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conjugates of algebraic integers
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1. Introduction. Let α be an algebraic number with a(x − α1) . . .
. . . (x − αd) as its minimal polynomial over Z. Then α is called totally real
if all its conjugates α1 = α, α2, . . . , αd are real. Also, α is called an algebraic
integer if a = 1. Now, define I(d) as the smallest positive number with the
following property: any closed real interval of length at least I(d) contains
a full set of conjugates of an algebraic integer of degree d. It is clear that
I(1) = 1.

Theorem 1. We have

I(2) =
1 +
√

5
2

+
√

2.

As we will see from the proof of this simple theorem I(d) can also be
computed for all small d. The purpose of this paper is to give an upper
bound for I(d) for large d.

In 1918, I. Schur [Sc] proved that an interval on the real axis of length
smaller than 4 can contain only a finite number of full sets of conjugates of
algebraic integers. T. Zäımi [Za] gave another proof of Schur’s result. His
approach is based on M. Langevin’s proof [La] of Favard’s conjecture. More-
over, in [Za] it is proved that the length of an interval containing a full set of
conjugates of an algebraic integer of degree d is greater than 4−ψ1(d) with
some explicitly given positive function ψ1(d) satisfying limd→∞ ψ1(d) = 0.
Note that a similar result with another explicitly given function ψ2(d) also
follows from [Sc].

On the other hand, R. Robinson [Ro] showed that any interval of length
greater than 4 contains infinitely many full sets of conjugates of algebraic
integers. Moreover, V. Ennola [En] proved that such an interval contains full
sets of conjugates of algebraic integers of degree d for all d sufficiently large.
Hence limd→∞ I(d) = 4.
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A lower bound for I(d) can be obtained via a Kronecker type theorem.
In 1857, L. Kronecker [Kr] proved that if α is an algebraic integer all of
whose conjugates lie in [−2; 2] then α = 2 cos(πr) with r rational. So if α is
a totally real algebraic integer not of the form 2 cos(πr) with r rational, then

α = max
1≤j≤d

|αj | > 2.

In 1965, A. Schinzel and H. Zassenhaus [SZ] asked for a lower bound of the
house α in terms of the degree d of α. They showed that with the same
hypotheses,
(1) α > 2 + 4−2d−3.

This lower bound was derived from the lower bound for α , where α is an
algebraic integer which is not a root of unity. The conjectural inequality
α > 1 + c1/d (see [SZ]) with an absolute positive constant c1 is not yet
proved. This is also the case with D. H. Lehmer’s [Le] more general conjec-
tural inequality

M(α) = a

d∏

j=1

max{1, |αj |} > 1 + c2

where α is an algebraic number which is not a root of unity and c2 is an
absolute positive constant. Using the best known lower bound in Lehmer’s
conjecture [Lo] the author strengthened the inequality (1). We proved [Du]
that if α is a totally real algebraic integer of degree d, α 6= 2 cos(πr) with r
rational, and d is sufficiently large, then

α > 2 + 4.6
(log log d)3

d(log d)4 .

Thus the interval (
−2 cos

(
π

2d

)
; 2 + 4.6

(log log d)3

d(log d)4

]

does not contain a full set of conjugates of an algebraic integer of degree d.
It follows immediately that for all d sufficiently large,

(2) I(d) > 4 +
9
2
· (log log d)3

d(log d)4 .

Our main theorem gives an explicit slowly decreasing function, namely
12(log log d)2/log d, which cannot replace 9(log log d)3/2d(log d)4 in (2).

Theorem 2. There is an infinite sequence S of positive integers such
that for d ∈ S any interval of length greater than or equal to

4 + 12
(log log d)2

log d
contains a full set of conjugates of an algebraic integer of degree d.
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Clearly, for d ∈ S we have the inequality

I(d) ≤ 4 + 12
(log log d)2

log d
.

Our proof of Theorem 2 is based on the following statement.

Lemma. Let u, v, w be three fixed positive integers. Then there is an
infinite sequence S(u, v, w) of positive integers such that every d ∈ S(u, v, w)
is divisible by

w(vq(d)u)q(d)q(d)!,

where

q(d) =
[

log d
(u+ 1) log log d

]
.

Here and below [. . . ] denotes the integral part. We will also show that the
sequence S in Theorem 2 can be taken to be all sufficiently large elements
of S(2, 16, 2).

Now we will prove the Lemma, Theorem 2 and Theorem 1.

2. Proof of the Lemma. Put for brevity

f(x) =
log x

log log x
.

