ANNALES POLONICI MATHEMATICI LXXI.2 (1999)

Homogeneous extremal function for a ball in \mathbb{R}^2

by Mirosław Baran (Kraków)

Abstract. We point out relations between Siciak's homogeneous extremal function Ψ_B and the Cauchy–Poisson transform in case B is a ball in \mathbb{R}^2 . In particular, we find effective formulas for Ψ_B for an important class of balls. These formulas imply that, in general, Ψ_B is not a norm in \mathbb{C}^2 .

0. Introduction. Let $\mathcal{P}(\mathbb{C}^n)$ and $\mathcal{H}(\mathbb{C}^n)$ denote the set of polynomials of n complex variables and the set of homogeneous polynomials of n variables, respectively. We denote by $\mathcal{L}(\mathbb{C}^n)$ the Lelong class of plurisubharmonic functions u in \mathbb{C}^n with logarithmic growth: $u(z) \leq \text{const} + \log(1 + ||z||)$.

An important role in pluripotential theory and approximation theory of many variables is played by two extremal functions introduced by Siciak (see [Si1]–[Si5]) and called *Siciak's extremal function* (or *polynomial extremal function*) Φ_E and *Siciak's homogeneous extremal function* Ψ_E , respectively:

$$\Phi_E(z) = \sup\{|p(z)|^{1/\deg p} : p \in \mathcal{P}(\mathbb{C}^n), \ \deg p \ge 1, \ \|p\|_E \le 1\}, \ z \in \mathbb{C}^n,
\Psi_E(z) = \sup\{|p(z)|^{1/\deg p} : p \in \mathcal{H}(\mathbb{C}^n), \ \deg p \ge 1, \ \|p\|_E \le 1\}, \ z \in \mathbb{C}^n,$$

where E is a fixed compact subset of \mathbb{C}^n . It is well known (see [Si4], [Si5]) that

$$\log \Phi_E(z) = V_E(z) := \sup \{ u(z) : u \in \mathcal{L}(\mathbb{C}^n), \ u|_E \le 0 \}$$

and

 $\Psi_E(z) = \sup\{u(z) : u \text{ is homogeneous psh in } \mathbb{C}^n, \ u|_E \leq 1\}.$

If E is a circular set, there is a simple relation between Φ_E and Ψ_E (see [Si4]):

$$\Phi_E(z) = \max(1, \Psi_E(z)).$$

¹⁹⁹¹ Mathematics Subject Classification: 41A17, 32F05.

Key words and phrases: homogeneous extremal function, Cauchy–Poisson transform. Research partially suported by grant No. 2 PO3A 057 08 from KBN (Committee for Scientific Research) of Poland and by the European Programme PECO of the French Government.

^[141]

In particular, if B is a closed unit ball with respect to a norm q in \mathbb{C}^n then

$$\Psi_B(z) = q(z), \quad z \in \mathbb{C}^r$$

(see [Si4]).

The situation is much more complicated if B is a ball in \mathbb{R}^n with respect to a norm q. Here we treat \mathbb{R}^n as a subset of \mathbb{C}^n such that $\mathbb{C}^n = \mathbb{R}^n + i\mathbb{R}^n$. It is known (see [Si1], [D]) that if B_n is the unit Euclidean ball in \mathbb{R}^n , then $\Psi_{B_n}(z)$ is equal to the Lie norm:

$$\Psi_{B_n}(z) = L_n(z) = \left(\frac{\|z\|^2 + |z^2|}{2}\right)^{1/2} + \left(\frac{\|z\|^2 - |z^2|}{2}\right)^{1/2}$$

where $z^2 = z_1^2 + \ldots + z_n^2$. The Lie norm is equal to the so-called projective crossnorm $||z||_{\wedge}$ for the projective tensor product $\mathbb{R}^n \widehat{\otimes}_{\mathbb{R}} \mathbb{C}$ (here \mathbb{R}^n is understood to be the Euclidean space with its canonical inner product and norm). One can easily prove that in general we have the inequality

(*)
$$\Psi_B(z) \ge ||z||_{\wedge}, \quad z \in \mathbb{C}^n.$$

Here

$$||z||_{\wedge} = \inf\left\{\sum_{j=1}^{m} |\alpha_j| q(x_j) : z = \sum_{j=1}^{m} \alpha_j x_j, \ \alpha_j \in \mathbb{C}, \ x_j \in \mathbb{R}^n\right\}$$

is a norm in $X \otimes_{\mathbb{R}} \mathbb{C}$, where $X = (\mathbb{R}^n, q)$ is a normed space such that $B = \{x \in \mathbb{R}^n : q(x) \leq 1\}$. A few years ago Professor Siciak posed the question of whether in (*) one has equality. In particular, is this true for the square $B = [-1, 1] \times [-1, 1]$?

