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Homogeneous extremal function for a ball in R2

by Miros law Baran (Kraków)

Abstract. We point out relations between Siciak’s homogeneous extremal function
ΨB and the Cauchy–Poisson transform in case B is a ball in R2. In particular, we find
effective formulas for ΨB for an important class of balls. These formulas imply that, in
general, ΨB is not a norm in C2.

0. Introduction. Let P(Cn) and H(Cn) denote the set of polynomials
of n complex variables and the set of homogeneous polynomials of n vari-
ables, respectively. We denote by L(Cn) the Lelong class of plurisubharmonic
functions u in Cn with logarithmic growth: u(z) ≤ const + log(1 + ‖z‖).

An important role in pluripotential theory and approximation theory
of many variables is played by two extremal functions introduced by Siciak
(see [Si1]–[Si5]) and called Siciak’s extremal function (or polynomial extremal
function) ΦE and Siciak’s homogeneous extremal function ΨE , respectively:

ΦE(z) = sup{|p(z)|1/ deg p : p ∈ P(Cn), deg p ≥ 1, ‖p‖E ≤ 1}, z ∈ Cn,
ΨE(z) = sup{|p(z)|1/ deg p : p ∈ H(Cn), deg p ≥ 1, ‖p‖E ≤ 1}, z ∈ Cn,

where E is a fixed compact subset of Cn. It is well known (see [Si4], [Si5])
that

logΦE(z) = VE(z) := sup{u(z) : u ∈ L(Cn), u|E ≤ 0}
and

ΨE(z) = sup{u(z) : u is homogeneous psh in Cn, u|E ≤ 1}.
If E is a circular set, there is a simple relation between ΦE and ΨE (see

[Si4]):
ΦE(z) = max(1, ΨE(z)).
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In particular, if B is a closed unit ball with respect to a norm q in Cn then

ΨB(z) = q(z), z ∈ Cn

(see [Si4]).
The situation is much more complicated if B is a ball in Rn with respect

to a norm q. Here we treat Rn as a subset of Cn such that Cn = Rn + iRn.
It is known (see [Si1], [D]) that if Bn is the unit Euclidean ball in Rn, then
ΨBn(z) is equal to the Lie norm:

ΨBn
(z) = Ln(z) =

(
‖z‖2 + |z2|

2

)1/2

+
(
‖z‖2 − |z2|

2

)1/2

,

where z2 = z2
1 + . . . + z2

n. The Lie norm is equal to the so-called projec-
tive crossnorm ‖z‖∧ for the projective tensor product Rn ⊗̂R C (here Rn is
understood to be the Euclidean space with its canonical inner product and
norm). One can easily prove that in general we have the inequality

(∗) ΨB(z) ≥ ‖z‖∧, z ∈ Cn.
Here

‖z‖∧ = inf
{ m∑
j=1

|αj |q(xj) : z =
m∑
j=1

αjxj , αj ∈ C, xj ∈ Rn
}

is a norm in X ⊗̂R C, where X = (Rn, q) is a normed space such that
B = {x ∈ Rn : q(x) ≤ 1}. A few years ago Professor Siciak posed the
question of whether in (∗) one has equality. In particular, is this true for
the square B = [−1, 1]× [−1, 1]?

In this paper, we show that, in general, equality in (∗) cannot hold for
all z ∈ Cn. This is a corollary to Theorem 2.3 where explicit formulas are
given for ΨB for a wide family of norms in R2. The main goal of this paper
is to show a relation between the extremal function ΨB , where B is a ball
in R2 with respect to a norm q, and the Cauchy–Poisson transform which
is an important tool in harmonic analysis (see [St], [SW])). Note that for
x ∈ Rn one has

ΨB(x) = q(x).
In particular,

logΨB(1, t) = log q(1, t)
if q is a norm in R2. Starting from the above fact, we show how to get an
integral representation for ΨB . At the end of the paper we extend our result
to a wider family of sets.
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1. Cauchy–Poisson transform. Let H+ and H− be the upper and
lower halfplanes, respectively. If q is a norm in R2, we put u(t) = log q(1, t).
We denote by Pu the Cauchy–Poisson transform of u in H+ (see e.g. [St]):

Pu(ζ) = (=ζ)
1
π

∞\

−∞
|ζ − t|−2u(t) dt =

1
π

∞\

−∞
u(ty + x)

dt

1 + t2
,

where ζ = x+ iy ∈ H+.

Lemma 1.1. If 0 < α < 1 then there exists a constant C = C(α) such
that for x, x′ ∈ R and y > 0 we have

|Pu(ζ)− u(x′)| ≤ C{|x− x′|+ y}α, ζ = x+ iy.

