|t| \geq 2 .
$$

(3) We have

$$
Z_{k}^{+}(\sigma+i t) \ll|t|^{\left(1 / k+1 / k^{2}\right)(2 / k-\sigma)} \log |t|
$$

uniformly for $1 / k-1 / k^{2}<\sigma_{1} \leq \sigma \leq 2 / k,|t| \geq 2$.
(4) For any real parameter $T \geq 10$, we have

$$
\int_{T}^{2 T}\left|Z_{k}^{+}\left(\frac{3}{2 k}+i t\right)\right|^{2} d t \ll T \log T
$$

Proof. Suppose $X \geq 2$ is a parameter. For $\sigma>2 / k$, by Stieltjes integration we get

$$
\begin{align*}
Z_{k}^{+}(s)= & \sum_{n \leq X} \frac{r_{k}^{+}(n)}{n^{s}}+\int_{X}^{\infty} \omega^{-s} d R_{k}^{+}(\omega) \tag{3.5}\\
= & \sum_{n \leq X} \frac{r_{k}^{+}(n)}{n^{s}}+\int_{X}^{\infty} \omega^{-s} d\left(c_{k}^{\prime} \omega^{2 / k}+\Delta_{k 1}^{+}(\omega)+\Delta_{k 2}^{+}(\omega)\right) \\
= & \sum_{n \leq X} \frac{r_{k}^{+}(n)}{n^{s}}+\frac{2}{k} c_{k}^{\prime} \frac{X^{2 / k-s}}{s-2 / k}-X^{-s}\left(\Delta_{k 1}^{+}(X)+\Delta_{k 2}^{+}(X)\right) \\
& +s \int_{X}^{\infty} \frac{\Delta_{k 1}^{+}(\omega)+\Delta_{k 2}^{+}(\omega)}{\omega^{s+1}} d \omega .
\end{align*}
$$

Since $\Delta_{k 1}^{+}(\omega)+\Delta_{k 2}^{+}(\omega) \ll \omega^{1 / k-1 / k^{2}}$, the above integral converges absolutely for $\sigma>1 / k-1 / k^{2}$. Hence the first assertion of Lemma 8 follows.

The second assertion follows from (3.5) and Lemma 6.
Suppose $1 / k-1 / k^{2}<\sigma_{1}<2 / k$ is fixed. Then by Lemmas 5 and 6 we have

$$
\begin{equation*}
Z_{k}^{+}\left(\sigma_{1}+i t\right) \ll X^{2 / k-\sigma_{1}}+|t| X^{1 / k-1 / k^{2}-\sigma_{1}} \ll|t|^{\left(1 / k+1 / k^{2}\right)\left(2 / k-\sigma_{1}\right)} \tag{3.6}
\end{equation*}
$$

by choosing $X=|t|^{1 / k+1 / k^{2}}$. Hence the third assertion of Lemma 8 follows from the well-known Phragmen-Lindelöf argument.

Now we prove the fourth assertion. Take $X=(10 k)^{10 k} T^{k}$. By Lemma 6 we have

$$
\begin{equation*}
\int_{X}^{\infty} \frac{\Delta_{k 1}^{+}(\omega)+\Delta_{k 2}^{+}(\omega)}{\omega^{s+1}} d \omega \ll X^{-3 /(2 k)} \tag{3.7}
\end{equation*}
$$

Inserting into (3.5) we get

$$
\begin{equation*}
Z_{k}^{+}\left(\frac{3}{2 k}+i t\right)=\sum_{n \leq X} \frac{r_{k}^{+}(n)}{n^{3 /(2 k)+i t}}+O(1) \tag{3.8}
\end{equation*}
$$

Squaring (3.8) and integrating over $T \leq t \leq 2 T$ gives
(3.9) $\int_{T}^{2 T}\left|Z_{k}^{+}\left(\frac{3}{2 k}+i t\right)\right|^{2} d t \ll \int_{T}^{2 T}\left|\sum_{n \leq X} \frac{r_{k}^{+}(n)}{n^{3 /(2 k)+i t}}\right|^{2} d t+T$

$$
\begin{aligned}
& =\sum_{m, n \leq X} \frac{r_{k}^{+}(m) r_{k}^{+}(n)}{(m n)^{3 /(2 k)}} \int_{T}^{2 T}\left(\frac{m}{n}\right)^{i t} d t+T \\
& =\sum_{m=n}+\sum_{m \neq n}+T
\end{aligned}
$$

