ANNALES POLONICI MATHEMATICI LXXI.2 (1999)

Continuous linear extension operators on spaces of holomorphic functions on closed subgroups of a complex Lie group

by DO DUC THAI and DINH HUY HOANG (Hanoi)

Abstract. We show that the restriction operator of the space of holomorphic functions on a complex Lie group to an analytic subset V has a continuous linear right inverse if it is surjective and if V is a finite branched cover over a connected closed subgroup Γ of G. Moreover, we show that if Γ and G are complex Lie groups and $V \subset \Gamma \times G$ is an analytic set such that the canonical projection $\pi_1 : V \to \Gamma$ is finite and proper, then $R_V : O(\Gamma \times G) \to \operatorname{Im} R_V \subset O(V)$ has a right inverse.

Introduction. Let M be a complex space. We denote by O(M) the Fréchet space of analytic functions on M equipped with the topology of uniform convergence on compacta. If V is a closed subvariety of M the question of whether one can find a continuous linear extension operator from O(V) into O(M) was studied by various authors (see [2], [10], [12]). For example if V is a closed subvariety of \mathbb{C}^n a continuous linear extension operator exists if V is an algebraic variety of \mathbb{C}^n [2]. Moreover, in [8] Vogt has given an important condition for existence of a right inverse of a continuous linear surjection between nuclear Fréchet spaces.

In this note we take up the question of existence of continuous extension operators from subvarieties of \mathbb{C}^n , in the category of analytic subsets in a complex Lie group, by using the splitting theorem of Vogt. Namely, we prove the following two theorems.

THEOREM 1. Let Γ be a connected closed subgroup of a complex Lie group G and V an analytic set in G such that V is a branched cover over Γ and the restriction map $R_V : O(G) \to O(V)$ is surjective. Then R_V has a right inverse.

¹⁹⁹¹ Mathematics Subject Classification: 32D10, 32F10, 46A04, 46A35, 46G20. Key words and phrases: complex Lie group, linear topological invariant, right inverse. Supported by the State Program for Fundamental Research in Natural Sciences.

THEOREM 2. Let Γ and G be complex Lie groups and $V \subset \Gamma \times G$ an analytic set such that the canonical projection $\pi_1 : V \to \Gamma$ is finite and proper. Then $R_V : O(\Gamma \times G) \to \operatorname{Im} R_V \subset O(V)$ has a right inverse.

We now recall some definitions and relevant properties. Let E be a Fréchet space with a fundamental system $\{\|\cdot\|_k\}$ of seminorms. We say that E has the property

• (DN) if there exists p such that $\forall q, \exists k, \exists C > 0$:

$$\|\cdot\|_{q}^{2} \leq C \|\cdot\|_{k} \|\cdot\|_{p},$$

• (Ω) if $\forall p, \exists q, \forall k, \exists C, d > 0$:

$$\|\cdot\|_{q}^{*1+d} \le C\|\cdot\|_{k}^{*}\|\cdot\|_{p}^{*d},$$

• $(\overline{\Omega})$ if $\exists d > 0, \forall p, \exists q, \forall k, \exists C > 0$:

$$\|\cdot\|_{q}^{*1+u} \le C\|\cdot\|_{k}^{*}\|\cdot\|_{p}^{*u},$$

where for each p we define $||x^*||_p^* = \sup\{x^*(x) : ||x||_p \le 1\}$ for $x^* \in E^*$, the dual space of E.

The properties (DN), (Ω) , $(\overline{\Omega})$ and many other properties were introduced and investigated by Vogt. It is known [8] that a Fréchet space $F \in (DN)$ (respectively $F \in (\Omega)$) if and only if F is isomorphic to a subspace (respectively a quotient space) of the space s of rapidly decreasing sequences of complex numbers. In [8], Vogt has proved that a continuous linear map R from a nuclear Fréchet space E onto a nuclear Fréchet space F has a right inverse if $F \in (DN)$ and Ker $R \in (\Omega)$.

By the above splitting theorem of Vogt, to prove Theorems 1 and 2, it suffices to show that

$$O(V)$$
, Im $R_V \in (DN)$ and Ker $R_V \in (\Omega)$.

The proofs of these relations are given in Sections 1 and 3 respectively.

Finally, the authors wish to thank Professor N. V. Khue for his help during the time this research was in progress.

1. Proof of Theorem 1

LEMMA 1.1. Let θ be a finite proper holomorphic map from a complex space X onto a complex manifold Y. Then $O(X) \in (DN)$ if and only if $O(Y) \in (DN)$.

