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Jensen measures, hyperconvexity and

boundary behaviour of the pluricomplex Green function

by Magnus Carlehed (Östersund), Urban Cegrell (Ume̊a) and
Frank Wikström (Ume̊a)

Abstract. We characterise hyperconvexity in terms of Jensen measures with barycen-
tre at a boundary point. We also give an explicit formula for the pluricomplex Green func-
tion in the Hartogs triangle. Finally, we study the behaviour of the pluricomplex Green
function g(z,w) as the pole w tends to a boundary point.

1. Introduction. The pluricomplex Green function can be defined in
analogy with the classical Green function for the Laplace operator as follows:

Definition 1.1. Let Ω be an open, connected subset of C
N and let

w ∈ Ω. Define

g(z,w) = sup{u(z) : u ∈ Lw, u ≤ 0},
where Lw = {u ∈ PSH(Ω) : u(ζ) − log |ζ − w| ≤ O(1) as ζ → w}. The
function g is called the pluricomplex Green function with pole at w. We
sometimes write gΩ if we want to emphasise the dependence on the domain.

We refer to the monograph by Klimek [14] for the basic properties of
this function. It is well known that

lim
ζ→z

g(ζ, w) = 0

for every boundary point z ∈ ∂Ω if and only if Ω is hyperconvex.

The first part of our paper contains a characterisation of hyperconvexity
in terms of Jensen measures and an explicit formula for the pluricomplex
Green function in the Hartogs’ triangle. As far as the authors know, this
is the first known explicit example of the pluricomplex Green function in
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a pseudoconvex domain that is not hyperconvex. This part also gives a
characterisation of hyperconvex Reinhardt domains.

The second part of the paper is a discussion of the behaviour of the
pluricomplex Green function as the pole w tends to a boundary point.

Throughout the paper, we will use ∆ to denote the unit disc in C and
O(E1, E2) to denote the family of all holomorphic mappings from E1 to E2.

The authors would like to thank the Department of Mathematics and
Statistics, University of Canterbury, Christchurch for their kind hospitality
during the authors’ visit. We would also like to thank Professor W lodzimierz
Zwonek for pointing out an error in a previous version.

2. Jensen measures and hyperconvexity

Definition 2.1. Let Ω be a bounded domain in C
N , and let µ be a

positive, regular Borel measure supported on Ω. We say that µ is a Jensen

measure with barycentre z if

u(z) ≤
\
Ω

u dµ

for every continuous function u : Ω → [−∞,∞) that is plurisubharmonic
in Ω. We denote by Jz the set of Jensen measures having barycentre z.

This is a slightly different definition of Jensen measures than the usual
one, since we allow the measures to have support in Ω and since we also
consider Jensen measures for boundary points.

It is possible to estimate the maximal mass of Jensen measures as follows.

Proposition 2.2. Let Ω be a bounded domain in C
N . Take z,w ∈ Ω,

z 6= w. Then for every Jensen measure µ ∈ Jz, and every 0 < r < |z − w|,

µ(B(w, r)) ≤
log

|z − w|
diam(Ω)

log
r

diam(Ω)

.

In particular , µ(B(w, r)) → 0 as r → 0.

P r o o f. Let

u(ζ) = log
|ζ − w|

diam(Ω)
.

Then u is a negative plurisubharmonic function on Ω, continuous on Ω.
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Hence

log
|z − w|

diam(Ω)
= u(z) ≤

\
Ω

u(ζ) dµ(ζ)

≤
\

B(w,r)

u(ζ) dµ(ζ) ≤ log

(
r

diam(Ω)

)
µ(B(w, r)).

Rearrangement gives us the desired result.

Remark. The above estimate is sharp (up to a constant) if w is an
interior point of Ω, as shown by the following example: Let B denote the
unit ball in C

N and take r < 1. Consider the relative extremal function

V (z) = sup{u(z) : u ∈ PSH(B), u ≤ −χB(0,r)}.
It is well known [14] that

V (z) = max

{
log |z|
− log r

,−1

}
.

For |z| > r, Edward’s theorem [10] shows that V (z) = − sup{µ(B(0, r)) :
µ ∈ Jz}.

Lemma 2.3. If {µj}∞j=1 is a sequence of positive measures such that µj
converges weak-∗ to µ and if ϕ is an upper semicontinuous function with

compact support , then

lim
j→∞

\
ϕdµj ≤

\
ϕdµ.

For a proof, see Lemma I.1 in Cegrell [5].

Lemma 2.4. Let Ω be a bounded domain in C
N . Let {zn} ⊂ Ω be a

sequence of points converging to z. For each n, let µn ∈ Jzn
. Then there

is a subsequence µnj
and a measure µ ∈ Jz such that µnj

converges weak-∗

to µ.