By Lemma 6 we have

$$
\begin{equation*}
\sum_{m=n} \ll T \sum_{n \leq X} \frac{r_{k}^{+2}(n)}{n^{3 / k}} \ll T \tag{3.10}
\end{equation*}
$$

By Lemma 1,

$$
\begin{align*}
\sum_{m \neq n} & \ll \sum_{n<m \leq X} \frac{r_{k}^{+}(m) r_{k}^{+}(n)}{(m n)^{3 /(2 k)}} \min \left(T, \frac{1}{\log (m / n)}\right) \tag{3.11}\\
& =\sum^{1}+\sum^{2}+\sum^{3}, \quad \text { say }
\end{align*}
$$

where

$$
\begin{aligned}
& \mathrm{SC}\left(\sum^{1}\right): n \leq X, n<m \leq n e^{1 / T} \\
& \mathrm{SC}\left(\sum^{2}\right): n \leq X, n e^{1 / T}<m \leq 2 n \\
& \mathrm{SC}\left(\sum^{3}\right): 2 n<m \leq X
\end{aligned}
$$

By Lemmas 5 and 6 we have

$$
\begin{align*}
\sum^{1} & \ll T \sum_{n \leq X} \frac{r_{k}^{+}(n)}{n^{3 / k}} \sum_{n<m \leq n e^{1 / T}} r_{k}^{+}(m) \tag{3.12}\\
& \ll T \sum_{n \leq X} \frac{r_{k}^{+}(n)}{n^{3 / k}}\left(\left(e^{1 / T}-1\right) n^{2 / k}+O\left(n^{1 / k-1 / k^{2}}\right)\right) \\
& \ll T\left(e^{1 / T}-1\right) \sum_{n \leq X} \frac{r_{k}^{+}(n)}{n^{1 / k}}+T \sum_{n \leq X} \frac{r_{k}^{+}(n)}{n^{2 / k+1 / k^{2}}} \\
& \ll X^{1 / k}+T \ll T
\end{align*}
$$

and

$$
\begin{equation*}
\sum^{3} \ll \sum_{n \leq X} \frac{r_{k}^{+}(n)}{n^{3 /(2 k)}} \sum_{m \leq X} \frac{r_{k}^{+}(m)}{m^{3 /(2 k)}} \ll X^{1 /(2 k)} X^{1 /(2 k)} \ll T \tag{3.13}
\end{equation*}
$$

It remains to estimate \sum^{2}. Let $m=n+r$ and notice

$$
\frac{1}{\log (m / n)}=\frac{1}{\log (1+r / n)} \ll \frac{n}{r}
$$

we get

$$
\begin{equation*}
\sum^{2} \ll \sum_{n \leq X} \frac{r_{k}^{+}(n)}{n^{3 / k-1}} \sum^{4} \frac{r_{k}^{+}(n+r)}{r} \tag{3.14}
\end{equation*}
$$

where

$$
\operatorname{SC}\left(\sum^{4}\right): \max \left(1, n\left(e^{1 / T}-1\right)\right) \leq r \leq n
$$

Using a splitting argument and then using Lemma 5 gives

$$
\begin{align*}
\sum^{4} & \ll \log n \cdot \max _{a \ll n} \sum_{a<r \leq 2 a} \frac{r_{k}^{+}(n+r)}{r} \tag{3.15}\\
& \ll \log n \cdot \max _{a \ll n} a^{-1} \sum_{a<r \leq 2 a} r_{k}^{+}(n+r) \\
& \ll \log n \cdot \max _{a \ll n} a^{-1} \sum_{n+a<r \leq n+2 a} r_{k}^{+}(r) \\
& \ll \log n \cdot \max _{a \ll n} a^{-1}\left((n+2 a)^{2 / k}-(n+a)^{2 / k}+O\left(n^{1 / k-1 / k^{2}}\right)\right) \\
& \ll \log n \cdot \max _{a \ll n}\left(n^{2 / k-1}+n^{1 / k-1 / k^{2}} a^{-1}\right) \\
& \ll n^{2 / k-1} \log n+T n^{1 / k-1 / k^{2}-1} \log n,
\end{align*}
$$

where in the last step we used the fact that $r \gg n\left(e^{1 / T}-1\right) \gg n / T$.
Inserting (3.15) into (3.14) we get

$$
\begin{align*}
\sum^{2} & \ll \sum_{n \leq X} \frac{r_{k}^{+}(n)}{n^{3 / k-1}}\left(n^{2 / k-1} \log n+T n^{1 / k-1 / k^{2}-1} \log n\right) \tag{3.16}\\
& \ll X^{1 / k} \log X+T \log T \ll T \log T
\end{align*}
$$