Proof. Since O(Y) is a subspace of O(X), the necessity is trivial.

Now, we prove the sufficiency. It is known [10] that a Fréchet space $F \in (DN)$ if and only if every continuous linear map T from $\Lambda_1(\alpha)$ into F is bounded on a neighbourhood of zero in $\Lambda_1(\alpha)$, where α is any exponent

sequence and

$$\Lambda_1(\alpha) = \left\{ (\xi_j) \subset \mathbb{C}^n : \sum_{j=1}^\infty |\xi_j| r^{\alpha_j} < \infty \text{ for } 0 < r < 1 \right\}.$$

Assume that $O(Y) \in (DN)$. We must prove $O(X) \in (DN)$. By the above mentioned result of Vogt it suffices to show that every continuous linear map T from $\Lambda_1(\alpha)$ into O(X) is bounded on a neighbourhood of zero in $\Lambda_1(\alpha)$.

By the integrality lemma [3] it follows that there exists p such that

$$f^{p} + a_{p-1}(f)f^{p-1} + \ldots + a_{0}(f) = 0$$

for every $f \in O(X)$, where $a_{p-1}(f), \ldots, a_0(f) \in O(Y)$ are given by

$$a_{p-1}(f)(y) = \sum_{\theta(x)=y} f(x),$$
$$\dots$$
$$a_0(f)(y) = \prod_{\theta(x)=y} f(x).$$

Clearly $a_{p-1}(f), \ldots, a_0(f)$ are continuous polynomials in f with values in O(Y). Hence $a_{p-1}T, \ldots, a_0T$ are also continuous polynomials on $\Lambda_1(\alpha)$. Since $\underbrace{\Lambda_1(\alpha) \otimes_{\pi} \ldots \otimes_{\pi} \Lambda_1(\alpha)}_{(p-1) \text{ times}}, \ldots, \Lambda_1(\alpha) \in (\overline{\Omega})$, by the theorem of

Vogt $a_{p-1}T, \ldots, a_0T$ and hence T are bounded on a neighbourhood of zero in $\Lambda_1(\alpha)$.

LEMMA 1.2. $O(V) \in (DN)$.

Proof. As V is a branched cover over Γ , by Lemma 1.1 it suffices to show that $O(\Gamma) \in (DN)$.

Put $\Gamma_e = \{z \in \Gamma : f(z) = f(e) \text{ for every } f \in O(\Gamma)\}$. It is well known [6] that Γ_e is abelian and normal. Moreover dim $O(\Gamma_e) = 1$ and Γ/Γ_e is Stein. This yields that $O(\Gamma) \cong O(\Gamma/\Gamma_e)$ and hence we may assume that Γ is Stein.

We now prove that $O(\Gamma) \in (DN)$. By the theorem of Zaharyuta [12] it suffices to check that every plurisubharmonic function φ on Γ with $\sup_{\Gamma} \varphi < \infty$ is constant.

Consider the exponential map exp: $T_e\Gamma\to \Gamma.$ Take a neighbourhood U of zero in $T_e\Gamma$ such that

$$\exp: U \cong \exp U = V \quad \text{and} \quad V = V^{-1}.$$

Given $b \in \Gamma$ and $a \in V$, let $z_a \in U$ for which $\exp z_a = a^{-1}$ and $\sigma(\lambda) = b(\exp \lambda z_a)a$ for every $\lambda \in \mathbb{C}$. Since $\varphi \sigma = \text{const}$, we have

(*) $\varphi(ba) = \varphi \sigma(0) = \varphi \sigma(1) = \varphi(b)$ for every $b \in \Gamma$ and every $a \in V$.

Let b be an arbitrary point in Γ . By the connectedness of Γ we can find $a_1 = e, a_2, \ldots, a_n \in V$ such that $b = a_1 a_2 \ldots a_n$. By (*) we have

$$\varphi(b) = \varphi(a_1 a_2 \dots a_n) = \varphi(a_1 a_2 \dots a_{n-1}) = \dots = \varphi(a_1) = \varphi(e).$$

Thus $\varphi = \text{const}$ and $O(\Gamma) \in (DN)$.

LEMMA 1.3. Let X be a Stein space. Then $H^0(X, S) \in (\Omega)$ for every coherent sheaf S on X.

Proof. Let $\{K_p\}$ be an increasing exhaustion sequence of compact sets in X. By the Cartan Theorem A, for each $x \in X$ there exist a neighbourhood U_x of x and $\sigma_{1x}, \ldots, \sigma_{mx} \in H^0(X, \mathcal{S})$ which generate \mathcal{S}_y for every $y \in U_x$.

