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On sums and differences of two coprime kth powers
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1. Introduction. For a fixed integer k ≥ 3, we consider the arithmetic
functions

%±k (n) =
∑

n=|m|k±|l|k, (m,l)=1

1.

It is easy to show that

(1.1)
∑

n≤x
%±k (n) = c±k x

2/k + b±k x
1/(k−1) +O(x1/k)

for some constants c±k and b±k . This estimate can be slightly improved, but
the problem of reducing the exponent 1/k is unsolved. It is therefore natural
to look for sharper estimates assuming the truth of the Riemann Hypothe-
sis (RH).

Let E±k (x) denote the error term in (1.1) and θ±k denote the smallest α±k
such that

(1.2) E±k (x) = O(xα
±
k

+ε).

It was noticed by E. Krätzel [6] that (under RH)

θ±k ≤
1
k
− 1
k(3k + 2)

,

as a special case of a theorem due to Moroz [8].
W. G. Nowak [11] proved that if RH is true then

θ±k ≤ 127/(140k)

for 3 ≤ k ≤ 7 and

θ±k ≤
1
k
− 9q + 28

(9q + 46)k2
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for k ≥ 8, where q is a non-negative integer such that

tq < k ≤ tq+1, tq =
2q+174− 36

9q + 46
.

W. Müller and W. G. Nowak [9] proved (under RH) that

θ±k ≤ 37/(41k)

for 3 ≤ k ≤ 6. W. G. Nowak [12] proved (under RH) that θ+
3 ≤ 76/255.

Recently, W. G. Nowak [13] proved (under RH) that

θ±k ≤
7k + 1

k(7k + 4)

for k ≥ 3. For k = 3, he proved in [15] that θ+
3 ≤ 5/18. The bound θ−3 ≤ 5/18

is also contained in the existing literature. See Nowak [16], for example.
The aim of this paper is to study this problem for k ≥ 4. We have

Theorem 1. If RH is true, then for any exponent pair (κ, λ) such that
(3 + λ)/(4 + 4κ) < 1− 1/k we have

(1.3) θ±k ≤ max
(

1
k
− 1 + 2κ− λ

1 + 4κ− λ ·
1
k2 ,

173
200k

)
.

From Theorem 1 we can get the following

Corollary. We have

θ±4 ≤ 173/800, θ±5 ≤ 251/1450, θ±6 ≤ 77/522,

θ±k ≤
1
k
− 9

13
· 1
k2 (k ≥ 7).

For θ+
4 , we can get a slightly better estimate. We have

Theorem 2. If RH is true, then

(1.4) θ+
4 ≤ 107/512.

The structure of the paper is as follows. In Section 2, some preliminary
lemmas are quoted. In Section 3, we study the properties of the function
Z±k (s). We estimate an exponential sum involving the Möbius function in
Section 4. The proofs of Theorem 1 and the Corollary are given in Section 5.
We prove Theorem 2 in Section 6.

Notations. ψ(t) = {t} − 1/2, {t} is the fractional part of t. e(t) = e2πit.
µ(n) denotes the Möbius function. ε denotes a small positive constant which
may be different at each occurrence. We use SC(

∑
) to denote the summation

conditions of the sum
∑

if these conditions are complicated. For example,
instead of

F (x) =
∑

a≤n≤x
f(n)
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we can write

F (x) =
∑

f(n), SC
(∑)

: a ≤ n ≤ x.
The author wants to thank Professor W. G. Nowak for kindly sending

reprints of some of his papers.

2. Some preliminary lemmas

Lemma 1. Let F (x) be a real differentiable function such that F ′(x) is
monotonic and |F ′(x)| ≥ m > 0, G(x) is a positive monotonic function
satisfying |G(x)| ≤ G for a ≤ x ≤ b. Then

∣∣∣
b\
a

G(x)eiF (x) dx
∣∣∣ ≤ 4Gm−1.

Lemma 2. Let X and Y be two finite sets of real numbers, X ⊂ [−X,X],
Y ⊂ [−Y, Y ]. Then for any complex functions u(x) and v(y) we have
∣∣∣
∑

x∈X

∑

y∈Y
u(x)v(y)e(xy)

∣∣∣
2

≤ 20(1 +XY )
∑

x,x′∈X
|x−x′|≤Y −1

|u(x)u(x′)|
∑

y,y′∈Y
|y−y′|≤X−1

|v(y)v(y′)|.