In this paper, we show that, in general, equality in (*) cannot hold for all $z \in \mathbb{C}^n$. This is a corollary to Theorem 2.3 where explicit formulas are given for Ψ_B for a wide family of norms in \mathbb{R}^2 . The main goal of this paper is to show a relation between the extremal function Ψ_B , where B is a ball in \mathbb{R}^2 with respect to a norm q, and the Cauchy–Poisson transform which is an important tool in harmonic analysis (see [St], [SW])). Note that for $x \in \mathbb{R}^n$ one has

In particular,

$$\Psi_B(x) = q(x).$$

$$\log \Psi_B(1,t) = \log q(1,t)$$

if q is a norm in \mathbb{R}^2 . Starting from the above fact, we show how to get an integral representation for Ψ_B . At the end of the paper we extend our result to a wider family of sets.

Acknowledgements. This paper was written during the author's stay at the Emile Picard Laboratory of the Paul Sabatier University of Toulouse in the academic year 1996/97. The author would like to express his gratitude to this Laboratory for excellent working conditions and personally to Dr. Jean Paul Calvi for his assistance and hospitality.

1. Cauchy–Poisson transform. Let \mathbb{H}_+ and \mathbb{H}_- be the upper and lower halfplanes, respectively. If q is a norm in \mathbb{R}^2 , we put $u(t) = \log q(1, t)$. We denote by $\mathcal{P}u$ the Cauchy–Poisson transform of u in \mathbb{H}_+ (see e.g. [St]):

$$\mathcal{P}u(\zeta) = (\Im\zeta)\frac{1}{\pi} \int_{-\infty}^{\infty} |\zeta - t|^{-2}u(t) dt = \frac{1}{\pi} \int_{-\infty}^{\infty} u(ty + x) \frac{dt}{1 + t^2},$$

where $\zeta = x + iy \in \mathbb{H}_+$.

LEMMA 1.1. If $0 < \alpha < 1$ then there exists a constant $C = C(\alpha)$ such that for $x, x' \in \mathbb{R}$ and y > 0 we have

$$|\mathcal{P}u(\zeta) - u(x')| \le C\{|x - x'| + y\}^{\alpha}, \quad \zeta = x + iy$$

Proof. Observe that for $t, \tau \in \mathbb{R}$ we have

$$\begin{aligned} |\log q(1,t) - \log q(1,\tau)| &\leq M_{\alpha} [|q(1,t) - q(1,\tau)| (\min\{q(1,t),q(1,\tau)\})^{-1}]^{\alpha} \\ &\leq M_{\alpha} [q(0,1)|t - \tau| (\min\{q(1,t),q(1,\tau)\})^{-1}]^{\alpha} \\ &\leq M_{\alpha} \left[\frac{q(0,1)}{\inf_{t \in \mathbb{R}} q(1,t)} \right]^{\alpha} |t - \tau|^{\alpha} = M_{\alpha}' |t - \tau|^{\alpha}, \end{aligned}$$

where $M_{\alpha} = \sup_{x>0} (\log(1+x))/x^{\alpha}$. Now we have

$$\begin{aligned} |\mathcal{P}u(\zeta) - u(x')| &\leq \frac{1}{\pi} \int_{-\infty}^{\infty} |u(ty+x) - u(x')| \frac{dt}{1+t^2} \\ &\leq \frac{M'_{\alpha}}{\pi} \int_{-\infty}^{\infty} |ty+x-x'|^{\alpha} \frac{dt}{1+t^2} \\ &\leq \frac{M'_{\alpha}}{\pi} \int_{-\infty}^{\infty} \frac{(1+|t|)^{\alpha}}{1+t^2} dt \, [|x-x'|+y]^{\alpha} = C(\alpha)[|x-x'|+y]^{\alpha}, \end{aligned}$$

which completes the proof.