Now the fourth assertion of Lemma 8 follows from (3.9) to (3.16).
Lemma 7a. Suppose $|t| \geq 2, c(k, \delta)$ is a sufficiently large constant and $M \geq c(k, \delta)|t|^{k}$. Then

$$
\int_{M}^{2 M} \Delta_{k 1}^{-}(x) x^{i t} d x \ll M, \quad \int_{M}^{2 M} \Delta_{k 2}^{-}(x) x^{i t} d x \ll M
$$

Proof. The first assertion is actually the first assertion of Lemma 7. To prove the second assertion we only need to show that

$$
\begin{equation*}
\int_{M}^{2 M} \Sigma_{k 1}(x) x^{i t} d x \ll M \tag{3.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{M}^{2 M} \Sigma_{k 2}(x) x^{i t} d x \ll M . \tag{3.18}
\end{equation*}
$$

The proof of (3.17) is similar to that of the second assertion of Lemma 7 .
Similar to the proof of Lemma 7, we change the order of integration and summation, and then use Lemma 1 after appealing to Lemma 4; and then (3.18) follows if $c(k, \delta)$ is sufficiently large.

Lemma 8a. $Z_{k}^{-}(s)$ has the following properties:
(1) $Z_{k}^{-}(s)$ has an analytic continuation to $\sigma>1 / k-1 / k^{2}$ with the exception of two simple poles at $s=2 / k$ and $s=1 /(k-1)$.
(2) We have

$$
Z_{k}^{-}(\sigma+i t) \ll \min \left(\log |t|, \frac{1}{\sigma-2 / k}\right), \quad \sigma \geq 2 / k,|t| \geq 2
$$

(3) We have

$$
Z_{k}^{-}(\sigma+i t) \ll|t|^{\left(1 / k+1 / k^{2}\right)(2 / k-\sigma)} \log |t|
$$

uniformly for $1 / k-1 / k^{2}<\sigma_{1} \leq \sigma \leq 2 / k,|t| \geq 2$.
(4) For any real parameter $T \geq 10$, we have

$$
\int_{T}^{2 T}\left|Z_{k}^{-}\left(\frac{3}{2 k}+i t\right)\right|^{2} d t \ll T \log T .
$$

Proof. This lemma can be proved in the same way as Lemma 8 .
In the same way as in Nowak [13], we can get the following
Proposition 1. If RH is true, $10<y<x^{1 / k}$, then

$$
E_{k}^{ \pm}(x)=\sum_{d \leq y} \mu(d)\left(\Delta_{k 1}^{ \pm}\left(\frac{x}{d^{k}}\right)+\Delta_{k 2}^{ \pm}\left(\frac{x}{d^{k}}\right)\right)+O\left(x^{3 /(2 k)+\varepsilon} y^{-1}\right) .
$$

4. On an exponential sum involving the Möbius function. In this section we shall estimate the exponential sum

$$
S(W, D)=\sum_{d \sim D} \mu(d) e(W / d)
$$

where W and $D \geq 5$ are two positive numbers with $D \ll W^{1-\varepsilon}$.

Lemma 9. Suppose $a_{m} \ll 1$ is any complex number, $0<\alpha<1 / 2$ is a fixed real number. If $M \ll D^{\alpha}$ and $D \ll M N \ll D$, then for any exponent pair (κ, λ) we have

$$
S_{I}=\sum_{m \sim M} a_{m} \sum_{n \sim N} e\left(\frac{W}{m n}\right) \ll \frac{D^{2}}{W}+W^{\kappa /(2(1+\kappa))} D^{(3+\lambda) /(4(1+\kappa))} .
$$

Proof. This estimate easily follows from using the exponent pair $(\kappa /(2(1+\kappa)), 1 / 2+\lambda /(2(1+\kappa)))$ directly to the sum over n and noticing $\alpha<1 / 2$.