P r o o f. First, using the Banach–Alaoglu theorem, we observe that⋃
z∈Ω

Jz is contained in a weak-∗ compact set. Hence, by passing to a
subsequence, we may assume that µn converges to some probability mea-
sure µ supported on Ω. In fact, µ is a Jensen measure for z, since if
u ∈ C(Ω) ∩ PSH(Ω), then\

u dµ = lim
n→∞

\
u dµn ≥ lim

n→∞
u(zn) = u(z).

This shows that µ ∈ Jz.
Other definitions of Jensen measures allowing barycentres on ∂Ω are

also possible; for example, one might consider Jensen measures for upper
bounded plurisubharmonic functions, but this would give rise to additional
complications. With this definition, it is not immediately clear whether
Lemma 2.4 holds.
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The notion of hyperconvexity is an important concept in pluripotential
theory. Hyperconvexity is defined in a way modelling the notion of regularity
for the Dirichlet problem for the Laplace operator. More precisely:

Definition 2.5. Let Ω be a bounded domain in C
N . We say that Ω is

hyperconvex if there is a negative, continuous plurisubharmonic exhaustion
function for Ω.

In fact, for hyperconvexity, it is enough to have a bounded plurisubhar-
monic exhaustion function, or indeed a weak plurisubharmonic barrier for
every boundary point. This fact is perhaps most clearly stated by B locki [3].
For more details on these questions, see also Aytuna [1].

Definition 2.6. Let Ω ⊂ C
N be a bounded domain, and let z ∈ ∂Ω.

We say that u ∈ PSH(Ω) is a weak plurisubharmonic barrier at z if u is a
non-constant negative function such that

lim
ζ→z

u(ζ) = 0.

Theorem 2.7. Let Ω⊂C
N be a bounded domain. Then Ω is hyperconvex

if and only if every boundary point has a weak plurisubharmonic barrier.

P r o o f. See B locki [3].

It is interesting to note that Jensen measures can be used to give a
characterisation of hyperconvexity. Indeed, we have:

Theorem 2.8. Let Ω be a bounded domain in C
N . Then Ω is hyperconvex

if and only if , for every z ∈ ∂Ω and every Jensen measure µ ∈ Jz(Ω), µ is

supported on ∂Ω.

P r o o f. Assume that Ω is hyperconvex. Let u be a continuous, negative
plurisubharmonic exhaustion function for Ω. Take any boundary point z ∈
∂Ω and any µ ∈ Jz. Then

0 = u(z) ≤
\
Ω

u dµ.

But, u≤0 on Ω and µ is a positive measure, thus u = 0 a.e. [µ]. Since u<0
in Ω, this implies that µ(Ω) = 0.

Conversely, take an open, relatively compact subset E in Ω and consider
the following construction (which is closely related to the relative extremal
function for E):

u(z) = sup{ϕ(z) : ϕ ∈ C(Ω) ∩ PSH(Ω), ϕ ≤ 0, ϕ ≤ −1 on E}.
Edward’s theorem implies that

u(z) = inf
{
−
\
E

dµ : µ ∈ Jz
}

= − sup{µ(E) : µ ∈ Jz}.
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Let z ∈ ∂Ω and assume that limζ→z u(ζ) < 0. Take a sequence zn → z such
that

u(zn) < −ε for every n.

We can then find corresponding measures, µn ∈ Jzn
, such that µn(E) > ε.

By passing to a subsequence, using Lemma 2.4, we may assume that µn
converge weak-∗ to a probability measure µ ∈ Jz.

Then, using Lemma 2.3,

µ(E) =
\
χ
E
dµ ≥ lim

n→∞

\
χ
E
dµn = lim

n→∞
µn(E) ≥ ε,

which contradicts the assumption on Jensen measures for boundary points.
This shows that u∗ is a bounded plurisubharmonic exhaustion function
for Ω. Hence Ω is hyperconvex.

Corollary 2.9. Let Ω be a bounded domain in C
N and let z ∈ ∂Ω and

w ∈ Ω. Then limζ→z g(ζ, w) = 0 if and only if every measure µ ∈ Jz is

supported on ∂Ω.

P r o o f. The proof of Theorem 2.8 shows that there is a negative plurisub-
harmonic function u on Ω tending to 0 at z if and only if every Jensen
measure with barycentre z is supported on ∂Ω. A standard construction
(patching u with a logarithmic pole) shows that the Green function tends
to 0 at z. The converse is obvious.

Corollary 2.10. Let Ω be a bounded domain in C
N with C1 boundary.

If there is a boundary point z and an analytic disc φ : ∆ → Ω such that

φ(0) = z and φ(∆) 6⊂ ∂Ω, then Ω is not hyperconvex.