COROLLARY 1.2. The function $\mathcal{P}u$ extends to a continuous function in $\overline{\mathbb{H}}_+$ that is harmonic in \mathbb{H}_+ . If we set

$$\mathcal{P}u(\zeta) = \mathcal{P}u(\overline{\zeta}), \quad \zeta \in \mathbb{H}_-$$

we obtain a continuous function in \mathbb{C} , symmetric with respect to the real axis and harmonic in $\mathbb{H}_+ \cup \mathbb{H}_-$. Moreover, for $\zeta = x + iy$, we have

$$\mathcal{P}u(\zeta) = \frac{1}{\pi} \int_{-\infty}^{\infty} u(t|y| + x) \frac{dt}{1+t^2}, \quad \zeta \in \mathbb{C}.$$

Applying the maximum principle for subharmonic functions in \mathbb{H}_+ or \mathbb{H}_- , we easily obtain the following important

COROLLARY 1.3. If $B = \{x \in \mathbb{R}^2 : q(x) \leq 1\}$ then

$$\log \Psi_B(1,\zeta) \le \mathcal{P}u(\zeta), \quad \zeta \in \mathbb{C}.$$

Now we prove that $\mathcal{P}u \in \mathcal{SH}(\mathbb{C})$. To do this we need the following results which are interesting in themselves.

For a fixed $\alpha \in (-1, 1)$, define

$$v(\alpha, y) := \frac{1}{2}\log(1 + 2\alpha y + y^2), \quad y \in \mathbb{R},$$

and set $\beta = \sqrt{1 - \alpha^2}$. Note that if |y| < 1 then

$$v(-\alpha, y) = -\sum_{k=1}^{\infty} \frac{1}{k} T_k(\alpha) y^k,$$

where $T_k(\alpha)$ denotes the *k*th Chebyshev polynomial $T_k(\alpha) = \cos(k \arccos \alpha)$ (see e.g. [SW]).

LEMMA 1.4. For all $y \in \mathbb{R}$,

$$\frac{1}{\pi} \int_{-\infty}^{\infty} v(\alpha, ty) \frac{dt}{1+t^2} = v(\beta, |y|).$$

Proof. Denote the left hand side of the above formula by $F_{\alpha}(y)$. Since $F_{\alpha}(y)$ and $v(\beta, |y|)$ are even functions that agree at 0, it suffices to show that $F'_{\alpha}(y) = v'(\beta, y)$ for y > 0. We can check this by applying the residue method. The calculation is rather simple but a little laborious so we omit it.

LEMMA 1.5. If $\zeta = x + iy$ then

$$\mathcal{P}v(\alpha,\zeta) = \frac{1}{\pi} \int_{-\infty}^{\infty} v(\alpha,t|y|+x) \frac{dt}{1+t^2} = \frac{1}{2}\log(1+2\alpha x + x^2 + 2\beta|y|+y^2).$$

Proof. We apply Lemma 1.4 with

$$\alpha' = \frac{\alpha + x}{\sqrt{1 + 2\alpha x + x^2}}$$
 and $y' = \frac{|y|}{\sqrt{1 + 2\alpha x + x^2}}$

LEMMA 1.6. $\mathcal{P}v(\alpha,\zeta) \in \mathcal{SH}(\mathbb{C}).$

Proof. We apply the Zaremba criterion (see [L, pp. 439–440]). Let $v \in C(\Omega)$. Put

 $\Delta_h v(\zeta) = v(\zeta + h) + v(\zeta - h) + v(\zeta + ih) + v(\zeta - ih) - 4v(\zeta), \quad h \in \mathbb{R}_*,$ and define the Zaremba operator

$$\underline{\Delta}v(\zeta) := \limsup_{h \to 0} \frac{1}{h^2} \Delta_h v(\zeta).$$

Then $v \in \mathcal{SH}(\Omega)$ iff $\underline{\Delta}v \geq 0$ in Ω . We apply this criterion to $\mathcal{P}v(\alpha, \zeta)$. If $\zeta \in \mathbb{C} \setminus \mathbb{R}$ then $\underline{\Delta}\mathcal{P}v(\alpha, \zeta) = \Delta \mathcal{P}v(\alpha, \zeta) = 0$, since $\mathcal{P}v(\alpha, \zeta)$ is harmonic in $\mathbb{C} \setminus \mathbb{R}$. If $\zeta \in \mathbb{R}$, we easily calculate that $\underline{\Delta}\mathcal{P}v(\alpha, \zeta) = \infty$.