Lemma 10. Suppose $a_{m} \ll 1$ and $b_{n} \ll 1$ are any complex numbers, $0<\alpha<1 / 2$ is a fixed real number. If $D^{\alpha} \ll N \ll D^{1 / 2}$ and $M N \sim D$, then for any exponent pair (κ, λ) we have

$$
\begin{aligned}
S_{I I} & =\sum_{m \sim M} a_{m} \sum_{n \sim N} b(n) e\left(\frac{W}{m n}\right) \\
& \ll\left(W^{\kappa /(2(1+\kappa))} D^{(3+\lambda) /(4(1+\kappa))}+D^{1-\alpha / 2}+D^{3 / 2} W^{-1 / 2}\right) \log ^{2} D
\end{aligned}
$$

Proof. Let $F=W / D$. If $F<N$, then using Lemma 2 we get

$$
S_{I I} \ll M N F^{-1 / 2} \ll D^{3 / 2} W^{-1 / 2}
$$

If $F \geq N$, by Lemma 3 we get (take $m_{1}=1, m_{2}=n$)

$$
\begin{aligned}
S_{I I} \log ^{-1} D & \ll M N\left(N^{-1 / 2}+(F / N)^{\kappa /(2(1+\kappa))} M^{-(1+\kappa-\lambda) /(2(1+\kappa))}\right) \\
& \ll D^{1-\alpha / 2}+F^{\kappa /(2(1+\kappa))} N^{(2+\kappa) /(2(1+\kappa))} M^{(1+\lambda+\kappa) /(2(1+\kappa))} \\
& \ll W^{\kappa /(2(1+\kappa))} D^{(3+\lambda) /(4(1+\kappa))}+D^{1-\alpha / 2}
\end{aligned}
$$

where we used the fact that $D^{\alpha} \ll N \ll D^{1 / 2}$.
Now we prove the following
Proposition 2. Suppose $0<\alpha<1 / 2$ is fixed. Then for any exponent pair (κ, λ) we have

$$
D^{-\varepsilon} S(W, D) \ll W^{\kappa /(2(1+\kappa))} D^{(3+\lambda) /(4(1+\kappa))}+D^{1-\alpha / 2}+D^{3 / 2} W^{-1 / 2}
$$

Proof. We use the skillful decomposition due to Montgomery and Vaughan [7] and write

$$
S(W, D)=\Sigma_{1}+\Sigma_{2}+\Sigma_{3}, \quad \text { say },
$$

where

$$
\begin{aligned}
& \Sigma_{1}=-\sum_{m \leq U} \xi_{m} \sum_{D / m<n \leq D^{\prime} / m} e\left(\frac{W}{m n}\right), \\
& \Sigma_{2}=-\sum_{U<m \leq U^{2}} \xi_{m} \sum_{D / m<n \leq D^{\prime} / m} e\left(\frac{W}{m n}\right),
\end{aligned}
$$

$$
\begin{gathered}
\xi_{m}=\sum_{m=d_{1} d_{2}, d_{1}, d_{2} \leq U} \mu\left(d_{1}\right) \mu\left(d_{2}\right) \ll m^{\varepsilon}, \\
\Sigma_{3}=-\sum_{m>U, n>U, D<m n<D^{\prime}} \mu(m) \eta_{n} e\left(\frac{W}{m n}\right), \quad \eta_{n}=\sum_{d \mid n, d \leq U} \mu(d) \ll n^{\varepsilon} .
\end{gathered}
$$

We choose $U=D^{\alpha}$. Use Lemma 9 to estimate Σ_{1} and Lemma 10 to estimate Σ_{2} and Σ_{3}, and the proposition follows.
5. Proofs of Theorem 1 and Corollary. Take $y=x^{127 /(200 k)}$ in Proposition 1. Then the error term is $O\left(x^{173 /(200 k)+\varepsilon}\right)$. It remains to estimate the sums

$$
S_{1}^{ \pm}(y)=\sum_{d \leq y} \mu(d) \Delta_{k 1}^{ \pm}\left(x / d^{k}\right), \quad S_{2}^{ \pm}(y)=\sum_{d \leq y} \mu(d) \Delta_{k 2}^{ \pm}\left(x / d^{k}\right) .
$$

To estimate $S_{2}^{ \pm}(y)$, we need the estimate

$$
\Delta_{k 2}^{ \pm}(x) \ll x^{46 /(73 k)+\varepsilon},
$$

which is a consequence of the celebrated work of Huxley [3]. See also Nowak [13]. From this estimate we have

$$
\begin{equation*}
S_{2}^{ \pm}(y) \ll x^{46 /(73 k)+\varepsilon} y^{27 / 73} \ll x^{173 /(200 k)+\varepsilon} . \tag{5.1}
\end{equation*}
$$

