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Stability of Markov processes nonhomogeneous in time

by Marta Tyran-Kamińska (Katowice)

Abstract. We study the asymptotic behaviour of discrete time processes which are
products of time dependent transformations defined on a complete metric space. Our suffi-
cient condition is applied to products of Markov operators corresponding to stochastically
perturbed dynamical systems and fractals.

0. Introduction. In some analytical models we need to study the
asymptotic behaviour of sequences of the form

(0.1) xn = Tn ◦ . . . ◦ T1x0,

where Ti : X → X are given transformations from a metric space X into it-
self and x0 ∈ X is a starting point. The behaviour of the sequence may
be quite complicated even in the case when all the transformations Ti

are contractions. As the simplest example consider constant transforma-
tion Ti(x) = ai for x ∈ X. Then, of course, xn = an and the fact that all Ti

have Lipschitz constant equal to zero is irrelevant.

A. Lasota proposed to study the behaviour of (xn) under the assumption

(0.2)

∞
∑

n=1

sup
x∈X

̺(Tn(x), Tn+1(x)) <∞.

We show that in the case when all Ti are contractive some more restrictive
condition (see (1.2)) is sufficient for the convergence of (xn). In the specific
case when all Ti are contractive with the same constant smaller than 1, our
condition reduces to (0.2).

The plan of the paper is as follows. In Section 1 we formulate theorems on
asymptotic properties of sequences of the form (0.1) and give some remarks.
The proof of the main result is given in Section 2. Section 3 contains basic
notions and facts concerning Markov operators acting on measures. Finally,
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in Section 4 we apply our theorem to stochastically perturbed systems and
iterated function systems (related to fractals).

1.The convergence theorem. Let (E, d) be an arbitrary metric space.
We call a mapping T : E → E nonexpansive with respect to the metric d if
it satisfies

d(T (u), T (v)) ≤ d(u, v) for u, v ∈ E,

and λ-contractive with respect to the metric d if λ ∈ [0, 1) and

d(T (u), T (v)) ≤ λd(u, v) for u, v ∈ E.

As usual, by Tn we denote the nth iterate of T . The set of all positive
integers is denoted by N.

Our goal is to study a family T (n,m) (n ≥ m, n,m ∈ N) of transforma-
tions from E into itself. We call a family {T (n,m)} a process if T (m,m) = Id
(the identity transformation) and

T (n,m) = T (n, k)T (k,m) for n ≥ k ≥ m.

Observe that in view of the above condition, a family {T (n,m)} is a process
if and only if there is a sequence (Tn)n∈N of transformations such that

T (n,m) = Tn−1 ◦ . . . ◦ Tm for n > m, n,m ∈ N.

When T (n,m) is generated by one transformation T : E → E, then

T (n,m) = Tn−m, n ≥ m (T 0 = Id).

We call a process {T (n,m)} asymptotically stable if there exists a unique
element u∗ ∈ E such that

(1.1) lim
n→∞

d(T (n,m)v, u∗) = 0 for all v ∈ E and m ∈ N.

Now, we are in a position to state our main result.

Theorem 1. Let (E, d) be a metric space and let (Tn)n∈N be a sequence

of arbitrary transformations from E into itself. Assume that there exists an

increasing sequence (nk) of positive integers and a sequence (λk) of non-

negative real numbers such that for each k ∈ N the transformation Tnk
is

λk-contractive and

(1.2) lim
k→∞

1

1 − λk

∞
∑

i=nk

sup
u∈E

d(Ti(u), Ti+1(u)) = 0.

Then for every m ∈ N and u ∈ E we have:

(a) The sequence (T (n,m)(u))n≥m is Cauchy.

(b) limn→∞ d(T (n,m)(u), T (n,m)(v)) = 0 for all v ∈ E.

If (E, d) is in addition complete then the process {T (n,m)} is asymptotically

stable.
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The proof will be given in the next section. Now we discuss some prob-
lems related to condition (1.2), which is a key assumption in Theorem 1.

Remark 1. First observe that if the sequence (λk)k∈N tends to a constant
λ < 1 or is bounded by a constant λ < 1 then condition (1.2) is equivalent
to

(1.3) lim
k→∞

∞
∑

i=nk

sup
u∈E

d(Ti(u), Ti+1(u)) = 0.

