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Continuous linear extension operators on spaces of
holomorphic functions on closed subgroups of a

complex Lie group

by Do Duc Thai and Dinh Huy Hoang (Hanoi)

Abstract. We show that the restriction operator of the space of holomorphic functions
on a complex Lie group to an analytic subset V has a continuous linear right inverse if
it is surjective and if V is a finite branched cover over a connected closed subgroup Γ
of G. Moreover, we show that if Γ and G are complex Lie groups and V ⊂ Γ × G is
an analytic set such that the canonical projection π1 : V → Γ is finite and proper, then
RV : O(Γ ×G)→ ImRV ⊂ O(V ) has a right inverse.

Introduction. Let M be a complex space. We denote by O(M) the
Fréchet space of analytic functions on M equipped with the topology of
uniform convergence on compacta. If V is a closed subvariety of M the
question of whether one can find a continuous linear extension operator
from O(V ) into O(M) was studied by various authors (see [2], [10], [12]).
For example if V is a closed subvariety of Cn a continuous linear extension
operator exists if V is an algebraic variety of Cn [2]. Moreover, in [8] Vogt has
given an important condition for existence of a right inverse of a continuous
linear surjection between nuclear Fréchet spaces.

In this note we take up the question of existence of continuous extension
operators from subvarieties of Cn, in the category of analytic subsets in a
complex Lie group, by using the splitting theorem of Vogt. Namely, we prove
the following two theorems.

Theorem 1. Let Γ be a connected closed subgroup of a complex Lie group
G and V an analytic set in G such that V is a branched cover over Γ and
the restriction map RV : O(G)→ O(V ) is surjective. Then RV has a right
inverse.
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Theorem 2. Let Γ and G be complex Lie groups and V ⊂ Γ × G an
analytic set such that the canonical projection π1 : V → Γ is finite and
proper. Then RV : O(Γ ×G)→ ImRV ⊂ O(V ) has a right inverse.

We now recall some definitions and relevant properties. Let E be a
Fréchet space with a fundamental system {‖ · ‖k} of seminorms. We say
that E has the property

• (DN) if there exists p such that ∀q, ∃k, ∃C > 0:

‖ · ‖2q ≤ C‖ · ‖k ‖ · ‖p,

• (Ω) if ∀p, ∃q, ∀k, ∃C, d > 0:

‖ · ‖∗1+dq ≤ C‖ · ‖∗k ‖ · ‖∗dp ,

• (Ω) if ∃d > 0, ∀p, ∃q, ∀k, ∃C > 0:

‖ · ‖∗1+dq ≤ C‖ · ‖∗k ‖ · ‖∗dp ,

where for each p we define ‖x∗‖∗p = sup{x∗(x) : ‖x‖p ≤ 1} for x∗ ∈ E∗, the
dual space of E.

The properties (DN), (Ω), (Ω) and many other properties were in-
troduced and investigated by Vogt. It is known [8] that a Fréchet space
F ∈ (DN) (respectively F ∈ (Ω)) if and only if F is isomorphic to a sub-
space (respectively a quotient space) of the space s of rapidly decreasing
sequences of complex numbers. In [8], Vogt has proved that a continuous
linear map R from a nuclear Fréchet space E onto a nuclear Fréchet space
F has a right inverse if F ∈ (DN) and KerR ∈ (Ω).

By the above splitting theorem of Vogt, to prove Theorems 1 and 2, it
suffices to show that

O(V ), ImRV ∈ (DN) and KerRV ∈ (Ω).

The proofs of these relations are given in Sections 1 and 3 respectively.

Finally, the authors wish to thank Professor N. V. Khue for his help
during the time this research was in progress.

1. Proof of Theorem 1

Lemma 1.1. Let θ be a finite proper holomorphic map from a complex
space X onto a complex manifold Y . Then O(X) ∈ (DN) if and only if
O(Y ) ∈ (DN).

P r o o f. Since O(Y ) is a subspace of O(X), the necessity is trivial.
Now, we prove the sufficiency. It is known [10] that a Fréchet space

F ∈ (DN) if and only if every continuous linear map T from Λ1(α) into F
is bounded on a neighbourhood of zero in Λ1(α), where α is any exponent
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sequence and

Λ1(α) =
{

(ξj) ⊂ Cn :
∞∑
j=1

|ξj |rαj <∞ for 0 < r < 1
}
.