P r o o f. Observe that for t, τ ∈ R we have

|log q(1, t)− log q(1, τ)| ≤Mα[|q(1, t)− q(1, τ)|(min{q(1, t), q(1, τ)})−1]α

≤Mα[q(0, 1)|t− τ |(min{q(1, t), q(1, τ)})−1]α

≤Mα

[
q(0, 1)

inft∈R q(1, t)

]α
|t− τ |α = M ′α|t− τ |α,

where Mα = supx>0 (log(1 + x))/xα. Now we have

|Pu(ζ)− u(x′)| ≤ 1
π

∞\

−∞
|u(ty + x)− u(x′)| dt

1 + t2

≤ M ′α
π

∞\

−∞
|ty + x− x′|α dt

1 + t2

≤ M ′α
π

∞\

−∞

(1 + |t|)α

1 + t2
dt [|x− x′|+ y]α = C(α)[|x− x′|+ y]α,

which completes the proof.

Corollary 1.2. The function Pu extends to a continuous function in
H+ that is harmonic in H+. If we set

Pu(ζ) = Pu(ζ), ζ ∈ H−,

we obtain a continuous function in C, symmetric with respect to the real
axis and harmonic in H+ ∪H−. Moreover , for ζ = x+ iy, we have

Pu(ζ) =
1
π

∞\

−∞
u(t|y|+ x)

dt

1 + t2
, ζ ∈ C.
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Applying the maximum principle for subharmonic functions in H+ or
H−, we easily obtain the following important

Corollary 1.3. If B = {x ∈ R2 : q(x) ≤ 1} then

logΨB(1, ζ) ≤ Pu(ζ), ζ ∈ C.

Now we prove that Pu∈SH(C). To do this we need the following results
which are interesting in themselves.

For a fixed α ∈ (−1, 1), define

v(α, y) := 1
2 log(1 + 2αy + y2), y ∈ R,

and set β =
√

1− α2. Note that if |y| < 1 then

v(−α, y) = −
∞∑
k=1

1
k
Tk(α)yk,

where Tk(α) denotes the kth Chebyshev polynomial Tk(α) = cos(k arccosα)
(see e.g. [SW]).

Lemma 1.4. For all y ∈ R,

1
π

∞\

−∞
v(α, ty)

dt

1 + t2
= v(β, |y|).

P r o o f. Denote the left hand side of the above formula by Fα(y). Since
Fα(y) and v(β, |y|) are even functions that agree at 0, it suffices to show
that F ′α(y) = v′(β, y) for y > 0. We can check this by applying the residue
method. The calculation is rather simple but a little laborious so we omit it.

Lemma 1.5. If ζ = x+ iy then

Pv(α, ζ) =
1
π

∞\

−∞
v(α, t|y|+ x)

dt

1 + t2
=

1
2

log(1 + 2αx+ x2 + 2β|y|+ y2).

P r o o f. We apply Lemma 1.4 with

α′ =
α+ x√

1 + 2αx+ x2
and y′ =

|y|√
1 + 2αx+ x2

.

Lemma 1.6. Pv(α, ζ) ∈ SH(C).

P r o o f. We apply the Zaremba criterion (see [L, pp. 439–440]). Let v∈
C(Ω). Put

∆hv(ζ) = v(ζ + h) + v(ζ − h) + v(ζ + ih) + v(ζ − ih)− 4v(ζ), h ∈ R∗,

and define the Zaremba operator

∆v(ζ) := lim sup
h→0

1
h2
∆hv(ζ).
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Then v ∈ SH(Ω) iff ∆v ≥ 0 in Ω. We apply this criterion to Pv(α, ζ). If
ζ ∈ C \ R then ∆Pv(α, ζ) = ∆Pv(α, ζ) = 0, since Pv(α, ζ) is harmonic in
C \ R. If ζ ∈ R, we easily calculate that ∆Pv(α, ζ) =∞.

Corollary 1.7. Let u(t) = 1
2 log(at2 + bt+ c) and α = b/(2

√
ac), where

∆ = b2 − 4ac < 0, c, a > 0. Then Pu ∈ SH(C).

P r o o f. We have

Pu(ζ) = Pv

(
α,

√
a

c
ζ

)
+

1
2

log c,

whence we can apply Lemma 1.6.

Now we are in a position to prove the following

Proposition 1.8. If q is a norm in R2 and u(t) = log q(1, t), then
Pu ∈ SH(C). This implies that Pu belongs to the Lelong class L(C).