Remark 2. It is worth pointing out that even in the case of a compact
metric space assumption (1.2) of Theorem 1 cannot be replaced by condition
(1.3) without additional assumptions concerning the transformations Tn.
Consider the following example. Take E = [0, 1]. Let Tn be the identity
transformation for odd positive integers n, whereas for even n set Tn(u) =
(1 − 1/n2)u, u ∈ E. Take nk = 2k, k ∈ N. Then T2k is λk-contractive with
λk = 1−1/(4k2). Note that supu∈E d(Ti(u), Ti+1(u)) ≤ 1/i2 for every i ∈ N,
hence (1.3) holds. It is easy to calculate that T (n, 1)(u) = T (n, 2)u = aku
for 2k ≤ n < 2k + 2, where

ak =

k
∏

i=1

(

1 −
1

4i2

)

for k ∈ N.

Since the sequence (ak) tends to 2/π as k → ∞, we have

lim
n→∞

T (n, 1)(u) =
2

π
u

and the limit depends on u, so the process is not asymptotically stable.

The following theorem shows that the assumptions of Theorem 1 can be
modified in a way that will be useful later.

Theorem 2. Let (E, d) be a complete metric space and , for every n ∈ N,
the mapping Tn : E → E be a nonexpansive transformation with respect

to the metric d. Assume that there is a subset E0 ⊂ E and a metric

d0 : E0 × E0 → R+ such that

(i) E0 is dense in E with respect to the metric d and invariant under

every Tn, i.e. Tn(E0) ⊂ E0 for n ∈ N;

(ii) d0 is stronger than d, i.e.

d(u, v) ≤ d0(u, v) for u, v ∈ E0.

Assume, moreover , that there exists an increasing sequence (nk) of positive

integers and a sequence (λk) of nonnegative real numbers so that
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(iii) lim
k→∞

1

1 − λk

∞
∑

i=nk

sup
u∈E0

d0(Ti(u), Ti+1(u)) = 0;

(iv) for each k ∈ N the transformation Tnk
restricted to E0 is λk-con-

tractive with respect to the metric d0.

Under the above assumptions the process {T (n,m)} is asymptotically

stable and the unique element u∗ ∈ E described by condition (1.1) is such

that the sequence (Tn(u∗)) tends to u∗.

P r o o f. By conditions (iii), (iv) and Tn-invariance of E0 we can use
Theorem 1 for (E0, d0). From Theorem 1(b) and assumption (ii) it follows
that for each m ∈ N we have

(1.4) lim
n→∞

d(T (n,m)(u), T (n,m)(v)) = 0 for all u, v ∈ E0.

Since E0 is dense in (E, d) and each Tn is nonexpansive with respect to d,
(1.4) remains true for u, v ∈ E. The properties (a) and (ii) imply that for
every m ∈ N and u ∈ E0 the sequence (T (n,m)(u)) is also Cauchy with
respect to the metric d, thus it is convergent in (E, d).

By what we have just shown, for each m ∈ N there exists exactly one
point, say um, such that

(1.5) lim
n→∞

d(T (n,m)v, um) = 0 for all v ∈ E.

Fix an integer m ≥ 2 and u ∈ E. Substituting v = T (m, 1)(u) into (1.5) we
get

lim
n→∞

d(T (n,m)T (m, 1)(u), um) = 0.

On the other hand, the sequence (T (n, 1)(u)) tends to u1. Since for each n
sufficiently large T (n,m)T (m, 1)u = T (n, 1)u and this sequence has exactly
one limit point, um must be u1. Moreover, by nonexpansiveness of Tn,

d(Tn+1(u1), u1) ≤ d(u1, T (n+ 1, 1)(u)) + d(T (n, 1)(u1), u1) for n ∈ N.

From (1.5) it now follows that the sequence (Tn(u1)) tends to u1.

Now consider a special case when every transformation is independent
of n, i.e. Tn = T . Then obviously condition (iii) is satisfied and we have the
following corollary, which was stated by A. Lasota [6].

Corollary 1. Assume that a mapping T : E → E defined on a complete

metric space is nonexpansive. Suppose there is a subset E0 ⊂ E and a metric

d0 : E0 × E0 → R+ such that

(i′) E0 is dense in E with respect to the metric d and T -invariant ;
(ii′) d0 is stronger than d;
(iii′) the transformation T restricted to E0 is λ-contractive with respect

to the metric d0, where λ < 1 is a constant.



Stability of Markov processes 51

Then T has a unique fixed point u∗ in E and

lim
n→∞

d(Tn(u), u∗) = 0 for all u ∈ E.