P r o o f. Let µ be the push-forward of the normalised Lebesgue measure
on ∆ by φ. Then µ is a Jensen measure for z which is not supported on ∂Ω.
To see that µ is indeed a Jensen measure, let u be a plurisubharmonic
function on Ω, continuous up to the boundary. By a theorem of Fornæss
and Wiegerinck [9], we can find a sequence uj of smooth functions, each
plurisubharmonic on a neighbourhood of Ω, such that uj converges to u
uniformly on Ω. Hence uj(z) ≤

T
uj dµ, since uj ◦ φ is subharmonic on (a

neighbourhood of) ∆, and by passing to a limit, we see that µ is a Jensen
measure for continuous plurisubharmonic functions.

Remark. At first sight it may seem that Corollary 2.10 follows immedi-
ately from the maximum principle for plurisubharmonic functions: Assume
that u is a bounded plurisubharmonic exhaustion function for Ω, and take
φ to be an analytic disc as in the statement of the corollary. Then u◦φ is a
negative subharmonic function on the unit disc in C such that u◦φ vanishes
for some interior point. The maximum principle would then force u ◦ φ to
vanish identically, contradicting the fact that u is an exhaustion function
for Ω. The problem with this reasoning is that u is only plurisubharmonic
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on Ω, and the image of φ contains points of ∂Ω. Hence we may only con-
clude that u ◦φ is subharmonic where it is negative, not on the whole of ∆.
Of course, if we know that φ−1(∂Ω) is polar in ∆, we may apply the max-
imum principle directly, and in this case it is not necessary to require any
boundary regularity of Ω.

Example 2.11. The converse of Corollary 2.10 is not true as seen from
the following example. Let α be a positive irrational number and define

Ω = {(z1, z2) ∈ C
2 : |z1|α < |z2| < 2|z1|α} ∩∆2.

It is not difficult to verify that Ω is pseudoconvex and that every boundary
point of Ω except 0 admits a weak plurisubharmonic barrier. However, 0∈
∂Ω, and thus Ω is not hyperconvex, and there is no non-constant analytic
disc f : ∆ → Ω such that f(0) = 0. Seeking a contradiction, assume that
there exists such a disc, f(ζ) = (f1(ζ), f2(ζ)), where f1(0) = f2(0) = 0.
Then either one of the components fj vanishes identically, which forces the
other component to vanish as well, or we can write

fj(ζ) = ζkjgj(ζ), j = 1, 2,

where kj are positive integers, and gj are holomorphic on ∆ and gj(0) 6= 0.
By assumption, the image of f is contained in Ω, hence

|ζ|k1α|g1(ζ)|α ≤ |ζ|k2 |g2(ζ)|k2 ≤ 2|ζ|k1α|g1(ζ)|α

for every ζ ∈ ∆. Looking at the first inequality and letting ζ → 0 we deduce
that k1α≥k2. Similarly, the second inequality implies that k2≥k1α. Hence
k1α = k2, which contradicts the assumption that α is irrational.

Example 2.12. Let T denote the Hartogs triangle, T = {(z1, z2)∈C
2 :

|z1|< |z2|<1}. Then T is pseudoconvex, but not hyperconvex, since φ(ζ)=
(0, ζ) is an analytic disc passing through (0, 0) ∈ ∂T but not lying entirely in
∂T . This shows that the pluricomplex Green function for T does not tend to
0 at the origin. On the other hand, one can show that the Jensen measures of
all other boundary points are supported on ∂T . Hence, the Green function
will tend to 0 at every boundary point of ∂T except the origin.

In fact, it is possible to explicitly calculate the pluricomplex Green func-
tion for T . Let ∆2 denote the (unit) bidisc in C

2, and define E = {(z1, 0) :
|z1| < 1}. Let f : ∆2 \ E → T be defined by f(z1, z2) = (z1z2, z2). Then f
is a biholomorphism. Let

g(z,w) = g∆2(f−1(z), f−1(w))

= log max

{∣∣∣∣
z1/z2 − w1/w2

1 − z1w1/(z2w2)

∣∣∣∣,
∣∣∣∣
z2 − w2

1 − z2w2

∣∣∣∣
}
.

We claim that g is the pluricomplex Green function for T . The set E is
pluripolar, hence the pluricomplex Green function for∆2\E is the restriction
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of the Green function for ∆2 to ∆2 \ E. However, the pluricomplex Green
function is invariant under biholomorphisms.

Here, we see directly that for a fixed w, g(z,w) will tend to 0 as z tends
to any boundary point except the origin. But g(εz,w) will have different
limits for different z as ε→ 0.