P r o o f. Denote by q∗ the dual norm: q∗(x) = sup{x ·y : y∈B}. We can
write (see [B3])

q(x) = sup{x · y/q∗(y) : y ∈ S1} = lim
k→∞

qk(x),

where qk(x) = [
T
S1(x · y/q∗(y))2k dσ(y)]1/2k is a (smooth) norm in R2 and

q2kk is a polynomial of degree 2k. Moreover (cf. [B3] again), the sequence qk is
increasing. Thus q2kk (1, ζ) is a polynomial of degree 2k with real coefficients
and without any real zeros. Applying Corollary 1.7 we easily check that
Puk ∈ SH(C), where uk(t) = log qk(1, t). Finally, we have

Pu(ζ) = lim
k→∞

Puk(ζ) ≤ lim
k→∞

1
2π

π\

−π
Puk(ζ + reiθ) dθ

≤ 1
2π

π\

−π
Pu(ζ + reiθ) dθ,

which completes the proof.

2. Homogeneous extremal function for a ball in R2. The main
result of this paper is the following

Theorem 2.1. If q is a norm in R2, B = {x ∈ R2 : q(x) ≤ 1} and
u(t) = log q(1, t), t ∈ R, then

ΨB(1, ζ) = expPu(ζ), ζ ∈ C.

Consequently ,

ΨB(z1, z2) = |z1| expPu(z2/z1).
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P r o o f. We know that logΨB(1, ζ) ≤ Pu(ζ), ζ ∈ C. To prove the oppo-
site inequality, define

φ(ζ, z) =

{
|ζ| expPu(ζ−1z), ζ ∈ C∗, z ∈ C,
lim sup
ξ→0, ξ 6=0

|ξ| expPu(ξ−1z), ζ = 0, z ∈ C

(cf. [Kl, proof of Thm. 5.1.6]). Then φ ∈ expL(C2) and φ(ζw) = |ζ|φ(w),
φ|B ≤ 1. This means that

φ(ζ, z) ≤ ΨB(ζ, z),

whence Pu(ζ) ≤ logΨB(1, ζ). This completes the proof.

As an interesting application, we prove the following result on a harmonic
foliation related to the extremal function logΨB . A similar foliation is related
to the extremal function VB = logΦB (see [B1], [B2] for details).

Corollary 2.2. Let X = (R2, q), let X̌ = X ⊗̌R C be the injective tensor
product , and let Š be the unit sphere in X̌. Define

χ(ζ, c) = 1
2 (ζc+ ζ−1c), ζ ∈ D∗ = C \ D, c ∈ Š.

Then logΨB is harmonic on each leaf χ(ζ, c), c ∈ Š.

P r o o f. Let χ(ζ, c) = (χ1(ζ, c), χ2(ζ, c)), where c = a+ ib. Then χj(ζ, c)
= g(ζ)aj + iĝ(ζ)bj , j = 1, 2, with g(ζ) = 1

2 (ζ + ζ−1) and ĝ(ζ) = 1
2 (ζ −

ζ−1). Without loss of generality we can assume that c1 6= 0 and det(a, b) =
det((a1, a2), (b1, b2)) 6= 0. Then we can write

logΨB(χ(ζ, c)) = log |χ1(ζ, c)|+ Pu(χ2(ζ, c)/χ1(ζ, c)).

Now observe that the mapping

φc(ζ) = χ2(ζ, c)/χ1(ζ, c) : D∗ → C

takes its values in H+ or in H−. Indeed, we have

φc(ζ) = |χ1(ζ, c)|−2χ2(ζ, c)χ1(ζ, c)

and

=(χ2(ζ, c)χ1(ζ, c)) = 1
4 det(a, b)(|ζ|2 − |ζ|−2),

whence sgn=(φc(ζ)) is constant in D∗. Therefore Pu(φc(ζ)) is a harmonic
function as a composition of a harmonic function with a holomorphic one.

Applying Lemmas 1.5, 1.6 and Theorem 2.1 we can explicitly calculate
ΨB for an important class of norms.

Theorem 2.3. If n is a fixed natural number , qn(x) = (x2n
1 + x2n

2 )1/(2n)

and Sn = {x ∈ R2 : qn(x) = 1}, then, for all z ∈ C2,
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ΨSn
(z) =

[ n∏
j=1

(|z1|2 − 2αj<(z1z2) + |z2|2 + 2|βj ||=(z1z2)|)1/2
]1/n

,

where ζj = αj + iβj ∈ 2n
√
−1, j = 1, . . . , n, with ζj 6= ζk for j 6= k.

Corollary 2.4. If q∞(x) = max(|x1|, |x2|) and S∞ = {x ∈ R2 : q∞(x)
= 1}, then for all z ∈ C2,

ΨS∞(z) = exp
[ 2π\

0

log(|z1|2−2 cos θ<(z1z2)+ |z2|2 +2|sin θ=(z1z2)|)1/2 dθ
2π

]
.

Proof of Theorem 2.3. Fix an n ∈ N. We have

(∗) 1 + ζ2n =
n∏
j=1

(ζ − ζj)(ζ − ζj) =
n∏
j=1

(1− 2αjζ + ζ2).