For x ≥ 16 the function f(x) is increasing. Let k ≥ 2 be an integer. Then
the equation (in x)

f(x)
u+ 1

= k

has a unique solution which we denote by xk. Clearly, x2 > 5503 and the
sequence xk is increasing. We now prove that

xk+1 > xk log xk.

Indeed, if xk+1 ≤ xk log xk then

u+ 1 = (u+ 1)(k + 1)− (u+ 1)k = f(xk+1)− f(xk)

≤ f(xk log xk)− f(xk) =
log(xk log xk)

log log(xk log xk)
− log xk

log log xk
.

Put yk = log log xk for brevity. By the last inequality we have

2 ≤ u+ 1 ≤ yk + eyk

log(yk + eyk)
− eyk

yk
=
y2
k + yke

yk − eyk log(yk + eyk)
yk log(yk + eyk)

=
y2
k − eyk log(1 + yke

−yk)
yk log(yk + eyk)

<
y2
k − eyk log(1 + yke

−yk)
y2
k

.

The last expression is less than 1, a contradiction.
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Set

Nk =
{

[xk] + 1, [xk] + 2, . . . , [xk log xk]
}
.

Clearly, for n ∈ Nk,

q(n) =
[
f(n)
u+ 1

]
= k.

Note that for all n sufficiently large the expression

r(n) = w(vq(n)u)q(n)q(n) !

is less than

w(vq(n)u)q(n)q(n)q(n) ≤ exp
(

logw +
log v log n

(u+ 1) log log n

+
logn

log log n
log
(

log n
(u+ 1) log log n

))

< exp(logn) = n,

so that for all n ∈ Nk,

r(n) = w(vku)k k! ≤ [xk].

Hence, at least one of the integers [xk] + 1, [xk] + 2, . . . , 2[xk] is divisible by
w(vku)k k!. Since 2[xk] ≤ [xk log xk], at least one element of Nk belongs to
S(u, v, w). The Lemma is proved.

3. Proof of Theorem 2. Let d be a sufficiently large positive integer
from S(2, 16, 2). Suppose [A;B] is a real interval such that

B −A ≥ 4 + 12
(log log d)2

log d
.

Let also

q =
[

log d
3 log log d

]
.

We take two integers p1 and p2 in the intervals[
Aq;

(
A+

4 log log d
log d

)
q

)
and

((
B − 4 log log d

log d

)
q;Bq

]

respectively. Then [p1/q; p2/q] ⊂ [A;B] and

p2

q
− p1

q
≥ B −A− 8 log log d

log d
> 4 + 12

(log log d)2 − log log d
log d

.

We will show that the interval [p1/q; p2/q] contains a full set of conjugates
of an algebraic integer of degree d. Define

% =
p1 + p2

2q
, λ =

p2 − p1

4q
.
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Following [Ro] and [En] an irreducible monic polynomial of degree d with
all d roots in the interval [p1/q; p2/q] = [%− 2λ; %+ 2λ] can be constructed
by means of the Chebyshev polynomials

Tm(x) = xm +
[m/2]∑

j=1

(−1)j
m

j4j

(
m− j − 1
j − 1

)
xm−2j .

In [−1; 1] these are also given by the formula

Tm(x) = 21−m cos(m arccosx).

Set

Pm(x) = (2λ)mTm

(
x− %

2λ

)
.

We write

Pd(x) = xd +
d∑

j=1

cd,j x
d−j .

The denominators of the rational numbers % and 2λ are both at most 2q.
Hence the coefficients cd,1, cd,2, . . . , cd,q are all even integers if d is divisible by
2q!4q(2q)2q. This is exactly the case, since d ∈ S(2, 16, 2) (see the Lemma).
All the polynomials Pm(x) are monic, except for P0(x) = 2. So in [−1; 1)
there are numbers bq+1, bq+2, . . . , bd such that the polynomial

Qd(x) = Pd(x) +
d∑

j=1+q

bjPd−j(x) = xd +
d−1∑

j=0

ajx
j

has all coefficients ak integral and even, a0 not being divisible by 4. There-
fore, Qd(x) is irreducible by Eisenstein’s criterion.

In the interval [% − 2λ; % + 2λ] the maximum of the absolute value of
Pm(x) equals 2λm. Consequently, in this interval we bound

|Qd(x)− Pd(x)| ≤ 2
d∑

j=1+q

λd−j = 2
λd−q − 1
λ− 1

<
2λd

λq(λ− 1)
.