Lemma 3. Let α, α1, α2, z be real numbers such that zαα1α2 6= 0, α 6∈ N.
Let M ≥ 1, M1 ≥ 1, M2 ≥ 1 and let am and bm1m2 be complex numbers
with |am| ≤ 1 and |bm1m2 | ≤ 1. Let F = |z|MαMα1

1 Mα2
2 . If F ≥ M1M2,

then∑

m∼M

∑

m1∼M1

∑

m2∼M2

ambm1m2e(zm
αmα1

1 mα2
2 )

�MM1M2 log(2M1M2){(M1M2)−1/2

+ (F/(M1M2))κ/(2(1+κ))M−(1+κ−λ)/(2(1+κ))}.
Lemma 4. For any J ≥ 2, we have

ψ(t) =
∑

1≤|h|≤J
a(h)e(ht) +O

( ∑

|h|≤J
b(h)e(ht)

)

with

a(h)� |h|−1, b(h)� J−1.

Lemma 5. For fixed k ≥ 3, let

r+
k (n) =

∑

n=|m|k+|l|k
1, R+

k (x) =
∑

n≤x
rk(n).
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Then R+
k (x) = Hk(x) +∆+

k1(x) +∆+
k2(x), where

Hk(x) = c′kx
2/k, c′k =

2Γ 2(1/k)
kΓ (2/k)

,

∆+
k1(x) =

8Γ (1/k)
kπ

x1/k−1/k2
∞∑

l=1

1
k

(
k

2πl

)1/k

cos 2π
(
lx1/k − 1

4

(
1 +

1
k

))

+O(1),

∆+
k2(x) = −8

∑

x/2≤nk≤x
ψ((x− nk)1/k) +O(1),

∆+
k1(x) +∆+

k2(x)� x1/k−1/k2
.

Lemma 5a. Let

r−k (n) =
∑

n=|m|k−|l|k
1, R−k (x) =

∑

n≤x
r−k (n).

Then R−k (x) = a−k x
2/k + b−k x

1/(k−1) +∆−k1(x) +∆−k2(x), with

∆−k1(x) = c−k

∞∑

l=1

l−1−1/k sin
(

2πlx1/k +
π

2k

)
,

∆−k2(x) = 4Σk1(x)− 4Σk2(x) +O(1),

Σk1(x) =
∑

x1/k<m≤λx1/k

ψ1((mk − x)1/k),

Σk2(x) =
∑

1<m≤δx1/k

ψ0(Nk(m,x)).

Here δ is an arbitrarily small positive constant , λ = λ(δ) → ∞ as δ → 0,
and

ψ0(v) = ψ1(v) = v − [v]− 1/2 for v 6∈ Z,
ψ0(v) = ψ1(v) = 1/2 for v ∈ Z.

The function v = Nk(w, x) is defined by the equation

(v + w)k − vk = x (v, w, x ∈ R+, w < x1/k).

Lemma 6. We have the following estimates:
∞∑
n=1

r±2
k (n)
nσ

� 1,
∞∑
n=1

r±k (n)
nσ

� 1, σ > 2/k;

∑

n≤x

r±k (n)
n2/k

� log x;
∑

n≤x

r±k (n)
nσ

� x2/k−σ, 0 < σ < 2/k.

Lemma 1 is formula (2.3) of Ivić [4]. Lemma 2 is Proposition 1 of Fouvry
and Iwaniec [2]. Lemma 3 is Theorem 2 of Baker [1]. Lemma 4 can be found



Sums and differences of kth powers 237

in Vaaler [17]. Lemma 5 is contained in Section 3.3 of [5]. Lemma 5a is
formula (5) of Müller and Nowak [10]. Lemma 6 immediately follows from
Lemmas 5 and 5a by partial summation.

3. Expression of the error term. In this section we shall give an
expression of E±k (x) subject to RH. Following the work of W. G. Nowak
[13], we first study the functions

Z±k (s) =
∞∑
n=1

r±k (n)
ns

.