The above reasoning can also be used to compute the automorphism
group for T . Let φ ∈ Aut(T ). Then f−1 ◦ φ ◦ f is an automorphism of
∆2 \E, hence an automorphism of ∆2 preserving E. It is easy to verify that
an automorphism of ∆2 fixing E must be a rotation in the z2 variable and
an arbitrary Möbius transformation in the z1 variable. This means that

f−1 ◦ φ ◦ f(z) =

(
eiθ

z1 − α

1 − αz1
, eiψz2

)
,

for some θ, ψ ∈ R, α ∈ ∆. Hence,

φ(z) =

(
ei(θ+ψ) z1z2 − αz2

2

z2 − αz1
, eiψz2

)
.

It is also possible to give a complete characterisation of hyperconvex
Reinhardt domains. We recall that a domain Ω ⊂ C

N is said to be Reinhardt

if

(z1, . . . , zN ) ∈ Ω ⇒ (eiθ1z1, . . . , e
iθnzN ) ∈ Ω,

for every real θ1, . . . , θN . For completeness, we begin by the following propo-
sition.

Proposition 2.13. Let Ω be a bounded pseudoconvex Reinhardt domain.

Then the logarithmic image of Ω is convex.

P r o o f. Assume that the logarithmic image Ω̃ of Ω is not convex. Then
we can find a sequence of parallel line segments Lτ ⊂ Ω̃, 0 ≤ τ ≤ 1,
where

⋃
∂Lτ ⋐ Ω̃, but

⋃
Lτ is not relatively compact in Ω̃. Parametrise

Lτ = Pτ + at, −ε ≤ t ≤ ε. We may assume that all components of a
are integers (an arbitrarily small perturbation will ensure this). Then the
pre-image of Lτ under the logarithmic map will be

Dτ = {(z1, . . . , zN ) ∈ C
N : |zj | = Cτ,j t

aj , e−ε ≤ t ≤ eε}.
Let A denote the annulus {e−ε ≤ |ζ| ≤ eε} ⊂ C, and define dτ : A → Dτ ⊂
Ω by

dτ (ζ) = (Cτ,1 ζ
a1 , . . . , Cτ,N ζ

aN ).

Then {dτ} is a family of “analytic annuli” such that
⋃
∂dτ ⋐ Ω, but

⋃
dτ

is not relatively compact in Ω. This contradicts the assumption that Ω is
pseudoconvex. (This is a minor modification of the standard Kontinuitäts-

prinzip, see e.g. Krantz [15].)
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Theorem 2.14. A bounded pseudoconvex Reinhardt domain, Ω, in C
N is

hyperconvex if and only if 0 6∈ ∂Ω and for every point z = (z1, . . . , zN ) ∈ ∂Ω
with some zj = 0, we have

(2.1) |Ω| ∩Π = ∅
for some plane R

N ⊃ Π = {x ∈ R
N : a • (x − |z|) = 0} where aj = 0 for

every j such that zj = 0. Here |Ω| and |z| denote the images of Ω and z,
respectively , under the mapping

C
N ∋ (ζ1, . . . , ζN ) 7→ (|ζ1|, . . . , |ζN |) ∈ R

N .

P r o o f. Assume that 0 6∈ ∂Ω. Let Ω̃ ⊂ R
N denote the logarithmic

image of Ω, i.e.

Ω̃ = {(log |z1|, . . . , log |zN |) : (z1, . . . , zN ) ∈ Ω}.
By assumption, Ω is pseudoconvex, hence Ω̃ is convex. Take any z ∈ ∂Ω. It
is enough to find a non-constant plurisubharmonic function u on Ω such that
u(z) ≥ u(ζ) for all ζ∈Ω. Let z̃∈∂Ω̃ be the image of z under the logarithmic
map. First assume that zj 6= 0 for every 1 ≤ j ≤ N . By convexity, we can
find a linear functional L on R

N such that ∞ > L(z̃) ≥ L(x) for every

x ∈ Ω̃, where L(t) =
∑
ajtj . Define

(2.2) u(ζ) =
N∑

j=1

aj log |ζj |.

Note that u is plurisubharmonic outside the coordinate axes in C
N and that

u(ζ) = L(ζ̃). Hence u(z) ≥ u(ζ) for every ζ ∈ Ω. In particular, u is bounded
above and plurisubharmonic on Ω outside the coordinate axes, and can be
extended to a plurisubharmonic function on Ω taking its maximum in z. In
the case where some of the coordinates of z are zero, the above construction
works, as the assumptions in the theorem allow us to take the corresponding
aj ’s to be zero. (Geometrically, there is a supporting hyperplane for Ω̃ which
is parallel to the critical coordinate axes. This means that even though some
coordinate of z̃ is −∞, the functional L will have a finite value in z̃.)