Now we estimate $S_{1}^{ \pm}(y)$. We only need to estimate

$$
S(D)=\sum_{d \sim D} \mu(d) \Delta_{k 1}^{ \pm}\left(x / d^{k}\right)
$$

for $1 \ll D \ll y$.
We suppose (κ, λ) is an exponent pair such that $(3+\lambda) /(4(1+\kappa))<$ $1-1 / k$. If $D \ll x^{2 \kappa /((1+4 \kappa-\lambda) k)}$, then by the estimate

$$
\Delta_{k 1}^{ \pm}(u) \ll u^{1 / k-1 / k^{2}}
$$

we have

$$
\begin{equation*}
S(D) \ll x^{\frac{1}{k}-\frac{1+2 k-\lambda}{1+4 k-\lambda} \cdot \frac{1}{k^{2}}} . \tag{5.2}
\end{equation*}
$$

Now suppose $D \gg x^{2 \kappa /((1+4 \kappa-\lambda) k)}$. By the expression of $\Delta_{k 1}^{ \pm}(u)$ we get

$$
S(D) \ll \frac{x^{1 / k-1 / k^{2}}}{D^{1-1 / k}}\left\{\sum_{l \leq U} l^{-1-1 / k}\left|S\left(l x^{1 / k}, D\right)\right|+D U^{-1 / k}\right\}
$$

for any $U>1$, where $S(W, D)$ is defined in the last section. We use Proposition 2 with $\alpha=2 / 5$ to bound $S\left(l x^{1 / k}, D\right)$ and take $U=D^{(1+4 \kappa-\lambda) /(2 \kappa)} x^{-1 / k}$ to get

$$
S(D) \ll x^{\frac{1}{k}-\frac{1+2 k-\lambda}{1+4 \kappa-\lambda} \cdot \frac{1}{k^{2}}}+x^{\frac{327}{2006}-\frac{73}{200 k^{2}}} \ll x^{\frac{1}{k}-\frac{1+2 k-\lambda}{1+4 k-\lambda} \cdot \frac{1}{k^{2}}}+x^{\frac{173}{200 k}} .
$$

This completes the proof of Theorem 1 .

The Corollary follows from Theorem 1 if we take $(\kappa, \lambda)=(1 / 2,1 / 2)$ for $k=4,(\kappa, \lambda)=(19 / 126,86 / 126)$ for $k=5,(\kappa, \lambda)=(3 / 26,112 / 156)$ for $k=6,(\kappa, \lambda)=(2 / 18,13 / 18)$ for $k \geq 7$.
6. Proof of Theorem 2. Take $y=x^{1 / 6}$ in Proposition 1. Then the error term is $O\left(x^{5 / 24+\varepsilon}\right)$. It suffices to estimate the sums

$$
S_{1}(D)=\sum_{d \sim D} \mu(d) \Delta_{41}^{+}\left(x / d^{4}\right), \quad S_{2}(D)=\sum_{d \sim D} \mu(d) \Delta_{42}^{+}\left(x / d^{4}\right)
$$

for any fixed $1 \ll D \ll y$.
$S_{1}(D)$ can be estimated in the same way as in the last section. Using Proposition 2 to bound $S\left(l x^{1 / 4}, D\right)$ by taking $(\kappa, \lambda)=(11 / 53,33 / 53)=$ $B A B A^{2} B A^{2} B(0,1)$ and $\alpha=2 / 5$, we get

$$
\begin{equation*}
S_{1}(D) \ll x^{107 / 512} \log ^{5} x \tag{6.1}
\end{equation*}
$$

Now we estimate $S_{2}(D)$. Without loss of generality, suppose $D \gg x^{1 / 12}$; otherwise by the trivial estimate

$$
S_{2}(D) \ll x^{3 / 16} D^{1 / 4} \ll x^{5 / 24}
$$

For each fixed d, we write

$$
\begin{align*}
& \sum_{x / 2<n^{4} d^{4} \leq x} \psi\left(\left(x / d^{4}-n^{4}\right)^{1 / 4}\right) \tag{6.2}\\
& =\sum^{1} \sum^{2} \psi\left(\left(x / d^{4}-n^{4}\right)^{1 / 4}\right)+O\left(x^{1 / 8} D^{-1 / 2}\right)
\end{align*}
$$

where

$$
\begin{aligned}
& \mathrm{SC}\left(\sum^{1}\right): 1 \leq v \leq \frac{\log \left(x / D^{4}\right)}{8 \log 2} \\
& \mathrm{SC}\left(\sum^{2}\right): \frac{x}{d^{4}}\left(1-2^{-v}\right)<n^{4} \leq \frac{x}{d^{4}}\left(1-2^{-v-1}\right)
\end{aligned}
$$