2. Proof of Theorem 1. We precede the proof of Theorem 1 with the
following lemmas.

Lemma 1. Let (E, d) be a metric space. Assume that a sequence (zn)n∈N

in E has the following property :

(I) For every ε > 0 there exists a Cauchy sequence (vn)n∈N in E such

that

lim sup
n→∞

d(vn, zn) ≤ ε.

Then the sequence (zn) is Cauchy in (E, d).

The proof of the above lemma is a straightforward consequence of con-
dition (I).

Lemma 2. Let (E, d) be a metric space and Tn, n ∈ N, be arbitrary

transformations from E into itself. If there exists a k ∈ N and a nonnegative

real number ak so that

(2.1) d(Tk(u), Tk(v)) ≤ akd(u, v) for all u, v ∈ E,

then for every z ∈ E and n > k, n ∈ N,

(2.2) d(T (n + 1, k + 1)(z), Tn−k
k (z))

≤
n−1
∑

i=k

εi + akd(T (n, k + 1)(z), Tn−k−1
k (z)),

where

(2.3) εi = sup
u∈E

d(Ti(u), Ti+1(u)) for i ∈ N.

P r o o f. Let z ∈ E. For each fixed n > k define yn = T (n+ 1, k + 1)(z)
and xn = Tn−k

k (z). Observe that, according to the recurrent formulas
yn = Tn(yn−1) and xn = Tk(xn−1), we have

d(yn, xn) ≤
n−1
∑

i=k

d(Ti(yn−1), Ti+1(yn−1)) + d(Tk(yn−1), Tk(xn−1)).

From this and assumption (2.1) it follows that

d(yn, xn) ≤

n−1
∑

i=k

εi + akd(yn−1, xn−1),

where εi are given by (2.3). The last inequality is equivalent to (2.2).
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Proof of Theorem 1. Fix a positive integer m. We begin by showing that
for every ε > 0 there exists k = k(ε,m) ∈ N such that

(2.4) lim sup
n→∞

d(T (n,m)(u), vn(u)) ≤ ε for all u ∈ E,

where vn(u) = Tn−1−nk

nk
(T (nk + 1,m)(u)) for n > nk.

Given ε > 0, by assumption (1.2) we can choose k0 so that

(2.5)
1

1 − λk

∞
∑

i=nk

εi < ε for k ≥ k0,

where

εi = sup
u∈E

d(Ti(u), Ti+1(u)) for i ∈ N.

Let k be an integer such that nk > max{m,nk0
} and let u ∈ E. Applying

Lemma 2 to the transformation Tnk
we infer that inequality (2.2) is valid

for every n > nk and z ∈ E. In particular, for z = T (nk + 1,m)(u) and
n > nk we obtain

d(T (n + 1, nk + 1)(T (nk + 1,m)(u)), Tn−k
nk

(T (nk + 1,m)(u)))

≤
n−1
∑

i=nk

εi + λkd(T (n, nk + 1)(T (nk + 1,m)(u)), Tn−1−k
nk

(T (nk + 1,m)(u))).

This estimate and (2.5) imply that

d(T (n + 1,m)(u), vn+1(u)) ≤ (1 − λk)ε+ λkd(T (n,m)(u), vn(u)),

where vn(u) = Tn−1−nk

nk
(T (nk + 1,m)(u)) for n > nk.

It follows that the numerical sequence (d(T (n,m)(u),vn(u)))n>nk
is bounded

and that

lim sup
n→∞

d(T (n + 1,m)(u), vn+1(u))

≤ (1 − λk)ε+ λk lim sup
n→∞

d(T (n,m)(u), vn(u)).

Consequently,

lim sup
n→∞

d(T (n,m)(u), vn(u)) ≤ ε,

which completes the proof of (2.4).

Since for each k ∈ N the transformation Tnk
is λk-contractive, the se-

quence (Tn−nk

nk
(z))n≥nk

is Cauchy for z ∈ E. From this and (2.4) it follows
that for every u ∈ E the sequence (T (n,m)(u))n≥m satisfies condition (I)
of Lemma 1, so the proof of (a) is complete.
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To prove (b) fix ε > 0 and choose k such that (2.4) holds. Let u, v ∈ E.
Clearly,

d(T (n,m)(u), T (n,m)(v)) ≤ d(T (n,m)(u), Tn−1−nk

nk
(T (nk + 1,m)(u)))

+ d(T (n,m)(v), Tn−1−nk

nk
(T (nk + 1,m)(v)))

+ λn−1−nk

k d(T (nk+1,m)(u), T (nk +1,m)(v))

for all n > nk. By assumption, λk<1, therefore the last term on the right-
hand side converges to zero as n→ ∞. Hence and from (2.4) we obtain

lim sup
n→∞

d(T (n,m)(u), T (n,m)(v)) < 2ε.