Consider un(t) = (2n)−1 log(1 + t2n) = log fn(t), where fn(t) = qn(1, t).
Applying Lemma 1.5 and (∗) we obtain

(∗∗) Pun(ζ) =
1

2n

n∑
j=1

log
(
1− 2αj<ζ + |ζ|2 + 2|βj ||=ζ|

)
.

By Theorem 2.1 we have ΨSn
(1, ζ) = expPun(ζ), whence, by homogeneity

of Ψ ,

ΨSn(z1, z2) = |z1| expPun(z2z1|z1|−2),

and applying (∗∗) we get the formula of Theorem 2.3.

Remark 2.5. If B is the unit ball and S is the unit sphere for a norm q
in R2 then TB and TS, where T is the unit circle in C, are circular subsets
of C2. Hence we obtain

ΦTS(z) = max(1, ΨTS(z)) = max(1, ΨB(z)), z ∈ C2.

Let X = (R2, q), X̂ = X ⊗̂R C and let B̂ be the unit (closed) ball in X̂. It
is well known that

extr B̂ = {eiθx : x ∈ extrB, θ ∈ [−π, π]} = T extrB.

In particular, if X is a strictly convex space then

extr B̂ = TS.

Hence we get the following
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Corollary 2.6. If (R2, q) is a strictly convex space then

Φ
extrB̂

(z) = max(1, ΨB(z)) = max(1, |z1| expPu(z2/z1)), z ∈ C2,

where u(t) = log q(1, t).

Corollary 2.7. If q is a norm in R2, S is its unit sphere and u(t) =
log q(1, t), then

T̂S = {z ∈ C2 : log |z1|+ Pu(z2/z1) ≤ 0},

where K̂ denotes the polynomially convex hull of K.

Note that the equality ΨB(z) = ‖z‖∧ is equivalent to

T̂S = conv(TS).

In particular, if (X, q) is a strictly convex space then ΨB(z) = ‖z‖∧ iff̂(extr B̂) = B̂.

Remark 2.8. Theorem 2.1 can be extended in the following way. Denote
by Γ0 the class of all continuous, nonnegative and absolutely homogeneous
functions g on R2 (i.e. g(tx) = |t|g(x), t ∈ R, x ∈ R2) such that g has the
form

g(x) = max
1≤k≤n

Qk(x)1/degQk ,

where Qk ≥ 0 are homogeneous polynomials and Q−1
1 (0) = {0}. Denote by

Γ the class of continuous, nonnegative and homogeneous functions g with
g−1(0) = {0} which are generated by Γ0 with respect to the operations: limit
of monotonic sequences and (g1 · . . . · gN )1/N . We show that Theorem 2.1
extends to Γ . We need the following

Lemma 2.9. If g ∈ Γ0 and u(t) = log g(1, t) then Pu is a continuous
function that belongs to L(C).

P r o o f. The proof that Pu is continuous is similar to that of Lemma 1.1.
It is easily seen that all numbers degQj are even. Put N=degQ1·. . .·degQn
and define

qk(x) =
1
n

(Q1(x)2kN/degQ1 + . . .+Qn(x)2kN/degQn).

Then qk is a sequence of homogeneous polynomials of degree 2kN and the
sequence gk = q

1/(2kN)
k increases to g. Let uk(t) = log gk(1, t). Applying

Corollary 1.7 we easily obtain Puk ∈ SH(C). Hence, similarly to the proof
of Proposition 1.8, we show that Pu ∈ SH(C) and therefore Pu ∈ L(C).

Corollary 2.10. Let g ∈ Γ and let u(t) = log g(1, t). Then Pu ∈ L(C).

Now one can easily obtain a generalization of Theorem 2.1; its proof is
left to the reader.
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Theorem 2.11. Let g ∈ Γ and let B = {x ∈ R2 : g(x) ≤ 1}. Set
u(t) = log g(1, t). Then

ΨB(z1, z2) = |z1| expPu(z2/z1).

Corollary 2.12. For g1, . . . , gn ∈ Γ , put Bj = {x ∈ R2 : gj(x) ≤ 1}.
Define also g(x) = (g1 · . . . · gn)1/n and B = {x ∈ R2 : g(x) ≤ 1}. Then

ΨB = (ΨB1 · . . . · ΨBn
)1/n .

Corollary 2.13. Let g ∈ Γ and let S = {x ∈ R2 : g(x) = 1}. If
u(t) = log g(1, t) then

ΦTS(z1, z2) = max(1, |z1| expPu(z2/z1))

and

T̂S = {z ∈ C2 : log |z1|+ Pu(z2/z1) ≤ 0}.
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