The following Lemma 7 and Lemma 7a play the key roles in our proofs, from
which we can obtain better mean-value results on Z±k (s). Thus we improve
Nowak’s previous results on the two functions.

Lemma 7. Suppose |t| ≥ 2 and M ≥ (10k)10k|t|k. Then
2M\
M

∆+
k1(x)xit dx�M,

2M\
M

∆+
k2(x)xit dx�M.

P r o o f. We first prove the first assertion. Obviously

(3.1)
2M\
M

∆+
k1(x)xit dx

= c1(k)
∞∑

l=1

1
l1+1/k

2M\
M

x1/k−1/k2
cos 2π

(
lx1/k − 1

4

(
1 +

1
k

))
xit dx

+O(M)

�M +
∞∑

l=1

1
l1+1/k

∣∣∣∣
2M\
M

x1/k−1/k2
e

(
lx1/k − 1

4

(
1 +

1
k

)
+
t log x

2π

)
dx

∣∣∣∣

+
∞∑

l=1

1
l1+1/k

∣∣∣∣
2M\
M

x1/k−1/k2
e

(
−lx1/k +

1
4

(
1 +

1
k

)
+
t log x

2π

)
dx

∣∣∣∣.

Let

f1(x) = lx1/k− 1
4

(
1+

1
k

)
+
t log x

2π
, f2(x) = −lx1/k+

1
4

(
1+

1
k

)
+
t log x

2π
.

Then
|f ′1(x)| � lM1/k−1, |f ′2(x)| � lM1/k−1.

Hence the first assertion of Lemma 7 follows from (3.1) by Lemma 1.
Now we consider the second assertion. We write

(3.2) ∆+
k2(x) = −8

∑1∑2
ψ((x− nk)1/k) +Oε(1),
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where

SC
(∑1 )

: 1 ≤ v ≤ log εM1/k

log 2
,

SC
(∑2 )

: x(1− 2−v) < nk ≤ x(1− 2−v−1),

and ε is a fixed small positive constant. It suffices to estimate

\
v

=
2M\
M

∑2
ψ((x− nk)1/k)xit dx

for each fixed v.
We take J = M1/k2−v in Lemma 4. Change the order of summation and

integration and then use Lemma 5 to get

\
v

=
2M\
M

∑2
ψ((x− nk)1/k)xit dx(3.3)

=
∑3

b(n)\
a(n)

ψ((x− nk)1/k)xit dx

=
∑3 ∑

1≤|h|≤J

1
2πih

b(n)\
a(n)

e(h(x− nk)1/k)xit dx

+O

(∑3 ∑

1≤|h|≤J

1
J

∣∣∣
b(n)\
a(n)

e(h(x− nk)1/k)xit dx
∣∣∣
)

+O(M2−v),

where

SC
(∑3 )

: M(1− 2−v) < nk ≤ 2M(1− 2−v−1)

and [a(n), b(n)] is a subinterval of [M, 2M ].
Let f3(x) = h(x− nk)1/k + (t log x)/(2π). Then

|f ′3(x)| =
∣∣∣∣
1
k
h(x− nk)1/k−1 +

t

2πx

∣∣∣∣� hM1/k−12v(1−1/k).

Again by Lemma 1,

(3.4)
\
v

�
∑3∑

h

1
h

(hM1/k−12v(1−1/k))−1 +M2−v �M2−v(1−1/k).

Hence the second assertion follows.

Lemma 8. Z+
k (s) has the following properties:

(1) Z+
k (s) has an analytic continuation to σ > 1/k − 1/k2 with the

exception of one simple pole at s = 2/k.
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(2) We have

Z+
k (σ + it)� min

(
log |t|, 1

σ − 2/k

)
, σ ≥ 2/k, |t| ≥ 2.

(3) We have

Z+
k (σ + it)� |t|(1/k+1/k2)(2/k−σ) log |t|

uniformly for 1/k − 1/k2 < σ1 ≤ σ ≤ 2/k, |t| ≥ 2.
(4) For any real parameter T ≥ 10, we have

2T\
T

∣∣∣∣Z+
k

(
3
2k

+ it

)∣∣∣∣
2

dt� T log T.