Conversely, assume that 0 ∈ ∂Ω. Fix a point P in Ω̃ with rational coordi-
nates. Choose a sequence of points Qj ∈ Ω̃ such that Qj → (−∞, . . . ,−∞)

and each Qj has rational coordinates. By convexity of Ω̃, the line segment

Lj connecting Qj and P is contained in Ω̃. As in the proof of Proposi-
tion 2.13, for every j, we can find an analytic annulus dj : Aj → Ω in the
pre-image of Lj under the logarithmic map. After a suitable change of co-
ordinates, we may assume that Aj = {̺j < |ζ| < 1}. Since Qj converges to
(−∞, . . . ,−∞), we may arrange so that ̺j → 0 as n→ ∞.

Now, let ζj =
√
̺j and let ωj denote the harmonic measure on Aj with

respect to ζj . An easy computation shows that ωj({|ζ| = 1}) = 1/2. Also



Jensen measures and hyperconvexity 95

note that zj = dj(ζj) → 0 as j → ∞. Let µj = (dj)∗ωj (the push-forward of
ωj under dj). Then µj is a Jensen measure with barycentre zj with the prop-
erty that µj(P

′) = 1/2 where P ′ is the pre-image of P under the logarithmic
map. Finally, with the help of Lemma 2.4, we may take a subsequence of
{µj} converging weak-* to a Jensen measure for 0. This measure is not
supported on ∂Ω, and hence, by Theorem 2.8, Ω is not hyperconvex.

Similarly, if z ∈ ∂Ω, some coordinates of z are zero, say zj = 0 for
j ∈ J ⊂ {1, . . . , N}, and (2.1) is not satisfied, then the analytic disc

f(ζ) = (f1(ζ), . . . , fN (ζ)),

where fj(ζ) = zj if j 6∈ J and fj(ζ) = εζ if j ∈ J , is a punctured analytic disc
as in Corollary 2.10 (since only f(0) ∈ ∂Ω, the assumption of C1 boundary
in the corollary is not necessary) provided that ε > 0 is sufficiently small.

(This last assertion also requires that Ω̃ is convex.)

Remark. It has come to our attention that the problem of characterising
hyperconvex Reinhardt domains has also been studied by Zwonek [24] using
a different method.

3. The Lempert function

Definition 3.1. Let Ω be bounded domain in C
N . Define the Lempert

function δ : Ω ×Ω → R by

δ(z,w) = inf{log |t| : ∃f ∈ O(∆,Ω) such that f(0) = z, f(t) = w}.
We recall that the Lempert function is the starting point for the defi-

nition of the Kobayashi distance. Lempert proved [18, 19] that for convex
domains, δ(z,w) = g(z,w).

It is always the case that g(z,w) ≤ δ(z,w): Consider any analytic disc φ :
∆→ Ω, where φ(0) = z, φ(t) = w. Then, since g(z,w) is plurisubharmonic
in z, the function u(ζ) = g(φ(ζ), w) is subharmonic on ∆. It is easy to verify
that u is negative on ∆ and has a logarithmic pole at ζ = t. Hence u is in
the defining family for the Green function on ∆ and, thus,

u(ζ) ≤ log

∣∣∣∣
t− ζ

1 − tζ

∣∣∣∣.

Hence g(z,w) = u(0) ≤ log |t|. Taking the infimum over all such discs, we
obtain g(z,w) ≤ δ(z,w).

Definition 3.2. Let Ω be a domain in C
N . Following Wu [22], we say

that Ω is taut if for any sequence fn ∈ O(∆,Ω) there exists a subsequence
fnj

such that either

• fnj
→ f ∈ O(∆,Ω) locally uniformly, or
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• for each compact subset K of ∆ and each compact subset L of Ω,
fnj

(K) ∩ L is empty for all sufficiently large j.

The Kontinuitätsprinzip (see e.g. Krantz [15]) shows that every taut do-
main is pseudoconvex. Conversely, Kerzman and Rosay [13] showed that
every pseudoconvex domain with C1 boundary, and more generally, every
hyperconvex domain, is taut. However, hyperconvexity is a stronger condi-
tion than tautness, as shown by the Hartogs triangle.

It is well known (cf. Jarnicki–Pflug [12]) that if Ω is a taut domain, then
the Lempert function is continuous on Ω × Ω off the diagonal. This result
can be somewhat improved.

Theorem 3.3. Let Ω be a bounded taut domain such that ∂Ω contains no

non-constant analytic disc. Then δ is continuous on Ω×Ω\{(z, z) : z ∈ Ω}.
P r o o f. Because of the symmetry of the Lempert function and the conti-

nuity on Ω×Ω, we only need to consider Ω×∂Ω. Let (ζj , ηj) be a sequence
of points tending to (z,w) ∈ Ω × ∂Ω. Assume that

lim
j→∞

δ(ζj , ηj) < 0.

Then (after passing to a subsequence) there is an ε > 0 such that δ(ζj , ηj) <
−2ε and corresponding analytic discs fj such that fj(0) = ζj , fj(tj) = ηj
and log |tj | < −ε. But, since Ω is taut, either there is a subsequence of the
discs, {fjk}, converging locally uniformly to an analytic disc f , or the fj ’s
“diverge”.