Since ε > 0 is arbitrary, this completes the proof of (b).
The second part of the theorem is obvious.

3. Markov operators. Let (X, ̺) be a Polish space, i.e. a separable
complete metric space. We denote by BX the σ-algebra of Borel subsets
of X. The space of all finite Borel measures (nonnegative, σ-additive) on X
will be denoted by M. The subspace of M which contains only normalized
measures (i.e. µ(X) = 1, µ ∈ M) will be denoted by M1 and its elements
will be called distributions. Furthermore,

Msig = {µ1 − µ2 : µ1, µ2 ∈ M}

denotes the space of finite signed measures.
As usual, we denote by B(X) the space of all bounded Borel measurable

functions f : X → R and by C(X) its subspace containing all continuous
functions. Both spaces are considered with the norm

‖f‖ = sup
x∈X

|f(x)|.

For f ∈ B(X) and µ ∈ Msig we write

〈f, µ〉 =
\
X

f(x)µ(dx).

The space Msig is a normed vector space with the Fortet–Mourier norm

([3], [9])

‖µ‖F = sup{|〈f, µ〉| : f ∈ F} for µ ∈ Msig,

where

F = {f ∈ C(X) : ‖f‖ ≤ 1 and |f(x) − f(y)| ≤ ̺(x, y) for x, y ∈ X}.

In general, (Msig, ‖·‖F ) is not a complete space. However, it is known that
the set M1 with the distance ‖µ1 − µ2‖F is a complete metric space ([9])
and the convergence

lim
n→∞

‖µn − µ‖F = 0 for µn, µ ∈ M1
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is equivalent to weak convergence of distributions defined by

lim
n→∞

〈f, µn〉 = 〈f, µ〉 for all f ∈ C(X).

In M1 we introduce another distance, the Hutchinson metric ([5], [6]):

‖µ1 − µ2‖H = sup{|〈f, µ1 − µ2〉| : f ∈ H} for µ1, µ2 ∈ M1,

where

H = {f ∈ C(X) : |f(x) − f(y)| ≤ ̺(x, y) for x, y ∈ X};

‖µ1 − µ2‖H is always defined but for some µ1, µ2 ∈ M1 it may be infinite.
Note that, because of the inclusion F ⊂ H, we always have

‖µ1 − µ2‖F ≤ ‖µ1 − µ2‖H for µ1, µ2 ∈ M1.

A linear mapping P : Msig → Msig is called a Markov operator if
P (M1) ⊂ M1 (see [6, 7, 9]). Now we will show how to construct a Markov
operator.

Let a linear operator U : B(X) → B(X) be given. Assume that U
satisfies the following conditions:

(U1) Uf ≥ 0 for f ∈ B(X), f ≥ 0;
(U2) U1X = 1X ;
(U3) if a nonincreasing sequence (fn)n∈N in B(X) is pointwise conver-

gent to 0 then

lim
n→∞

Ufn(x) = 0 for x ∈ X;

(U4) Uf ∈ C(X) for f ∈ C(X).

Define an operator P : Msig → Msig by

(3.1) Pµ(A) = 〈U1A, µ〉 for A ∈ BX , µ ∈ Msig.

It can be easily shown (see [6]) that P is the unique Markov operator satis-
fying

(3.2) 〈Uf, µ〉 = 〈f, Pµ〉 for f ∈ B(X), µ ∈ Msig,

so U is the dual operator to P . In particular, substituting µ = δx into (3.2)
we obtain

Uf(x) = 〈f, Pδx〉 for x ∈ X, f ∈ B(X),

where δx ∈ M1 is the point (Dirac) unit measure supported at x.
We call P a Feller operator if its dual operator U satisfies condition (U4).
Finally, for convenience, we present some facts concerning Markov oper-

ators which we need in the sequel (see [6]).

Proposition 1. Let P : Msig → Msig be a Feller operator and let its

dual operator U satisfy

|Uf(x) − Uf(x)| ≤ λ̺(x, x) for x, x ∈ X and f ∈ H,
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where λ ≤ 1 is a nonnegative constant. Then P is nonexpansive with respect

to the Fortet–Mourier norm and

(3.3) ‖Pµ1 − Pµ2‖H ≤ λ‖µ1 − µ2‖H for µ1, µ2 ∈ M1.