Assume that O(Y ) ∈ (DN). We must prove O(X) ∈ (DN). By the
above mentioned result of Vogt it suffices to show that every continuous
linear map T from Λ1(α) into O(X) is bounded on a neighbourhood of zero
in Λ1(α).

By the integrality lemma [3] it follows that there exists p such that

fp + ap−1(f)fp−1 + . . .+ a0(f) = 0

for every f ∈ O(X), where ap−1(f), . . . , a0(f) ∈ O(Y ) are given by

ap−1(f) (y) =
∑

θ(x)=y

f(x),

. . .

a0(f) (y) =
∏

θ(x)=y

f(x).

Clearly ap−1(f), . . . , a0(f) are continuous polynomials in f with val-
ues in O(Y ). Hence ap−1T, . . . , a0T are also continuous polynomials on
Λ1(α). Since Λ1(α) ⊗̂π . . . ⊗̂π Λ1(α)︸ ︷︷ ︸

(p−1) times

, . . . , Λ1(α) ∈ (Ω), by the theorem of

Vogt ap−1T, . . . , a0T and hence T are bounded on a neighbourhood of zero
in Λ1(α).

Lemma 1.2. O(V ) ∈ (DN).

P r o o f. As V is a branched cover over Γ , by Lemma 1.1 it suffices to
show that O(Γ ) ∈ (DN).

Put Γe = {z∈Γ : f(z) = f(e) for every f ∈ O(Γ )}. It is well known [6]
that Γe is abelian and normal. Moreover dimO(Γe) = 1 and Γ/Γe is Stein.
This yields that O(Γ ) ∼= O(Γ/Γe) and hence we may assume that Γ is Stein.

We now prove that O(Γ ) ∈ (DN). By the theorem of Zaharyuta [12] it
suffices to check that every plurisubharmonic function ϕ on Γ with supΓ ϕ
<∞ is constant.

Consider the exponential map exp: TeΓ → Γ . Take a neighbourhood U
of zero in TeΓ such that

exp : U ∼= expU = V and V = V −1.

Given b ∈ Γ and a ∈ V , let za ∈ U for which exp za = a−1 and σ(λ) =
b(expλza)a for every λ ∈ C. Since ϕσ = const, we have

(∗) ϕ(ba) = ϕσ(0) = ϕσ(1) = ϕ(b) for every b ∈ Γ and every a ∈ V.
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Let b be an arbitrary point in Γ . By the connectedness of Γ we can find
a1 = e, a2, . . . , an ∈ V such that b = a1a2 . . . an. By (∗) we have

ϕ(b) = ϕ(a1a2 . . . an) = ϕ(a1a2 . . . an−1) = . . . = ϕ(a1) = ϕ(e).

Thus ϕ = const and O(Γ ) ∈ (DN).

Lemma 1.3. Let X be a Stein space. Then H0(X,S) ∈ (Ω) for every
coherent sheaf S on X.

P r o o f. Let {Kp} be an increasing exhaustion sequence of compact sets
inX. By the Cartan Theorem A, for each x ∈ X there exist a neighbourhood
Ux of x and σ1x, . . . , , σmx ∈ H0(X,S) which generate Sy for every y ∈ Ux.

By the compactness of Kp there exists a sequence {σn} ⊂ H0(X,S) such
that {σnx} generate Sx for every x ∈ X.

Since H0(X,S) is Fréchet we may assume that {σn} is bounded in
H0(X,S). Consider the Banach coherent sheaf O`

1

X of germs of holomor-
phic functions on X with values in `1 and the morphism η from O`

1

X into S
given by

η(f)(x) =
∑
n≥1

σn(x)fn(x) for f = {fn} ∈ O`
1

X .

By the choice of σn we infer that η is surjective. By a theorem of Leiterer [5],
Ker η is a Banach coherent sheaf and hence H1(X,Ker η) = 0 (see [5]). It
follows that the map η̂ : H0(X,O`

1

X ) ∼= O(X, `1)→ H0(X,S) is surjective.
On the other hand, since O(X, `1) ∼= O(X) ⊗̂π `1 ∈ (Ω) when O(X) ∈

(Ω), it remains to check that O(X) ∈ (Ω). For each n, let Xn denote the
union of irreducible branches of X of dimension ≤ n. We have

O(X) ∼= lim projO(Xn)

and the restriction maps Rn : O(X)→ O(Xn) are surjective. Hence O(X) ∈
(Ω) if O(Xn) ∈ (Ω) for n ≥ 1. For each n ≥ 1, choose a proper injection
θ : Xn → C2n+1. Since O(C2n+1) ∈ (Ω) we have

O(Xn) ∼= H0(C2n+1, (θn) ∗OXn
) ∈ (Ω).