P r o o f. Suppose X ≥ 2 is a parameter. For σ > 2/k, by Stieltjes inte-
gration we get

Z+
k (s) =

∑

n≤X

r+
k (n)
ns

+
∞\
X

ω−s dR+
k (ω)(3.5)

=
∑

n≤X

r+
k (n)
ns

+
∞\
X

ω−s d(c′kω
2/k +∆+

k1(ω) +∆+
k2(ω))

=
∑

n≤X

r+
k (n)
ns

+
2
k
c′k
X2/k−s

s− 2/k
−X−s(∆+

k1(X) +∆+
k2(X))

+ s

∞\
X

∆+
k1(ω) +∆+

k2(ω)
ωs+1 dω.

Since ∆+
k1(ω)+∆+

k2(ω)� ω1/k−1/k2
, the above integral converges absolutely

for σ > 1/k − 1/k2. Hence the first assertion of Lemma 8 follows.
The second assertion follows from (3.5) and Lemma 6.
Suppose 1/k − 1/k2 < σ1 < 2/k is fixed. Then by Lemmas 5 and 6 we

have

(3.6) Z+
k (σ1 + it)� X2/k−σ1 + |t|X1/k−1/k2−σ1 � |t|(1/k+1/k2)(2/k−σ1)

by choosing X = |t|1/k+1/k2
. Hence the third assertion of Lemma 8 follows

from the well-known Phragmen–Lindelöf argument.
Now we prove the fourth assertion. Take X = (10k)10kT k. By Lemma 6

we have

(3.7)
∞\
X

∆+
k1(ω) +∆+

k2(ω)
ωs+1 dω � X−3/(2k).
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Inserting into (3.5) we get

(3.8) Z+
k

(
3
2k

+ it

)
=
∑

n≤X

r+
k (n)

n3/(2k)+it
+O(1).

Squaring (3.8) and integrating over T ≤ t ≤ 2T gives
2T\
T

∣∣∣∣Z+
k

(
3
2k

+ it

)∣∣∣∣
2

dt�
2T\
T

∣∣∣∣
∑

n≤X

r+
k (n)

n3/(2k)+it

∣∣∣∣
2

dt+ T(3.9)

=
∑

m,n≤X

r+
k (m)r+

k (n)
(mn)3/(2k)

2T\
T

(
m

n

)it
dt+ T

=
∑
m=n

+
∑

m 6=n
+T.

By Lemma 6 we have

(3.10)
∑
m=n

� T
∑

n≤X

r+2
k (n)
n3/k

� T.

By Lemma 1,
∑

m 6=n
�

∑

n<m≤X

r+
k (m)r+

k (n)
(mn)3/(2k)

min
(
T,

1
log(m/n)

)
(3.11)

=
∑1

+
∑2

+
∑3

, say,

where

SC
(∑1 )

: n ≤ X, n < m ≤ ne1/T ,

SC
(∑2 )

: n ≤ X, ne1/T < m ≤ 2n,

SC
(∑3 )

: 2n < m ≤ X.
By Lemmas 5 and 6 we have

∑1 � T
∑

n≤X

r+
k (n)
n3/k

∑

n<m≤ne1/T
r+
k (m)(3.12)

� T
∑

n≤X

r+
k (n)
n3/k

((e1/T − 1)n2/k +O(n1/k−1/k2
))

� T (e1/T − 1)
∑

n≤X

r+
k (n)
n1/k

+ T
∑

n≤X

r+
k (n)

n2/k+1/k2

� X1/k + T � T
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and

(3.13)
∑3 �

∑

n≤X

r+
k (n)

n3/(2k)

∑

m≤X

r+
k (m)

m3/(2k)
� X1/(2k)X1/(2k) � T.