In the first case, we may also assume that tjk converges to some t, where
|t| ≤ e−ε. Using equicontinuity of the family {fjk}, we see that f(t) = w,
f(0) = z, but since w ∈ ∂Ω and f ∈ O(∆,Ω), this is a contradiction.

In the second case, by using Montel’s theorem on every component of
{fj}, we see that a subsequence converges to a disc f , where f(0) = z,
f(t) = w for some t, and f ∈ O(∆,Ω). Hence f(∆) ⊂ ∂Ω, which contradicts
the assumption on Ω. Thus if we extend δ to 0 on ∂Ω × Ω ∪ Ω × ∂Ω, we
find that δ is continuous on Ω ×Ω \ {(z, z) : z ∈ Ω}.

Remark. Let Ω be a bounded taut domain and let w ∈ ∂Ω. Define Dw
as the union of (the images of) all analytic discs lying in ∂Ω and passing
through w. Note that the proof of Theorem 3.3 shows that δ(ζj , ηj) → 0
when ζj → z and ηj → w as long as z 6∈ Dw.

4. Boundary behaviour of the pluricomplex Green function. Let
Ω be a bounded domain in C

N . We now study the following question: Given
a point z ∈ Ω and a point w0 ∈ ∂Ω, is it true that

lim
n→∞

g(z,wn) = 0
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for every sequence wn tending to w0? The corresponding question for the
classical Green function, G, is of no interest, since G is symmetric, that is,
G(x, y) = G(y, x) for every x and y. It is obvious that the answer to our
question is “yes” if Ω is a hyperconvex domain for which the pluricomplex
Green function is symmetric, for example, a convex domain.

Definition 4.1. Let Ω be a bounded domain in C
N . We say that a

point w0 ∈ ∂Ω has Property (P0) if

lim
w→w0

g(z,w) = 0

for every z ∈ Ω. If the convergence is uniform in z on compact subsets of
Ω \ {w0}, we say that w0 has Property (P).

Remark. Property (P) was introduced by Coman [6].

Example 4.2. Property (P0) does not imply Property (P). Take Ω =
∆2, the unit bidisc. Clearly, since Ω is convex, every boundary point has
Property (P0). However, not every boundary point has Property (P). Take
w0 = (a, 1) ∈ ∂Ω, 0 < |a| < 1, and let wn = (a, 1 − 1/n), zn = (0, 1 − 1/n).
Then (zn, wn) → ((0, 1), w0), but g(zn, wn) = log |a| 6= 0 for every n. Hence
w0 does not have Property (P).

Definition 4.3. Let Ω be a domain in C
N . Define

c(z,w) = sup{log |f(z)| : f ∈ O(Ω,∆), f(w) = 0}.
The function tanh−1 exp c is called the Carathéodory pseudodistance on Ω.

Remark. It is easy to see that c ≤ g.

A similar construction was proposed by Hervé [11] in connection with
questions in infinite dimensions.

Definition 4.4. Let Ω be an open set in C
N . Define

e(z,w) = sup{gf(Ω)(f(z), f(w))},
where the supremum is taken over all non-constant holomorphic functions
f : Ω → C.

Remark. Note that c ≤ e ≤ g. The left-hand inequality follows from
restricting the supremum in the definition of e to functions from Ω into ∆,
and, in this case, we have gf(Ω) ≥ g∆. The right-hand inequality follows
from the fact that g is decreasing under holomorphic mappings [14].

Theorem 4.5. Let Ω be a domain in C
N and assume that w0 ∈ ∂Ω is a

peak point for A(Ω). Then w0 has property (P).
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P r o o f. Let f be a peak function for w0, i.e. f ∈ A(Ω), f(w0) = 1 and
|f | < 1 on Ω \ {w0}. Define

(4.1) v(z,w) = log

∣∣∣∣
f(z) − f(w)

1 − f(z)f(w)

∣∣∣∣.

Hence g(z,w) ≥ c(z,w) ≥ v(z,w) and from (4.1), it is clear that

lim
w→w0

v(z,w) = 0,

the convergence being uniform in z on compact subsets of Ω \ {w0}.

Remark. The above proof actually shows that if there is a weak peak
function for w0 ∈ ∂Ω, that is, a non-constant holomorphic function f ∈
A(Ω) such that f(w0) = 1, |f | ≤ 1 on Ω, then w0 has Property (P0). In
fact, we can even conclude that g(z,w) → 0 uniformly in z on compact
subsets of Ω \ f−1(1). In a polydisc, this last conclusion is sharp, in the
sense that we do not have locally uniform convergence on any larger set.