If , moreover , there is a measure ν ∈ M1 such that

(3.4) ‖Pν − ν‖H <∞,

then M0 = {µ ∈ M1 : ‖µ − ν‖H < ∞} is a dense and P -invariant subset

of the metric space (M1, ‖·‖F ), and it is a metric space when equipped with

the Hutchinson metric.

4. Dynamical systems. Throughout this section (X, ̺) is a Polish
space and (I,A) is a measurable space. We consider dynamical systems in
a general form (for the homogeneous cases see [7–8, 10]). Let (Ω,Σ,prob)
be a probability space and let ηn : Ω → I, n ∈ N, be a sequence of in-
dependent random elements (measurable transformations) having the same
distribution, i.e. the measure

ψ(A) = prob(ηn ∈ A) for A ∈ A

is the same for all n. Assume that for each n ∈ N a measurable transforma-
tion Sn : X × I → X is given.

Consider a sequence ξn : Ω → X of random elements defined by the
recurrent formula

(4.1) ξn = Sn(ξn−1, ηn) for n ∈ N,

where the initial value ξ0 : Ω → X is a random element independent of the
sequence (ηn).

We make the following assumptions:

(A1) For each n there exists a measurable function Ln : I → R+ such
that

(4.2) ̺(Sn(x, y), Sn(x, y)) ≤ Ln(y)̺(x, x) for x, x ∈ X, y ∈ I

and

(4.3) an =
\
I

Ln(y)ψ(dy) ≤ 1.

(A2) There exists a point x0 ∈ X such that

bn =
\
I

̺(x0, Sn(x0, y))ψ(dy) <∞ for n ∈ N.

(A3) There exists an increasing sequence (nk)k∈N of integers so that
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ank
< 1 for k ∈ N, and

lim
k→∞

1

1 − ank

∞
∑

i=nk

sup
x∈X

\
I

̺(Si(x, y), Si+1(x, y))ψ(dy) = 0.

The sequence given by (4.1) is a Markov process for which the one-
step transition function may depend on n. We now give a rule on how the
distributions of ξn evolve in time by means of Markov operators. For each
integer n define an operator Un acting on B(X) by setting

(4.4) Unf(x) =
\
I

f(Sn(x, y))ψ(dy) for x ∈ X, f ∈ B(X).

Of course, Un : B(X) → B(X) is a linear operator satisfying (U1)–(U3).
Moreover, from (4.2) it follows that for every y ∈ I the transformation
Sn(·, y) : X → X is continuous, therefore Unf ∈ C(X) for f ∈ C(X).
Hence, according to (3.1), the Markov operator Pn is of the form

Pnµ(A) =
\
X

{\
I

1A(Sn(x, y))ψ(dy)
}

µ(dx) for A ∈ BX , µ ∈ Msig.

We are interested in the asymptotic behaviour of the distributions

µn(A) = prob(ξn ∈ A) for A ∈ BX , n = 0, 1, 2, . . . ,

where (ξn) is defined by (4.1). Using the form of Pn it is easy to check
(see [7]) that

µn = Pnµn−1 for n ∈ N.

Consequently, µn = P (n+ 1, 1)µ0, n ∈ N.
Now, using Theorem 2 we can prove the main result of this section,

which is a nonhomogeneous (in time) version of a result due to A. Lasota
and M. C. Mackey [7] (p. 423).

Theorem 3. Assume that the sequence (Sn) satisfies (A1)–(A3). Then

there exists a unique measure µ∗ ∈ M1 such that limn→∞ ‖Pnµ∗−µ∗‖F = 0
and

(4.5) lim
n→∞

‖P (n,m)µ− µ∗‖F = 0 for all µ ∈ M1, m ∈ N.

P r o o f. We show that the Markov operators Pn : M1 → M1, n ∈ N,
satisfy the requirements of Theorem 2. Fix n. It is easy to calculate that, in
view of (4.4) and (A1),

|Unf(x) − Unf(x)| ≤ an̺(x, x) for x, x ∈ X and f ∈ H,

where, according to (4.3), an ≤ 1. Now, we are going to verify that

‖Pnδx0
− δx0

‖H ≤ bn,

where x0 and bn are described in (A2). Indeed, if f ∈H then |〈f, Pnδx0
−δx0

〉|
= |Unf(x0) − f(x0)|. Since ψ(I) = 1, we have f(x0) =

T
I
f(x0)ψ(dy), and
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consequently,

|〈f, Pnδx0
− δx0

〉| ≤
\
I

̺(Sn(x0, y), x0)ψ(dy).