By the compactness of K_p there exists a sequence $\{\sigma_n\} \subset H^0(X, \mathcal{S})$ such that $\{\sigma_{nx}\}$ generate \mathcal{S}_x for every $x \in X$.

Since $H^0(X, S)$ is Fréchet we may assume that $\{\sigma_n\}$ is bounded in $H^0(X, S)$. Consider the Banach coherent sheaf $O_X^{\ell^1}$ of germs of holomorphic functions on X with values in ℓ^1 and the morphism η from $O_X^{\ell^1}$ into S given by

$$\eta(f)(x) = \sum_{n \ge 1} \sigma_n(x) f_n(x) \quad \text{ for } f = \{f_n\} \in O_X^{\ell^1}.$$

By the choice of σ_n we infer that η is surjective. By a theorem of Leiterer [5], Ker η is a Banach coherent sheaf and hence $H^1(X, \text{Ker } \eta) = 0$ (see [5]). It follows that the map $\hat{\eta} : H^0(X, O_X^{\ell^1}) \cong O(X, \ell^1) \to H^0(X, \mathcal{S})$ is surjective.

On the other hand, since $O(X, \ell^1) \cong O(X) \hat{\otimes}_{\pi} \ell^1 \in (\Omega)$ when $O(X) \in (\Omega)$, it remains to check that $O(X) \in (\Omega)$. For each n, let X_n denote the union of irreducible branches of X of dimension $\leq n$. We have

$$O(X) \cong \lim \operatorname{proj} O(X_n)$$

and the restriction maps $R_n : O(X) \to O(X_n)$ are surjective. Hence $O(X) \in (\Omega)$ if $O(X_n) \in (\Omega)$ for $n \ge 1$. For each $n \ge 1$, choose a proper injection $\theta : X_n \to \mathbb{C}^{2n+1}$. Since $O(\mathbb{C}^{2n+1}) \in (\Omega)$ we have

$$O(X_n) \cong H^0(\mathbb{C}^{2n+1}, (\theta_n) * O_{X_n}) \in (\Omega). \blacksquare$$

REMARK 1.4. While this paper was in preparation, we were not aware of the results of D. Vogt [11] and A. Aytuna [1] who had proved Lemma 1.3 earlier. We thank the referee for pointing out these papers.

LEMMA 1.5. Ker $R_V = J(V) = \{f \in O(G) : f|_V = 0\} \in (\Omega).$

Proof. Let η denote the canonical map from G onto G/G_e and let

$$V = \{ \overline{z} \in G/G_e : f(\overline{z}) = 0 \text{ for every } f \in J(V) \}.$$

Then $J(V) = J(\widehat{V})$ and as G/G_e is Stein we have

$$J(\widehat{V}) = H^0(G/G_e, J_{\widehat{V}})$$

where $J_{\widehat{V}}$ denotes the coherent ideal sheaf defined by \widehat{V} . By Lemma 1.3, this yields that $J(\widehat{V}) \in (\Omega)$ and hence $J(V) \in (\Omega)$.

Now Theorem 1 is deduced immediately from Lemmas 1.2 and 1.5. \blacksquare

2. It is known [7] that every non-compact connected complex Lie group G with dim O(G) = 1 contains a closed subgroup Γ for which R_{Γ} is not surjective.

Thus the following question arises naturally. When is the restriction map R_V in Theorem 1 surjective?

The following proposition gives an answer.

PROPOSITION 2.1. Let Γ be a connected closed subgroup of a complex Lie group G such that $G_e \subset \Gamma$. Then $R_{\Gamma} : O(G) \to O(\Gamma)$ is surjective.

Proof. By [6] there exists a closed subgroup K of G such that for some n the groups G and $K \times \mathbb{C}^n$ are isomorphic as complex Lie groups.

Moreover, there exists a closed Stein subgroup S_0 of K such that for the centre Z of K, the map

 $\varrho_0: Z \times S_0 \to K, \quad (x, y) \mapsto xy,$

is a finite covering homomorphism.

By the result of [6], $G_e \subset Z$ and $Z \cong G_e \times \mathbb{C}^{*\nu} \times \mathbb{C}^{\mu}$ for some non-negative integers ν and μ .