It remains to estimate
∑2. Let m = n+ r and notice

1
log(m/n)

=
1

log(1 + r/n)
� n

r

we get

(3.14)
∑2 �

∑

n≤X

r+
k (n)

n3/k−1

∑4 r+
k (n+ r)

r
,

where

SC
(∑4 )

: max(1, n(e1/T − 1)) ≤ r ≤ n.
Using a splitting argument and then using Lemma 5 gives

∑4 � logn ·max
a�n

∑

a<r≤2a

r+
k (n+ r)

r
(3.15)

� logn ·max
a�n

a−1
∑

a<r≤2a

r+
k (n+ r)

� logn ·max
a�n

a−1
∑

n+a<r≤n+2a

r+
k (r)

� logn ·max
a�n

a−1((n+ 2a)2/k − (n+ a)2/k +O(n1/k−1/k2
))

� logn ·max
a�n

(n2/k−1 + n1/k−1/k2
a−1)

� n2/k−1 log n+ Tn1/k−1/k2−1 log n,

where in the last step we used the fact that r � n(e1/T − 1)� n/T .
Inserting (3.15) into (3.14) we get

∑2 �
∑

n≤X

r+
k (n)

n3/k−1
(n2/k−1 logn+ Tn1/k−1/k2−1 logn)(3.16)

� X1/k logX + T log T � T log T.

Now the fourth assertion of Lemma 8 follows from (3.9) to (3.16).

Lemma 7a. Suppose |t| ≥ 2, c(k, δ) is a sufficiently large constant and
M ≥ c(k, δ)|t|k. Then

2M\
M

∆−k1(x)xit dx�M,

2M\
M

∆−k2(x)xit dx�M.
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P r o o f. The first assertion is actually the first assertion of Lemma 7. To
prove the second assertion we only need to show that

(3.17)
2M\
M

Σk1(x)xit dx�M

and

(3.18)
2M\
M

Σk2(x)xit dx�M.

The proof of (3.17) is similar to that of the second assertion of Lemma 7.
Similar to the proof of Lemma 7, we change the order of integration and

summation, and then use Lemma 1 after appealing to Lemma 4; and then
(3.18) follows if c(k, δ) is sufficiently large.

Lemma 8a. Z−k (s) has the following properties:

(1) Z−k (s) has an analytic continuation to σ > 1/k − 1/k2 with the
exception of two simple poles at s = 2/k and s = 1/(k − 1).

(2) We have

Z−k (σ + it)� min
(

log |t|, 1
σ − 2/k

)
, σ ≥ 2/k, |t| ≥ 2.

(3) We have

Z−k (σ + it)� |t|(1/k+1/k2)(2/k−σ) log |t|
uniformly for 1/k − 1/k2 < σ1 ≤ σ ≤ 2/k, |t| ≥ 2.

(4) For any real parameter T ≥ 10, we have
2T\
T

∣∣∣∣Z−k
(

3
2k

+ it

)∣∣∣∣
2

dt� T log T.

P r o o f. This lemma can be proved in the same way as Lemma 8.

In the same way as in Nowak [13], we can get the following

Proposition 1. If RH is true, 10 < y < x1/k, then

E±k (x) =
∑

d≤y
µ(d)

(
∆±k1

(
x

dk

)
+∆±k2

(
x

dk

))
+O(x3/(2k)+εy−1).

4. On an exponential sum involving the Möbius function. In this
section we shall estimate the exponential sum

S(W,D) =
∑

d∼D
µ(d)e(W/d)

where W and D ≥ 5 are two positive numbers with D �W 1−ε.
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Lemma 9. Suppose am � 1 is any complex number , 0 < α < 1/2 is a
fixed real number. If M � Dα and D � MN � D, then for any exponent
pair (κ, λ) we have

SI =
∑

m∼M
am

∑

n∼N
e

(
W

mn

)
� D2

W
+Wκ/(2(1+κ))D(3+λ)/(4(1+κ)).

P r o o f. This estimate easily follows from using the exponent pair
(κ/(2(1 + κ)), 1/2 + λ/(2(1 + κ))) directly to the sum over n and notic-
ing α < 1/2.

Lemma 10. Suppose am � 1 and bn � 1 are any complex numbers,
0 < α < 1/2 is a fixed real number. If Dα � N � D1/2 and MN ∼ D, then
for any exponent pair (κ, λ) we have

SII =
∑

m∼M
am

∑

n∼N
b(n)e

(
W

mn

)

� (Wκ/(2(1+κ))D(3+λ)/(4(1+κ)) +D1−α/2 +D3/2W−1/2) log2D.