Take $J=\max \left(x^{1 / 24} / 2^{v}, \log x\right)$, then by Lemma 4

$$
\begin{align*}
\sum^{2} \psi\left(\left(x / d^{4}-n^{4}\right)^{1 / 4}\right)= & -2 i \operatorname{Re} \sum_{1 \leq h \leq J} \frac{1}{2 \pi h} \sum^{2} e\left(-h\left(x / d^{4}-n^{4}\right)^{1 / 4}\right) \tag{6.3}\\
& +O\left(\sum_{|h| \leq J} b(h) \sum^{2} e\left(-h\left(x / d^{4}-n^{4}\right)^{1 / 4}\right)\right)
\end{align*}
$$

We first consider the sum

$$
S_{2}(d, h, v)=\sum^{2} e\left(-h\left(x / d^{4}-n^{4}\right)^{1 / 4}\right)
$$

Similarly to formula (2.6) of Nowak [14], we can get
(6.4) $\quad S_{2}(d, h, v)$

$$
=e^{\pi i / 4} \sum^{3} g(r, d) e(F(r, d))+O\left(\frac{1}{\sqrt{h}} \cdot \frac{x^{1 / 8}}{D^{1 / 2}} 2^{-7 v / 8}+\log x\right)
$$

where

$$
\begin{aligned}
& F(r, d)=-\frac{x^{1 / 4}}{d}\left(h^{4 / 3}+r^{4 / 3}\right)^{3 / 4} \sim-\frac{r x^{1 / 4}}{d} \\
& g(r, d)=\frac{h}{\sqrt{3}}(h r)^{-1 / 3} x^{1 / 8} d^{-1 / 2}\left(h^{4 / 3}+r^{4 / 3}\right)^{-5 / 8} \sim h^{2 / 3} r^{-7 / 6} x^{1 / 8} d^{-1 / 2} \\
& \operatorname{SC}\left(\sum^{3}\right): h\left(2^{v}-1\right)^{3 / 4}<r \leq h\left(2^{v+1}-1\right)^{3 / 4}
\end{aligned}
$$

Inserting (6.4) into (6.3) we have

$$
\begin{align*}
\sum^{2} \psi\left(\left(x / d^{4}-n^{4}\right)^{1 / 4}\right)= & c \operatorname{Re} \sum_{1 \leq h \leq J} \frac{1}{2 \pi h} \sum^{3} g(r, d) e(F(r, d)) \tag{6.5}\\
& +O\left(\sum_{1 \leq h \leq J} b(h) \sum^{3} g(r, d) e(F(r, d))\right) \\
& +O\left(\log ^{2} x+\frac{x^{1 / 8}}{2^{7 v / 8} D^{1 / 2}}\right)
\end{align*}
$$

Thus
(6.6) $S_{2}(D)=\sum_{d \sim D} \mu(d)\left(-8 \sum_{x / 2<n^{4} d^{4} \leq x} \psi\left(\left(x / d^{4}-n^{4}\right)^{1 / 4}\right)+O(1)\right)$

$$
\begin{aligned}
= & -8 \sum_{d \sim D} \mu(d) \sum^{1} \sum^{2} \psi\left(\left(x / d^{4}-n^{4}\right)^{1 / 4}\right)+O\left(x^{1 / 8} D^{1 / 2}+D\right) \\
= & c \sum^{1} \sum_{1 \leq h \leq J} \frac{1}{h} \sum^{3} \sum_{d \sim D} \mu(d) g(r, d) e(F(r, d)) \\
& +O\left(\sum^{1} \sum_{1 \leq h \leq J} \frac{1}{J} \sum^{3}\left|\sum_{d \sim D} g(r, d) e(F(r, d))\right|\right)+O\left(x^{5 / 24}\right) \\
= & \sum^{4}+\sum^{5}+O\left(x^{5 / 24}\right), \text { say. }
\end{aligned}
$$