In particular, if Ω ⊂ C
2 has Cω boundary, or more generally, if Ω ⊂ C

2

has smooth boundary of finite type [2], then every boundary point of Ω is a
peak point for A(Ω). For smoothly bounded domains in higher dimensions,
there are results on the existence of peak functions due to Yu [23] and
Diederich and Herbort [7].

For strictly pseudoconvex domains with C2 boundary, Carlehed [4] gave
the following estimate on the speed of convergence:

−g(z,w) ≤ C
dist(z, ∂Ω) dist(w, ∂Ω)

|z − w|4 ,

where C is some positive constant, depending on Ω.

Proposition 4.6. Let Ω ⊂ C
N be a bounded domain, and let w0 ∈ ∂Ω.

Assume that there exists a holomorphic function f : Ω → C, continuous

on Ω, such that f(w0) is a regular boundary point of f(Ω). Then w0 has

Property (P0).

P r o o f. The assumptions imply that e(z,w) → 0 as w → w0.

Remark. A domain Ω is said to be c-finitely compact if every c-ball
is relatively compact in Ω. This property implies that all boundary points
have Property (P0). Examples of such domains are bounded pseudoconvex
Reinhardt domains containing 0. (See [12] for details.)

Using the results of Poletsky [20, 21], Edigarian [8] and Lárusson and
Sigurdsson [16], we can write the pluricomplex Green function as
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g(z,w) = sup{u(z) : u ∈ PSH(Ω), u(·) ≤ δ(·, w)}(4.2)

= inf
{ \
Ω

δ(ζ, w) dµ(ζ) : µ ∈ Mz

}
,

where Mz denotes the set of all measures which are push-forward measures
of the (normalised) Lebesgue measure on ∂∆ by functions in Az = {f ∈
O(∆,Ω) : f(0) = z}. Note that Mz ⊂ Jz.

It is interesting to note that for any r > 0 and any n such that |w−w0|
< r, we have

g(z,w) = sup{u(z) : u ∈ PSH(Ω), u(·) ≤ χB(w0,r)δ(·, w)}(4.3)

= inf
{ \
Ω∩B(w0,r)

δ(ζ, w) dµ(ζ) : µ ∈ Mz

}
.

The second equality follows from using Poletsky’s results on the function
χB(w0,r)δ(·, w). A priori, this common expression is greater than or equal to
g, but it is in fact a member of the defining family for g, which establishes
the first equality. This reasoning implies that w0 having Property (P0) only
depends on the behaviour of the Lempert function close to w0.

It also follows that if µk is a sequence in Mz such that\
Ω∩B(w,r)

δ(ζ, w) dµk(ζ) → g(z,w),

then µk(Ω \ B(w0, r)) → 0 as k → ∞. Hence, “in the limit”, the measure
minimising the integral is supported on ∂Ω ∪B(w0, r).

Remark. Poletsky’s machinery requires, in the general case, that the
infima are taken over push-forwards of the Lebesgue measure on the circle
by analytic discs which extend to a neighbourhood of ∆. In the construction
of the Green function, it makes no difference to consider infima over larger
classes of Jensen measures, as long as they are Jensen measures for the
Green function. The reason is that if µ is such a measure, then\

δ(ζ, w) dµ(ζ) ≥
\
g(ζ, w) dµ(ζ) ≥ g(z,w).

Here, the first inequality follows from δ ≥ g, and the second from µ being
a Jensen measure for g with barycentre z. In other words, an infimum as
in (4.2) can never be smaller than g, even if we take the infimum over all
Jensen measures with respect to z. In fact, if the class of measures we are
considering contains the push-forwards of analytically extendible discs, the
infimum will equal the Green function, because of Poletsky’s results.

It is not known whether every boundary point in a hyperconvex domain
has Property (P0). We can, however, prove the following weaker result.
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Theorem 4.7. Let Ω be a bounded , hyperconvex domain in C
N , and let

{wn} be a sequence in Ω tending to w0 ∈ ∂Ω. Then there exists a pluripolar

set E ⊂ Ω (dependent of the sequence) such that

lim
n→∞

g(z,wn) = 0 for every z ∈ Ω \ E.

P r o o f. Let h be a continuous exhaustion function for Ω. Define

uj(z) = sup
n≥j

g(z,wn).

Then each u∗j is a bounded plurisubharmonic function, tending to 0 at ∂Ω.
Hence \

Ω

(−h)(ddcu∗j )
n =

\
Ω

(−u∗j )ddch ∧ (ddcu∗j )
n−1(4.4)

≤
\
Ω

(−g(·, wj))ddch ∧ (ddcu∗j )
n−1

=
\
Ω

(−h)ddcg(·, wj) ∧ (ddcu∗j )
n−1 ≤ . . .

≤
\
Ω

(−h)(ddcg(·, wj))n = −(2π)nh(wj).