The right-hand side does not depend on f , hence the desired estimate fol-
lows. Thus, by Proposition 1 the Markov operator Pn is nonexpansive with
respect to the Fortet–Mourier metric and the metric space (M0, ‖·‖H) sat-
isfies condition (i) of Theorem 2, where

M0 = {µ ∈ M1 : ‖µ− δx0
‖H <∞}.

Moreover, by (3.3) we have ‖Pnµ1 −Pnµ2‖H ≤ an‖µ1 −µ2‖H for all n, and
ank

< 1 for all k ∈ N by (A3), therefore condition (iv) is satisfied as well.

It remains to verify (iii). Observe that for f ∈ H and µ ∈ M0 we have
|〈f, Pnµ − Pn+1µ〉| = |〈Unf − Un+1f, µ〉| ≤ ‖Unf − Un+1f‖ for all n ∈ N.
The last term can be estimated as follows:

‖Unf − Un+1f‖ ≤ sup
x∈X

\
I

|f(Sn(x, y)) − f(Sn+1(x, y))|ψ(dy)

≤ sup
x∈X

\
I

̺(Sn(x, y), Sn+1(x, y))ψ(dy).

The right-hand side does not depend on f ∈ H and µ ∈ M0, thus

sup
µ∈M0

‖Pnµ− Pn+1µ‖H ≤ sup
x∈X

\
I

̺(Sn(x, y), Sn+1(x, y))ψ(dy),

which, according to (A3), proves condition (iii). Consequently, making use
of Theorem 2 completes the proof.

Now, we give some examples of applications of Theorem 3. First, we con-
sider iterated function systems [1–2, 6–8, 9, 10]. In our case transformations
vary in each step.

Example 1. Let N be a positive integer and for each n ∈ N let
Sn

i : X → X, i = 1, . . . , N , be a sequence of transformations such that

̺(Sn
i (x), Sn

i (x)) ≤ Ln
i ̺(x, x) for x, x ∈ X.

Moreover, let pi, i = 1, . . . , N , be a sequence of positive numbers such that
p1 + . . . + pN = 1. We define a random sequence (ξn) in the following way.
If an initial point x0 is given, we select a transformation S1

i with probability
pi and define x1 = S1

i (x0). Having defined the points x1, . . . , xn we select a
transformation Sn+1

i with probability pi and define xn+1 = Sn+1
i (xn). This

scheme can be described in terms of the following dynamical system. Let
I = {1, . . . , N} and let ηn : Ω → I, n ∈ N, be a sequence of independent
random variables with prob(ηn = i) = pi. Set Sn(x, i) = Sn

i (x) for x ∈ X,
i ∈ I, n ∈ N.
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If we assume that an =
∑N

i=1 piL
n
i ≤ 1 for n∈N, lim infn→∞ an < 1, and

the series
∑∞

n=1 supx∈X ̺(Sn
i (x), Sn+1

i (x)) is convergent for each i ∈ I, then
all the assumptions of Theorem 3 are satisfied. Thus, the process {P (n,m)}
generated by the Markov operators

Pnµ(A) =

N
∑

i=1

piµ((Sn
i )−1(A)) for A ∈ BX , µ ∈ M1, n ∈ N

is asymptotically stable.

The next example concerns dynamical systems with multiplicative per-
turbations [4, 11].

Example 2. Let (X, ‖·‖) be a separable Banach space or a closed cone in
such a space and I = [0,∞). For each n ∈ N consider the map
Sn : X × I → X of the form

Sn(x, y) = yTn(x) for x ∈ X, y ∈ I,

where Tn : X → X satisfies ‖Tn(x) − Tn(x)‖ ≤ cn‖x− x‖ for x, x ∈ X with
a nonnegative constant cn. Assume that the first moment of the random
variables ηn : Ω → I is finite, i.e.\

I

y ψ(dy) = K <∞.

If cnK ≤ 1 for n ∈ N, lim infn→∞ cn < 1/K and
∑∞

n=1
supx∈X ‖Tn(x) −

Tn+1(x)‖ is convergent, then all the assumptions of Theorem 3 are satisfied.
Thus, the process {P (n,m)} generated by the Markov operators

Pnµ(A) =
\
X

{\
I

1A(yTn(x))ψ(dy)
}

µ(dx) for A ∈ BX , µ ∈ M1, n ∈ N

is asymptotically stable.
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