Putting $S = \mathbb{C}^{*\nu} \times \mathbb{C}^{\mu} \times S_0 \times \mathbb{C}^n$ we get a finite covering homomorphism $\varrho: G_e \times S \to G$ of degree n, given by

$$\varrho(x_0, x_1, x_2, x_3, x_4) = (\varrho_0((x_0, x_1, x_2), x_3), x_4)$$

It is easy to see that

$$\varrho^{-1}(\Gamma) = G_e \times (\Gamma \cap S).$$

Since S is Stein, the restriction map $\widetilde{R} : O(S) \to O(\Gamma \cap S)$ and hence also the restriction map $R : O(G_e \times S) \to O(G_e \times \Gamma \cap S)$ is surjective. Now given $g \in O(\Gamma)$, define $f \in O(G)$ by

$$f(y) = \frac{1}{n} \sum_{\varrho(x,z) = y} \widehat{g}(x,z) \quad \text{with} \quad \widehat{g} \in O(G_e \times S), \ \widehat{g}|_{G_e \times \Gamma \cap S} = g\varrho.$$

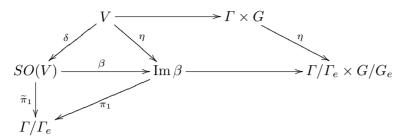
Then $f|_{\Gamma} = g$.

3. Proof of Theorem 2. Let SO(V) denote the spectrum of the Fréchet algebra O(V) equipped with the weak topology. Since $\pi_1 : V \to \Gamma$ is a

branched covering map and $SO(\Gamma) \cong SO(\Gamma/\Gamma_e) \cong \Gamma/\Gamma_e$ it follows that π_1 induces a branched covering map $\widetilde{\pi}_1 : SO(V) \to \Gamma/\Gamma_e$.

Then SO(V) is a complex space and $O(V) \cong O(SO(V))$.

Now since $\Gamma/\Gamma_e\times G/G_e$ is Stein, there exists a commutative diagram of holomorphic maps



where δ and η are canonical maps.

Then it is easy to see that β is proper and hence Im β is an analytic set in $\Gamma/\Gamma_e \times G/G_e$. Moreover, $O(\operatorname{Im} \beta) \cong \operatorname{Im} R_V$. By Lemma 1.1, $\operatorname{Im} R_V \in (DN)$ and by Lemma 1.5, $\operatorname{Ker} R_V \in (\Omega)$. Hence Vogt's splitting theorem implies that $R_V : O(\Gamma \times G) \to \operatorname{Im} R_V$ has a right inverse.

References

- A. Aytuna, The Fréchet space structure of global sections of certain coherent analytic sheaves, Math. Balkan. (N.S.) 3 (1989), 311–324.
- [2] P. B. Djakov and B. S. Mitiagin, *The structure of polynomial ideals in the algebra of entire functions*, Studia Math. 68 (1980), 85–104.
- [3] G. Fischer, Complex Analytic Geometry, Lecture Notes in Math. 538, Springer, 1976.
- [4] H. Kazama and T. Umeno, ∂-cohomology of complex Lie groups, Publ. RIMS Kyoto Univ. 26 (1990), 473-484.
- [5] J. Leiterer, Banach coherent sheaves, Math. Nachr. 85 (1978), 91-109.
- [6] Y. Matsushima et A. Morimoto, Sur certains espaces fibrés holomorphes sur une variété de Stein, Bull. Soc. Math. France 88 (1960), 137–155.
- S. Takeuchi, On completeness of holomorphic principal bundles, Nagoya Math. J. 57 (1974), 121–138.
- [8] D. Vogt, Subspaces and quotient spaces of (s), in: Functional Analysis: Surveys and Recent Results, K. D. Bierstedt and B. Fuchssteiner (eds.), North-Holland Math. Stud. 27, North-Holland, 1977, 168–187.
- [9] —, Eine Charakterisierung der Potenzreihenräume von endlichem Typ und ihre Folgerungen, Manuscripta Math. 37 (1982), 269–301.
- [10] —, Frécheträume, zwischen denen jede stetige lineare Abbildung beschränkt ist, J. Reine Angew. Math. 345 (1983), 182–200.
- [11] —, Über die Existenz von Ausdehnungsoperatoren für holomorphe Funktionen auf analytischen Mengen in \mathbb{C}^n , preprint.

[12] V. P. Zaharyuta, Isomorphism of spaces of analytic functions, Dokl. Akad. Nauk SSSR 225 (1980), 11–14 (in Russian); English transl.: Soviet Math. Dokl. 22 (1980), 631–634.

Department of Mathematics Pedagogical Institute 1 Hanoi Tu Liem, Hanoi, Vietnam E-mail: ddthai@netnam.org.vn

> Reçu par la Rédaction le 6.1.1997 Révisé le 3.12.1997 et 8.10.1998