COROLLARY 1.7. Let $u(t) = \frac{1}{2}\log(at^2 + bt + c)$ and $\alpha = b/(2\sqrt{ac})$, where $\Delta = b^2 - 4ac < 0$, c, a > 0. Then $\mathcal{P}u \in \mathcal{SH}(\mathbb{C})$.

Proof. We have

$$\mathcal{P}u(\zeta) = \mathcal{P}v\left(\alpha, \sqrt{\frac{a}{c}}\zeta\right) + \frac{1}{2}\log c,$$

whence we can apply Lemma 1.6.

Now we are in a position to prove the following

PROPOSITION 1.8. If q is a norm in \mathbb{R}^2 and $u(t) = \log q(1, t)$, then $\mathcal{P}u \in \mathcal{SH}(\mathbb{C})$. This implies that $\mathcal{P}u$ belongs to the Lelong class $\mathcal{L}(\mathbb{C})$.

Proof. Denote by q^* the dual norm: $q^*(x) = \sup\{x \cdot y : y \in B\}$. We can write (see [B3])

$$q(x) = \sup\{x \cdot y/q^*(y) : y \in S^1\} = \lim_{k \to \infty} q_k(x),$$

where $q_k(x) = \begin{bmatrix} 1 \\ S^1} (x \cdot y/q^*(y))^{2k} d\sigma(y) \end{bmatrix}^{1/2k}$ is a (smooth) norm in \mathbb{R}^2 and q_k^{2k} is a polynomial of degree 2k. Moreover (cf. [B3] again), the sequence q_k is increasing. Thus $q_k^{2k}(1,\zeta)$ is a polynomial of degree 2k with real coefficients and without any real zeros. Applying Corollary 1.7 we easily check that $\mathcal{P}u_k \in \mathcal{SH}(\mathbb{C})$, where $u_k(t) = \log q_k(1,t)$. Finally, we have

$$\mathcal{P}u(\zeta) = \lim_{k \to \infty} \mathcal{P}u_k(\zeta) \le \lim_{k \to \infty} \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathcal{P}u_k(\zeta + re^{i\theta}) d\theta$$
$$\le \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathcal{P}u(\zeta + re^{i\theta}) d\theta,$$

which completes the proof.

2. Homogeneous extremal function for a ball in \mathbb{R}^2 . The main result of this paper is the following

THEOREM 2.1. If q is a norm in \mathbb{R}^2 , $B = \{x \in \mathbb{R}^2 : q(x) \leq 1\}$ and $u(t) = \log q(1,t), t \in \mathbb{R}$, then

$$\Psi_B(1,\zeta) = \exp \mathcal{P}u(\zeta), \quad \zeta \in \mathbb{C}$$

Consequently,

$$\Psi_B(z_1, z_2) = |z_1| \exp \mathcal{P}u(z_2/z_1).$$

Proof. We know that $\log \Psi_B(1,\zeta) \leq \mathcal{P}u(\zeta), \ \zeta \in \mathbb{C}$. To prove the opposite inequality, define

$$\phi(\zeta, z) = \begin{cases} |\zeta| \exp \mathcal{P}u(\zeta^{-1}z), & \zeta \in \mathbb{C}_*, \ z \in \mathbb{C}, \\ \limsup_{\xi \to 0, \ \xi \neq 0} |\xi| \exp \mathcal{P}u(\xi^{-1}z), & \zeta = 0, \ z \in \mathbb{C} \end{cases}$$

(cf. [Kl, proof of Thm. 5.1.6]). Then $\phi \in \exp \mathcal{L}(\mathbb{C}^2)$ and $\phi(\zeta w) = |\zeta|\phi(w)$, $\phi_{|B} \leq 1$. This means that

$$\phi(\zeta, z) \le \Psi_B(\zeta, z),$$

whence $\mathcal{P}u(\zeta) \leq \log \Psi_B(1,\zeta)$. This completes the proof.

As an interesting application, we prove the following result on a harmonic foliation related to the extremal function $\log \Psi_B$. A similar foliation is related to the extremal function $V_B = \log \Phi_B$ (see [B1], [B2] for details).