P r o o f. Let F = W/D. If F < N , then using Lemma 2 we get

SII �MNF−1/2 � D3/2W−1/2.

If F ≥ N , by Lemma 3 we get (take m1 = 1, m2 = n)

SII log−1D �MN(N−1/2 + (F/N)κ/(2(1+κ))M−(1+κ−λ)/(2(1+κ)))

� D1−α/2 + Fκ/(2(1+κ))N (2+κ)/(2(1+κ))M (1+λ+κ)/(2(1+κ))

�Wκ/(2(1+κ))D(3+λ)/(4(1+κ)) +D1−α/2,

where we used the fact that Dα � N � D1/2.

Now we prove the following

Proposition 2. Suppose 0 < α < 1/2 is fixed. Then for any exponent
pair (κ, λ) we have

D−εS(W,D)�Wκ/(2(1+κ))D(3+λ)/(4(1+κ)) +D1−α/2 +D3/2W−1/2.

P r o o f. We use the skillful decomposition due to Montgomery and Vaug-
han [7] and write

S(W,D) = Σ1 +Σ2 +Σ3, say,

where

Σ1 = −
∑

m≤U
ξm

∑

D/m<n≤D′/m
e

(
W

mn

)
,

Σ2 = −
∑

U<m≤U2

ξm
∑

D/m<n≤D′/m
e

(
W

mn

)
,
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ξm =
∑

m=d1d2, d1,d2≤U
µ(d1)µ(d2)� mε,

Σ3 = −
∑

m>U,n>U,D<mn<D′
µ(m)ηne

(
W

mn

)
, ηn =

∑

d|n, d≤U
µ(d)� nε.

We choose U = Dα. Use Lemma 9 to estimate Σ1 and Lemma 10 to
estimate Σ2 and Σ3, and the proposition follows.

5. Proofs of Theorem 1 and Corollary. Take y = x127/(200k) in
Proposition 1. Then the error term isO(x173/(200k)+ε). It remains to estimate
the sums

S±1 (y) =
∑

d≤y
µ(d)∆±k1(x/dk), S±2 (y) =

∑

d≤y
µ(d)∆±k2(x/dk).

To estimate S±2 (y), we need the estimate

∆±k2(x)� x46/(73k)+ε,

which is a consequence of the celebrated work of Huxley [3]. See also Nowak
[13]. From this estimate we have

(5.1) S±2 (y)� x46/(73k)+εy27/73 � x173/(200k)+ε.

Now we estimate S±1 (y). We only need to estimate

S(D) =
∑

d∼D
µ(d)∆±k1(x/dk)

for 1� D � y.
We suppose (κ, λ) is an exponent pair such that (3 + λ)/(4(1 + κ)) <

1− 1/k. If D � x2κ/((1+4κ−λ)k), then by the estimate

∆±k1(u)� u1/k−1/k2

we have

(5.2) S(D)� x
1
k− 1+2κ−λ

1+4κ−λ · 1
k2 .

Now suppose D � x2κ/((1+4κ−λ)k). By the expression of ∆±k1(u) we get

S(D)� x1/k−1/k2

D1−1/k

{∑

l≤U
l−1−1/k|S(lx1/k, D)|+DU−1/k

}

for any U > 1, where S(W,D) is defined in the last section. We use Proposi-
tion 2 with α = 2/5 to bound S(lx1/k, D) and take U = D(1+4κ−λ)/(2κ)x−1/k

to get

S(D)� x
1
k− 1+2κ−λ

1+4κ−λ · 1
k2 + x

327
400k− 73

200k2 � x
1
k− 1+2κ−λ

1+4κ−λ · 1
k2 + x

173
200k .

This completes the proof of Theorem 1.



Sums and differences of kth powers 245

The Corollary follows from Theorem 1 if we take (κ, λ) = (1/2, 1/2) for
k = 4, (κ, λ) = (19/126, 86/126) for k = 5, (κ, λ) = (3/26, 112/156) for
k = 6, (κ, λ) = (2/18, 13/18) for k ≥ 7.