Remark 1.4. While this paper was in preparation, we were not aware of
the results of D. Vogt [11] and A. Aytuna [1] who had proved Lemma 1.3
earlier. We thank the referee for pointing out these papers.

Lemma 1.5. KerRV = J(V ) = {f ∈ O(G) : f |V = 0} ∈ (Ω).

P r o o f. Let η denote the canonical map from G onto G/Ge and let

V̂ = {z ∈ G/Ge : f(z) = 0 for every f ∈ J(V )}.
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Then J(V ) = J(V̂ ) and as G/Ge is Stein we have

J(V̂ ) = H0(G/Ge, JV̂ )

where JV̂ denotes the coherent ideal sheaf defined by V̂ . By Lemma 1.3,
this yields that J(V̂ ) ∈ (Ω) and hence J(V ) ∈ (Ω).

Now Theorem 1 is deduced immediately from Lemmas 1.2 and 1.5.

2. It is known [7] that every non-compact connected complex Lie group
G with dimO(G) = 1 contains a closed subgroup Γ for which RΓ is not
surjective.

Thus the following question arises naturally. When is the restriction map
RV in Theorem 1 surjective?

The following proposition gives an answer.

Proposition 2.1. Let Γ be a connected closed subgroup of a complex Lie
group G such that Ge ⊂ Γ . Then RΓ : O(G)→ O(Γ ) is surjective.

P r o o f. By [6] there exists a closed subgroup K of G such that for some
n the groups G and K × Cn are isomorphic as complex Lie groups.

Moreover, there exists a closed Stein subgroup S0 of K such that for the
centre Z of K, the map

%0 : Z × S0 → K, (x, y) 7→ xy,

is a finite covering homomorphism.
By the result of [6], Ge ⊂ Z and Z ∼= Ge×C∗ν×Cµ for some non-negative

integers ν and µ.
Putting S = C∗ν ×Cµ×S0×Cn we get a finite covering homomorphism

% : Ge × S → G of degree n, given by

%(x0, x1, x2, x3, x4) = (%0((x0, x1, x2), x3), x4).

It is easy to see that

%−1(Γ ) = Ge × (Γ ∩ S).

Since S is Stein, the restriction map R̃ : O(S) → O(Γ ∩ S) and hence
also the restriction map R : O(Ge × S)→ O(Ge × Γ ∩ S) is surjective.

Now given g ∈ O(Γ ), define f ∈ O(G) by

f(y) =
1
n

∑
%(x,z)=y

ĝ(x, z) with ĝ ∈ O(Ge × S), ĝ|Ge×Γ∩S = g%.

Then f |Γ = g.

3.Proof of Theorem2. Let SO(V ) denote the spectrum of the Fréchet
algebra O(V ) equipped with the weak topology. Since π1 : V → Γ is a
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branched covering map and SO(Γ ) ∼= SO(Γ/Γe) ∼= Γ/Γe it follows that π1

induces a branched covering map π̃1 : SO(V )→ Γ/Γe.
Then SO(V ) is a complex space and O(V ) ∼= O(SO(V )).
Now since Γ/Γe×G/Ge is Stein, there exists a commutative diagram of

holomorphic maps

V Γ ×G

SO(V ) Imβ Γ/Γe ×G/Ge

Γ/Γe

δ

||xx
xx
xx
x

η

CCCCCC!!

//

η

NNNNNNNNNN''

π̃1

��

β //

π1

vvmmm
mmm

mmm
mmm

m
//

where δ and η are canonical maps.
Then it is easy to see that β is proper and hence Imβ is an analytic set in

Γ/Γe×G/Ge. Moreover, O(Imβ) ∼= ImRV . By Lemma 1.1, ImRV ∈ (DN)
and by Lemma 1.5, KerRV ∈ (Ω). Hence Vogt’s splitting theorem implies
that RV : O(Γ ×G)→ ImRV has a right inverse.
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