COROLLARY 2.2. Let $X = (\mathbb{R}^2, q)$, let $\check{X} = X \check{\otimes}_{\mathbb{R}} \mathbb{C}$ be the injective tensor product, and let \check{S} be the unit sphere in \check{X} . Define

$$\chi(\zeta, c) = \frac{1}{2}(\zeta c + \zeta^{-1}\overline{c}), \quad \zeta \in \mathbb{D}^* = \mathbb{C} \setminus \overline{\mathbb{D}}, \ c \in \check{S}.$$

Then $\log \Psi_B$ is harmonic on each leaf $\chi(\zeta, c), \ c \in \check{S}$.

Proof. Let $\chi(\zeta, c) = (\chi_1(\zeta, c), \chi_2(\zeta, c))$, where c = a + ib. Then $\chi_j(\zeta, c) = g(\zeta)a_j + i\widehat{g}(\zeta)b_j$, j = 1, 2, with $g(\zeta) = \frac{1}{2}(\zeta + \zeta^{-1})$ and $\widehat{g}(\zeta) = \frac{1}{2}(\zeta - \zeta^{-1})$. Without loss of generality we can assume that $c_1 \neq 0$ and det $(a, b) = det((a_1, a_2), (b_1, b_2)) \neq 0$. Then we can write

$$\log \Psi_B(\chi(\zeta, c)) = \log |\chi_1(\zeta, c)| + \mathcal{P}u(\chi_2(\zeta, c)/\chi_1(\zeta, c)).$$

Now observe that the mapping

$$\phi_c(\zeta) = \chi_2(\zeta, c) / \chi_1(\zeta, c) : \mathbb{D}^* \to \mathbb{C}$$

takes its values in \mathbb{H}_+ or in \mathbb{H}_- . Indeed, we have

$$\phi_c(\zeta) = |\chi_1(\zeta, c)|^{-2} \chi_2(\zeta, c) \chi_1(\zeta, c)$$

and

$$\Im(\chi_2(\zeta,c)\overline{\chi_1(\zeta,c)}) = \frac{1}{4}\det(a,b)(|\zeta|^2 - |\zeta|^{-2}),$$

whence sgn $\Im(\phi_c(\zeta))$ is constant in \mathbb{D}^* . Therefore $\mathcal{P}u(\phi_c(\zeta))$ is a harmonic function as a composition of a harmonic function with a holomorphic one.

Applying Lemmas 1.5, 1.6 and Theorem 2.1 we can explicitly calculate Ψ_B for an important class of norms.

THEOREM 2.3. If *n* is a fixed natural number, $q_n(x) = (x_1^{2n} + x_2^{2n})^{1/(2n)}$ and $S_n = \{x \in \mathbb{R}^2 : q_n(x) = 1\}$, then, for all $z \in \mathbb{C}^2$,

146

Homogeneous extremal function

$$\Psi_{S_n}(z) = \left[\prod_{j=1}^n (|z_1|^2 - 2\alpha_j \Re(z_1 \overline{z}_2) + |z_2|^2 + 2|\beta_j||\Im(z_1 \overline{z}_2)|)^{1/2}\right]^{1/n}$$

where $\zeta_j = \alpha_j + i\beta_j \in \sqrt[2n]{-1}, \ j = 1, ..., n, \ with \ \zeta_j \neq \overline{\zeta}_k \ for \ j \neq k.$

COROLLARY 2.4. If $q_{\infty}(x) = \max(|x_1|, |x_2|)$ and $S_{\infty} = \{x \in \mathbb{R}^2 : q_{\infty}(x) = 1\}$, then for all $z \in \mathbb{C}^2$,

$$\Psi_{S_{\infty}}(z) = \exp\bigg[\int_{0}^{2\pi} \log(|z_{1}|^{2} - 2\cos\theta \,\Re(z_{1}\overline{z}_{2}) + |z_{2}|^{2} + 2|\sin\theta \,\Im(z_{1}\overline{z}_{2})|)^{1/2} \frac{d\theta}{2\pi}\bigg].$$

Proof of Theorem 2.3. Fix an $n \in \mathbb{N}$. We have

(*)
$$1 + \zeta^{2n} = \prod_{j=1}^{n} (\zeta - \zeta_j)(\zeta - \overline{\zeta}_j) = \prod_{j=1}^{n} (1 - 2\alpha_j \zeta + \zeta^2)$$

Consider $u_n(t) = (2n)^{-1} \log(1 + t^{2n}) = \log f_n(t)$, where $f_n(t) = q_n(1,t)$. Applying Lemma 1.5 and (*) we obtain

