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On the Hartogs-type series for harmonic functions

on Hartogs domains in R
n × R

m, m ≥ 2

by Ewa Ligocka (Warszawa)

Abstract. We study series expansions for harmonic functions analogous to Hartogs
series for holomorphic functions. We apply them to study conjugate harmonic functions
and the space of square integrable harmonic functions.

1. Introduction and the statements of results. If a domain D in
C

n × C
m has the form

D = {(z,w) ∈ C
n × C

m : |w| < ϕ(z)}
then each function f holomorphic on D can be expressed as

f(z,w) =

∞∑

|α|=0

fα(z)wα.

The series on the right converges almost uniformly on D (i.e. uniformly on
each compact subset of D). Such an expansion is called the Hartogs series

of f .

In the present paper we consider analogous expansions for harmonic
functions on Hartogs domains in R

n × R
m, n ≥ 1, m ≥ 2.

Definition 1. A domain Ω ⊂ R
n × R

m, n ≥ 1, m ≥ 2, is a Hartogs

domain if (x, y) ∈ Ω implies that (x, s) ∈ Ω for every s ∈ R
m such that

|y| = |s|. The symbol | · | denotes here (and in the sequel) the euclidean
norm.

Definition 2. Let Ω be a Hartogs domain in R
n ×R

m, m ≥ 2, and let
Ω′ denote the orthogonal projection of Ω onto R

n. We define Ω̂ ⊂ Ω′×R ⊂
R

n × R in the following way:
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(a) If Ω does not intersect R
n × {0} then Ω̂ = p(Ω), where p(x, y) =

(x, |y|).
(b) If Ω ∩ (Rn × {0}) 6= ∅ then

Ω̂ = p(Ω) ∪ {(x, y) ∈ R
n × R : (x,−y) ∈ p(Ω)}.

For every j ∈ N ∪ {0} let {Pjr}r=1,...,r(j) be an orthonormal basis in
the space of j-homogeneous polynomials equipped with the L2(Sm−1) norm
(i.e. the space of spherical harmonics of degree j on Sm−1). Note that

r(0) = 1, r(1) = m

and

r(j) =

(
m+ j − 1
m− 1

)
−

(
m+ j − 3
m− 1

)

for j ≥ 2 (see [2], p. 82).

We shall prove the following

Theorem 1. Let h be a harmonic function on a Hartogs domain Ω in

R
n × R

m, m ≥ 2. Then

h(x, y) =

∞∑

j=0

r(j)∑

r=1

Pjr(y)ujr(x, |y|)

where each ujr is a real-analytic function on Ω̂ and the series converges

almost uniformly on Ω. For each j and r the function ujr(x, t) satisfies the

equation

(∗) ∆ujr +
2j +m− 1

t

∂ujr

∂t
= 0.

If Ω ∩ (Rn ×{0}) 6= ∅ then ujr(x, t) = ujr(x,−t). (Note that Ω ∩ (Rn ×
{0}) = Ω̂ ∩ (Rn × {0}).) This will be a direct consequence of

Theorem 2. Let Ω̂ ∩ (Rn × {0}) 6= ∅. Denote by V the sum of all open

balls B((x, 0), ̺) such that B((x, 0), ̺
√

2) ⊂ Ω̂. Let V ′ = V ∩ (Rn × {0}) =

Ω̂ × (Rn × {0}) = Ω × (Rn × {0}). Then for each j and r there exists a

function fjr, real-analytic on V ′, such that

ujr(x, t) =
∞∑

β=1

cjrβ∆
βfjr(x)t

2β on V

where the series converges almost uniformly on V .

Theorem 2 generalizes the fact proved for harmonic functions in [1].

If Ω does not intersect R
n × {0} we can use Weinstein’s formula from

[10] to get
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Theorem 3. Assume that Ω̂ has connected vertical sections Ω̂x = {t ∈
R : (x, t) ∈ Ω̂} for each x ∈ Ω′. Then

(a) If m is odd , i.e. m = 2l + 1, l ≥ 1, then for every j, r there exists a

function hjr harmonic on Ω̂ such that

ujr(x, t) =

(
1

t

∂

∂t

)j+l

hjr(x, t)

and the expansion from Theorem 1 takes the form

h(x, y) =

∞∑

j=0

r(j)∑

r=1

j+1∑

i=1

cjril

1

|y|2(j+l)−i

(
∂i

∂ti
hjr

)
(x, |y|).

(b) If m is even, i.e. m = 2l, l ≥ 1, then there exists a function hjr on

Ω̂ which satisfies the equation

(∗∗) ∆hjr −
1

t

∂hjr

∂t
= 0

and such that

ujr =

(
1

t

∂

∂t

)j+l

hjr.

Hence in case (b) we can also write down a formula analogous to that
of (a).

The situation for m = 2l is however worse, because if hjr satisfies (∗∗)
then ∂i

∂ti hjr may not satisfy it.

In the last part of our paper we shall use the expansions given above
to study conjugate harmonic functions and the space of square integrable
harmonic functions on Ω.

It should be mentioned here that the equations (∗) are the special case
of the more general class of singular differential equations ∆u+ 2α+1

t
∂u
∂t

= 0.
Those and similar equations were studied by many authors (see [7] for n = 1,
[3] for n > 1 and [10]). Similar problems were studied in [4], [6], [9] and in
the so-called axially symmetric potential theory.