6. Proof of Theorem 2. Take y = x1/6 in Proposition 1. Then the
error term is O(x5/24+ε). It suffices to estimate the sums

S1(D) =
∑

d∼D
µ(d)∆+

41(x/d4), S2(D) =
∑

d∼D
µ(d)∆+

42(x/d4)

for any fixed 1� D � y.
S1(D) can be estimated in the same way as in the last section. Using

Proposition 2 to bound S(lx1/4, D) by taking (κ, λ) = (11/53, 33/53) =
BABA2BA2B(0, 1) and α = 2/5, we get

(6.1) S1(D)� x107/512 log5 x.

Now we estimate S2(D). Without loss of generality, suppose D � x1/12;
otherwise by the trivial estimate

S2(D)� x3/16D1/4 � x5/24.

For each fixed d, we write

(6.2)
∑

x/2<n4d4≤x
ψ((x/d4 − n4)1/4)

=
∑1∑2

ψ((x/d4 − n4)1/4) +O(x1/8D−1/2),

where

SC
(∑1 )

: 1 ≤ v ≤ log(x/D4)
8 log 2

,

SC
(∑2 )

:
x

d4 (1− 2−v) < n4 ≤ x

d4 (1− 2−v−1).

Take J = max(x1/24/2v, log x), then by Lemma 4
∑2

ψ((x/d4 − n4)1/4) = −2iRe
∑

1≤h≤J

1
2πh

∑2
e(−h(x/d4 − n4)1/4)(6.3)

+O
( ∑

|h|≤J
b(h)

∑2
e(−h(x/d4 − n4)1/4)

)
.

We first consider the sum

S2(d, h, v) =
∑2

e(−h(x/d4 − n4)1/4).
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Similarly to formula (2.6) of Nowak [14], we can get

(6.4) S2(d, h, v)

= eπi/4
∑3

g(r, d)e(F (r, d)) +O

(
1√
h
· x

1/8

D1/2
2−7v/8 + log x

)
,

where

F (r, d) = −x
1/4

d
(h4/3 + r4/3)3/4 ∼ −rx

1/4

d
,

g(r, d) =
h√
3

(hr)−1/3x1/8d−1/2(h4/3 + r4/3)−5/8 ∼ h2/3r−7/6x1/8d−1/2,

SC
(∑3 )

: h(2v − 1)3/4 < r ≤ h(2v+1 − 1)3/4.

Inserting (6.4) into (6.3) we have
∑2

ψ((x/d4 − n4)1/4) = cRe
∑

1≤h≤J

1
2πh

∑3
g(r, d)e(F (r, d))(6.5)

+O
( ∑

1≤h≤J
b(h)

∑3
g(r, d)e(F (r, d))

)

+O

(
log2 x+

x1/8

27v/8D1/2

)
.

Thus

S2(D) =
∑

d∼D
µ(d)

(
− 8

∑

x/2<n4d4≤x
ψ((x/d4 − n4)1/4) +O(1)

)
(6.6)

= − 8
∑

d∼D
µ(d)

∑1∑2
ψ((x/d4 − n4)1/4) +O(x1/8D1/2 +D)

= c
∑1 ∑

1≤h≤J

1
h

∑3 ∑

d∼D
µ(d)g(r, d)e(F (r, d))

+ O

(∑1 ∑

1≤h≤J

1
J

∑3 ∣∣∣
∑

d∼D
g(r, d)e(F (r, d))

∣∣∣
)

+O(x5/24)

=
∑4

+
∑5

+O(x5/24), say.

Using the exponent pair (1/6, 4/6) to estimate the sum over d we easily
find that

(6.7)
∑5 � x13/72 log2 x,

if we recall D � x1/12.
We shall use Proposition 2 to estimate the sum over d in

∑4. Let

W = x1/4(h4/3 + r4/3)3/4.
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Take (κ, λ) = (1/2, 1/2) and α = 2/5 in Proposition 2 to get

∑4 �
∑1∑

h

1
h

∑3
h2/3r−7/6x

1/8+ε

D1/2
(6.8)

× (D4/5 + x1/24r1/6D7/12 +D3/2x−1/8r−1/4)

� x5/24+ε.

Combining (6.6)–(6.8) gives

(6.9) S2(D)� x5/24+ε.

Now Theorem 2 follows from (6.1) and (6.9).
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