(**)
$$\mathcal{P}u_n(\zeta) = \frac{1}{2n} \sum_{j=1}^n \log\left(1 - 2\alpha_j \Re \zeta + |\zeta|^2 + 2|\beta_j||\Im \zeta|\right)$$

By Theorem 2.1 we have $\Psi_{S_n}(1,\zeta) = \exp \mathcal{P}u_n(\zeta)$, whence, by homogeneity of Ψ ,

$$\Psi_{S_n}(z_1, z_2) = |z_1| \exp \mathcal{P}u_n(z_2 \overline{z}_1 |z_1|^{-2}),$$

and applying (**) we get the formula of Theorem 2.3.

REMARK 2.5. If B is the unit ball and S is the unit sphere for a norm q in \mathbb{R}^2 then $\mathbb{T}B$ and $\mathbb{T}S$, where \mathbb{T} is the unit circle in \mathbb{C} , are circular subsets of \mathbb{C}^2 . Hence we obtain

$$\Phi_{\mathbb{T}S}(z) = \max(1, \Psi_{\mathbb{T}S}(z)) = \max(1, \Psi_B(z)), \quad z \in \mathbb{C}^2$$

Let $X = (\mathbb{R}^2, q), \, \widehat{X} = X \widehat{\otimes}_{\mathbb{R}} \mathbb{C}$ and let \widehat{B} be the unit (closed) ball in \widehat{X} . It is well known that

$$\operatorname{extr} \widehat{B} = \{ e^{i\theta} x : x \in \operatorname{extr} B, \ \theta \in [-\pi, \pi] \} = \mathbb{T} \operatorname{extr} B.$$

In particular, if X is a strictly convex space then

$$\operatorname{extr} \widehat{B} = \mathbb{T}S.$$

Hence we get the following

COROLLARY 2.6. If (\mathbb{R}^2, q) is a strictly convex space then

 $\Phi_{\operatorname{extr}\widehat{B}}(z) = \max(1, \Psi_B(z)) = \max(1, |z_1| \exp \mathcal{P}u(z_2/z_1)), \quad z \in \mathbb{C}^2,$ where $u(t) = \log q(1, t).$

COROLLARY 2.7. If q is a norm in \mathbb{R}^2 , S is its unit sphere and $u(t) = \log q(1,t)$, then

$$\widehat{\mathbb{T}S} = \{ z \in \mathbb{C}^2 : \log|z_1| + \mathcal{P}u(z_2/z_1) \le 0 \},\$$

where \widehat{K} denotes the polynomially convex hull of K.

Note that the equality $\Psi_B(z) = ||z||_{\wedge}$ is equivalent to

$$\widehat{\mathbb{T}S} = \operatorname{conv}(\mathbb{T}S).$$

In particular, if (X,q) is a strictly convex space then $\Psi_B(z) = ||z||_{\wedge}$ iff $(\widehat{\operatorname{extr} B}) = \widehat{B}$.

REMARK 2.8. Theorem 2.1 can be extended in the following way. Denote by Γ_0 the class of all continuous, nonnegative and absolutely homogeneous functions g on \mathbb{R}^2 (i.e. $g(tx) = |t|g(x), t \in \mathbb{R}, x \in \mathbb{R}^2$) such that g has the form

$$g(x) = \max_{1 \le k \le n} Q_k(x)^{1/\deg Q_k},$$

where $Q_k \geq 0$ are homogeneous polynomials and $Q_1^{-1}(0) = \{0\}$. Denote by Γ the class of continuous, nonnegative and homogeneous functions g with $g^{-1}(0) = \{0\}$ which are generated by Γ_0 with respect to the operations: limit of monotonic sequences and $(g_1 \cdot \ldots \cdot g_N)^{1/N}$. We show that Theorem 2.1 extends to Γ . We need the following

LEMMA 2.9. If $g \in \Gamma_0$ and $u(t) = \log g(1,t)$ then $\mathcal{P}u$ is a continuous function that belongs to $\mathcal{L}(\mathbb{C})$.