Since

q >
log d

3 log log d
− 1 and λ > 1 + 3

(log log d)2 − log log d
log d

,

for large d we have

q log λ > q(λ− 1)
(

1− λ− 1
2

)

>

(
log log d− 1− 3(log log d)2

log d

)(
1− 3(log log d)2

2 log d

)

> log log d− 2.
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Therefore,

λq(λ− 1) >
log d
e2 (λ− 1) >

(log log d)2

3
> 1.

Hence, in the interval %− 2λ ≤ x ≤ %+ 2λ we have

(3) |Qd(x)− Pd(x)| < 2λd.

Suppose ξ1 < . . . < ξd+1 are the points in [% − 2λ; % + 2λ] such that
|Pd(ξj)| = 2λd. By our choice, d is even. So Pd(ξj) is positive for odd j and
negative for even j. From (3) we see that at each of the points ξ1, . . . , ξd+1

the signs of the values of Qd(x) and Pd(x) coincide. Hence in each of the d
intervals (ξi; ξi+1), where i = 1, . . . , d, there is a zero of Qd(x). This proves
Theorem 2.

4. Proof of Theorem 1. We first prove that

I(2) ≥ 1 +
√

5
2

+
√

2.

It suffices to show that no interval [A;B] with A > 1−√2, B < (3 +
√

5)/2
contains both conjugates of an algebraic integer of degree two.

Indeed, suppose that

p−
√
p2 − 4q
2

> 1−
√

2,(4)

p+
√
p2 − 4q
2

<
3 +
√

5
2

(5)

with integers p, q such that p2−4q is a positive integer which is not a perfect
square. Then

√
p2 − 4q <

3 +
√

5
2

− 1 +
√

2 =
1 +
√

5
2

+
√

2 < 3.1,

so that p2 − 4q ≤ 9. Since p2 − 4q modulo 4 is zero or one and p2 − 4q is
not a perfect square, it equals 5 or 8. In the case p2 − 4q = 5 inequality (5)
implies that p ≤ 2. Also, p is odd, hence p ≤ 1. Then

p−
√
p2 − 4q
2

≤ 1−√5
2

< 1−
√

2,

which contradicts (4).
If p2− 4q = 8, then inequality (4) implies that p > 2. Hence p ≥ 4, since

p is even. Then

p+
√
p2 − 4q
2

≥ 4 +
√

8
2

>
3 +
√

5
2

,

which contradicts (5).
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To prove the inequality

I(2) ≤ 1 +
√

5
2

+
√

2

we show that any closed interval [A;B] of length (1 +
√

5)/2 +
√

2 con-
tains both conjugates of an algebraic integer of degree two. Without loss
of generality, we assume that A ∈ (−1; 0], since the intervals [A;B] and
[A+ z;B + z] with z an integer either both contain or both do not contain
any set of conjugates of an algebraic integer. There are three possibilities:
A ∈ (−1; (1−√5)/2], A ∈ ((1−√5)/2; 1−√2] and A ∈ (1−√2; 0]. In the
first case we have

B >
1 +
√

5
2

+
√

2− 1 =

√
5− 1
2

+
√

2

and [A;B] contains both roots of x2 − x− 1.
In the second case,

B >
1 +
√

5
2

+
√

2 +
1−√5

2
= 1 +

√
2

and [A;B] contains both roots of x2 − 2x− 1.
Finally, in the third case,

B >
1 +
√

5
2

+
√

2 + 1−
√

2 =
3 +
√

5
2

and [A;B] contains both roots of x2 − 3x+ 1. Theorem 1 is proved.

We now show how to compute I(d) for “small” d. As we already noticed,
there is no loss of generality to assume that the left endpoints of the intervals
lie in (−1; 0]. So the right endpoinds are bounded above, say, by 5. How-
ever the interval (−1; 5) contains only a finite number of sets of conjugates
of algebraic integers of degree d. Suppose there are M such sets. Clearly,
M ≥ 1, since [0; 4] contains such a set. Let also β1, . . . , βM be the smallest
conjugates in these sets and let γ1, . . . , γM be the largest ones. Since for
d ≥ 2 we have I(d) > 3, the intersection of the intervals [βi; γi] and [βj ; γj ]
is nonempty. So

(6) I(d) = max{γj − βi},
where the maximum is taken over all i, j, 1 ≤ i, j ≤M , such that for each s,
1 ≤ s ≤M , either βs < βi or γs > γj . If d is small, then M is not very large.
Having all M polynomials of degree d with all roots in (−1; 5) one can apply
formula (6) in order to find I(d) explicitly. From (6) it is also clear that we
can replace the word “closed” by “half-closed” (interval) in the definition
of I(d).
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[Sc] I. Schur, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen
mit ganzzahligen Koeffizienten, Math. Z. 1 (1918), 377–402.
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