Using the exponent pair $(1 / 6,4 / 6)$ to estimate the sum over d we easily find that

$$
\begin{equation*}
\sum^{5} \ll x^{13 / 72} \log ^{2} x \tag{6.7}
\end{equation*}
$$

if we recall $D \gg x^{1 / 12}$.
We shall use Proposition 2 to estimate the sum over d in \sum^{4}. Let

$$
W=x^{1 / 4}\left(h^{4 / 3}+r^{4 / 3}\right)^{3 / 4}
$$

Take $(\kappa, \lambda)=(1 / 2,1 / 2)$ and $\alpha=2 / 5$ in Proposition 2 to get

$$
\begin{align*}
\sum^{4}< & <\sum^{1} \sum_{h} \frac{1}{h} \sum^{3} h^{2 / 3} r^{-7 / 6} \frac{x^{1 / 8+\varepsilon}}{D^{1 / 2}} \tag{6.8}\\
& \times\left(D^{4 / 5}+x^{1 / 24} r^{1 / 6} D^{7 / 12}+D^{3 / 2} x^{-1 / 8} r^{-1 / 4}\right) \\
\ll & x^{5 / 24+\varepsilon}
\end{align*}
$$

Combining (6.6)-(6.8) gives

$$
\begin{equation*}
S_{2}(D) \ll x^{5 / 24+\varepsilon} \tag{6.9}
\end{equation*}
$$

Now Theorem 2 follows from (6.1) and (6.9).
Acknowledgements. The author deeply thanks the referee for helpful suggestions.

References

[1] R. C. Baker, The square-free divisor problem, Quart. J. Math. Oxford Ser. 45 (1994), 269-277.
[2] E. Fouvry and H. Iwaniec, Exponential sums for monomials, J. Number Theory 33 (1989), 311-333.
[3] M. N. Huxley, Exponential sums and lattice points II, Proc. London Math. Soc. 66 (1993), 279-301.
[4] A. Ivić, The Riemann Zeta-function, Wiley, 1985.
[5] E. Krätzel, Lattice Points, Deutsch. Verlag Wiss., Berlin, 1988.
[6] -, Primitive lattice points in special plane domains and a related three-dimensional lattice point problem I, Forschungsergebnisse, FSU, Jena, N/87/11, 1987.
[7] H. L. Montgomery and R. C. Vaughan, The distribution of squarefree numbers, in: Recent Progress in Analytic Number Theory (Durham, 1979), Vol. 1, Academic Press, London, 1981, 247-256.
[8] B. Z. Moroz, On the number of primitive lattice points in plain domains, Monatsh. Math. 99 (1985), 37-43.
[9] W. Müller and W. G. Nowak, Lattice points in planar domains: applications of Huxley's "discrete Hardy-Littlewood method", in: Number-Theoretic Analysis (Vienna, 1988-89), Lecture Notes in Math. 1452, Springer, 1990, 139-164.
[10] -, 一, On a mean-value theorem concerning differences of two k-th powers, Tsukuba J. Math. 13 (1989), 23-29.
[11] W. G. Nowak, On sums of two coprime k-th powers, Monatsh. Math. 108 (1989), 47-57.
[12] -, On sums and differences of two relative prime cubes, Analysis 15 (1995), 325341.
[13] -, Primitive lattice points in starlike planar sets, Pacific J. Math. 170 (1997), 163-178.
[14] -, On sums of two k-th powers: a mean-square bound for the error term, Analysis 16 (1996), 297-304.
[15] W. G. Nowak, On sums and differences of two relative prime cubes II, Tatra Mt. Math. Publ. 11 (1997) (Proc. Czech and Slovak Number Theory Conference, 1995), 23-34.
[16] -, On differences of two k-th powers of integers, Ramanujan J. 2 (1998), 421-440.
[17] J. D. Vaaler, Some extremal problems in Fourier analysis, Bull. Amer. Math. Soc. 12 (1985), 183-216.

Department of Mathematics
Shandong Normal University
Jinan, 250014, Shandong
P.R. China

E-mail: wgzhai@jn-public.sd.cninfo.net

Received on 30.1.1998
and in revised form on 11.9.1998

[^0]: 1991 Mathematics Subject Classification: Primary 11P21.
 This work is supported partly by National Natural Science Foundation of China (Grant No. 19801021) and partly by Natural Science Foundation of Shandong Province (Grant No. Q98A02110).