Proof. The proof that $\mathcal{P}u$ is continuous is similar to that of Lemma 1.1. It is easily seen that all numbers deg Q_j are even. Put $N = \deg Q_1 \cdot \ldots \cdot \deg Q_n$ and define

$$q_k(x) = \frac{1}{n} (Q_1(x)^{2kN/\deg Q_1} + \ldots + Q_n(x)^{2kN/\deg Q_n}).$$

Then q_k is a sequence of homogeneous polynomials of degree 2kN and the sequence $g_k = q_k^{1/(2kN)}$ increases to g. Let $u_k(t) = \log g_k(1,t)$. Applying Corollary 1.7 we easily obtain $\mathcal{P}u_k \in \mathcal{SH}(\mathbb{C})$. Hence, similarly to the proof of Proposition 1.8, we show that $\mathcal{P}u \in \mathcal{SH}(\mathbb{C})$ and therefore $\mathcal{P}u \in \mathcal{L}(\mathbb{C})$.

COROLLARY 2.10. Let $g \in \Gamma$ and let $u(t) = \log g(1, t)$. Then $\mathcal{P}u \in \mathcal{L}(\mathbb{C})$.

Now one can easily obtain a generalization of Theorem 2.1; its proof is left to the reader.

THEOREM 2.11. Let $g \in \Gamma$ and let $B = \{x \in \mathbb{R}^2 : g(x) \leq 1\}$. Set $u(t) = \log g(1, t)$. Then

$$\Psi_B(z_1, z_2) = |z_1| \exp \mathcal{P}u(z_2/z_1).$$

COROLLARY 2.12. For $g_1, \ldots, g_n \in \Gamma$, put $B_j = \{x \in \mathbb{R}^2 : g_j(x) \leq 1\}$. Define also $g(x) = (g_1 \cdot \ldots \cdot g_n)^{1/n}$ and $B = \{x \in \mathbb{R}^2 : g(x) \leq 1\}$. Then

$$\Psi_B = \left(\Psi_{B_1} \cdot \ldots \cdot \Psi_{B_n}\right)^{1/n}.$$

COROLLARY 2.13. Let $g \in \Gamma$ and let $S = \{x \in \mathbb{R}^2 : g(x) = 1\}$. If $u(t) = \log g(1,t)$ then

$$\Phi_{\mathbb{T}S}(z_1, z_2) = \max(1, |z_1| \exp \mathcal{P}u(z_2/z_1))$$

and

$$\widehat{\mathbb{T}S} = \{ z \in \mathbb{C}^2 : \log|z_1| + \mathcal{P}u(z_2/z_1) \le 0 \}.$$

References

- [B1] M. Baran, Siciak's extremal function of convex sets in \mathbb{C}^n , Ann. Polon. Math. 48 (1988), 275–280.
- [B2] —, Plurisubharmonic extremal functions and complex foliations for the complement of convex sets in \mathbb{R}^n , Michigan Math. J. 39 (1992), 395–404.
- [B3] —, Complex equilibrium measure and Bernstein type theorems for compact sets in \mathbb{R}^n , Proc. Amer. Math. Soc. 123 (1995), 485–494.
- [B4] —, Bernstein type theorems for compact sets in \mathbb{R}^n revisited, J. Approx. Theory 69 (1992), 156–166.
- [CL] E. W. Cheney and W. A. Light, Approximation Theory in Tensor Product Spaces, Lecture Notes in Math. 1169, Springer, Berlin, 1985.
- [D] L. M. Drużkowski, Effective formula for the crossnorm in complexified unitary spaces, Univ. Iagel. Acta Math. 16 (1974), 47–53.
- [Kl] M. Klimek, Pluripotential Theory, Oxford Univ. Press, 1991.
- [L] F. Leja, *Teoria funkcji analitycznych* [Theory of Analytic Functions], PWN, Warszawa, 1957 (in Polish).
- [Si1] J. Siciak, On an extremal function and domains of convergence of series of homogeneous polynomials, Ann. Polon. Math. 25 (1961), 297–307.
- [Si2] —, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (1962), 322– 357.
- [Si3] —, Holomorphic continuation of harmonic functions, Ann. Polon. Math. 29 (1974), 67–73.
- [Si4] —, Extremal plurisubharmonic functions in \mathbb{C}^n , ibid. 39 (1981), 175–211.
- [Si5] —, Extremal Plurisubharmonic Functions and Capacities in Cⁿ, Sophia Kokyuroku in Math. 14, Sophia Univ., Tokyo, 1982.

M. Baran

- [St] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970.
- [SW] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.

Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland E-mail: baran@im.uj.edu.pl

> Reçu par la Rédaction le 27.11.1997 Révisé le 9.10.1998

150