The integration by parts is justified since all the functions involved are
bounded near ∂Ω. Since h is an exhaustion function, h(wj) → 0 as j → ∞.
This shows that the measures (ddcu∗j )

n tend weakly to 0. However, u∗j is a
decreasing sequence of negative plurisubharmonic functions. By continuity
of the Monge–Ampère operator on such sequences, u = limj u

∗
j is a maximal

plurisubharmonic function that is equal to zero on ∂Ω. Hence u ≡ 0. Since
u∗j is decreasing, each u∗j must in fact vanish identically on Ω.

Thus, for each j, there is a pluripolar set Ej such that uj ≡ 0 on Ω \Ej .
Set E = E1. The set E has the required properties for the following reason:
The sets Ej form an increasing sequence. However, if z ∈ Ej \ E, then
g(z,wk) = 0 for some 1 ≤ k < j, which is clearly impossible, hence Ej = E1

for every j.

Remark. If the set E is empty for every sequence tending to w0, then w0

has Property (P0). This can be seen from passing to suitable subsequences.

One drawback of this result is that the exceptional set may depend on
the sequence {wn}. At the expense of a weaker conclusion, we can find a
universal exceptional set. More precisely:

Corollary 4.8. Let Ω be a bounded , hyperconvex domain in C
N , and

let w0 ∈ ∂Ω. Then there exists a pluripolar set Ẽ ⊂ Ω such that

lim
w→w0

g(z,w) = 0 for every z ∈ Ω \ Ẽ.
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P r o o f. Let S denote the set of all sequences in Ω tending to w0. Take

Ẽ =
⋂

s∈S

Es,

where Es denotes the exceptional set corresponding to the sequence s.

5. A note on the multipolar Green function. Since the complex
Monge–Ampère operator is non-linear, it makes sense to consider pluricom-
plex Green functions with multiple poles. (The same construction for the
Laplace operator would only yield the sum of the corresponding one-polar
Green functions.) More precisely, let

A = {(w1, ν1), . . . , (wm, νm)}
be a finite subset of Ω × R+. Lelong [17] introduced the multipolar Green
function with poles in A as

g(z,A) = sup{u(z) : u ∈ LA},
where LA denotes the family of negative plurisubharmonic functions on Ω,
having a logarithmic pole of weight νj at each wj ∈ A.

As with the (unipolar) Green function, the multipolar Green function
for Ω tends to 0 as z tends to any boundary point if and only if Ω is
hyperconvex. With the help of the following estimates, we can connect the
boundary behaviour of the multipolar Green function with the boundary
behaviour of the one-pole Green function. We have

(5.1)
∑

A′∈P

g(z,A′) ≤ g(z,A) ≤ min
A′∈P

g(z,A′),

where P is any partition of A. These estimates follow immediately from the
fact that the sum in the leftmost term is a member of the defining family for
g(·, A), and that g(·, A) is a member of the defining family for each function
in the rightmost term. In summary, we have the following theorems:

Theorem 5.1. Let Ω be a domain in C
N . Fix z ∈ Ω and let A =

{(wj , νj)} be a finite subset of Ω×R+. If w0 ∈ ∂Ω has Property (P0), then

for every sequence {ωn}∞n=1 such that ωn → w0 and every ν > 0, we have

g(z,A ∪ {(ωn, ν)}) → g(z,A)

as n→ ∞.

P r o o f. The assumptions imply that g(z, ωn) → 0 as n → ∞. Hence,
by (5.1),

g(z,A) + νg(z, ωn) ≤ g(z,A ∪ {(ωn, ν)}) ≤ min{g(z,A), νg(z, ωn)}.
Letting n→ ∞, we see that g(z,A ∪ {(ωn, ν)}) → g(z,A).
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Theorem 5.2. Let Ω be a domain in C
N . Let z ∈ Ω and {w1, . . . , wm}

be a finite subset of ∂Ω. Suppose that wj has Property (P0) for every 1 ≤
j ≤ m. Take a sequence {(w

(n)
1 , . . . , w

(n)
m )}∞n=1 of m-tuples of points in Ω

such that w
(n)
j → wj as n → ∞ for every 1 ≤ j ≤ m. Then for every

(ν1, . . . , νm) ∈ R
m
+ ,

g(z, {(w
(n)
1 , ν1), . . . , (w(n)

m , νm)}) → 0

as n→ ∞.

P r o o f. The assumptions imply that, for every j, g(z,w
(n)
j ) → 0 as

n→ ∞. Hence, by (5.1),
∑

j

νjg(z,w
(n)
j ) ≤ g(z, {(w

(n)
1 , ν1), . . . , (w(n)

m , νm)}) ≤ min
j

{νjg(z,w(n)
j )}.

Letting n→ ∞, we see that g(z, {(w
(n)
1 , ν1), . . . , (w

(n)
m , νm)}) → 0.
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