2. Proofs

Proof of Theorem 1. Let Ω1 = Ω\(Rn×{0}). For (x, y)∈Ω1 consider the
sphere S = {(x, s) ∈ Ω1 : |s| = |y|}. We can consider the function ϕ(s/|s|) =
h(x, s) on the unit sphere S1 in R

m. The function ϕ can be expressed as
the sum of a series of spherical harmonics Pjr|S1

(see [8], Chapter III). Thus

ϕ =
∑∞

j=0

∑r(j)
r=1 ajrPjr. The coefficients ajr depend only on x and |y|. Hence
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we have

h(x, y) = ϕ

(
y

|y|

)
=

∞∑

j=0

r(j)∑

r=1

ajr(x, |y|)Pjr

(
y

|y|

)
=

∞∑

j=0

r(j)∑

r=1

ajr(x, |y|)
|y|j Pjr(y).

We define

ujr(x, |y|) =
ajr(x, |y|)

|y|j =
ajr(x, t)

tj
(|y| = t).

The estimates from [8], Chapter III, p. 315, show that for each j and

r, ujr(x, |y|) is locally bounded on Ω1 and the series
∑∞

j=0

∑r(j)
r=1 ujr(x, |y|)

×Pjr(y) is convergent in L2(Ω1, loc) to h(x, y). Let ψ(x, t)∈C∞
0 (Ω̂1). Then

Pjr(y)ψ(x, |y|) ∈ C∞
0 (Ω1). Since h(x, y) is harmonic on Ω1 we have

0 = 〈h(x, y),∆[Pjr(y)ψ(x, |y|)]〉Ω1

=
\

Ω1

h(x, y)∆[Pjr(y)ψ(x, |y|)] dV

=
\

Ω1

h(x, y)Pjr(y)

[
∆ψ(x, t) +

2j +m− 1

t

∂ψ

∂t
(x, t)

]

t=|y|

dV

=
\

Ω1

|Pjr(y)|2
[
∆ψ +

2j +m− 1

t

∂ψ

∂t

]
(x, |y|) ujr(x, |y|) dV

=
\̂

Ω1

t2j+m−1

[
∆ψ +

2j +m− 1

t

∂ψ

∂t

]
(x, t) ujr(x, t) dV

=

〈
ujr, t

2j+m−1

(
∆ψ +

2j +m− 1

t

∂ψ

∂t

)〉

Ω̂1

.

This means that ujr is a weak solution of the differential equation

t2j+m−1∆u+ t2j+m−2(2j +m− 1)
∂u

∂t
= 0.

Since t > 0, the operator on the left is strongly elliptic on Ω̂1 and has
real-analytic coefficients. Hence, by the Friedrichs theorem and Weyl lemma
each ujr(x, t) is real-analytic on Ω̂. This implies that

∆ujr(x, t) +
2j +m− 1

t

∂ujr

∂t
= 0 on Ω̂1

and each function Pjr(y)ujr(x, |y|) is harmonic on Ω1. The Harnack theorem

implies that the series
∑∞

j=0

∑r(j)
r=1 Pjr(y)ujr(x, |y|) is convergent to h(x, y)

almost uniformly on Ω1.

We must now check what is going on near the set Ω ∩ (Rn × {0}).
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Let (x, 0) ∈ Ω ∩ (Rn × {0}). Without loss of generality we can assume
that x = 0.

If B(0, ̺) ⊂ Ω then h(x, y) =
∑∞

k=1 hk(x, y), where hk(x, y) is a k-
homogeneous harmonic polynomial on R

n×R
m. This series converges almost

uniformly on B(0, ̺). On the other hand, h(x, y) is the sum of an almost
uniformly convergent power series on B(0, ̺/

√
2) (see [5]). This implies in

particular that the terms of this power series can be permuted and regrouped
without affecting the convergence of the series. The series

∑∞
k=0 hk(x, y) can

be regarded on B(0, ̺/
√

2) as the permuted and regrouped power series of
h(x, y) at 0.

For every k, hk(x, y)=
∑k

i=0 wi,k(y)vk−i,k(x) where wi,k(y) is an i-homo-
geneous polynomial in y and vk−i,k(x) is a (k− i)-homogeneous polynomial
in x. The polynomial wi,k(y) can be written as

wi,k(y) =

i∑

j=0

r(j)∑

r=1

Pjr(y)cjr|y|2(
i−j

2 ),

where cjr = 0 if (i− j)/2 6∈ N.

As a result, the power series for h(x, y) at zero can be written in the
form

h(x, y) =

∞∑

j=0

r(j)∑

r=1

Pjr(y)
[ ∞∑

|α|,β=0

cjrαβx
α|y|2β

]
.

The absolute convergence of the power series for h(x, y) in B(0, ̺/
√

2)
implies that for each j, r the power series

∑∞
|α|,β=0 cjrαβx

α|t|2β converges

absolutely and almost uniformly to a real-analytic function ujr(x, t) on

B(0, ̺/
√

2) ⊂ Ω̂. We have

0 = ∆h(x, y) = ∆
( ∞∑

j=0

r(j)∑

r=1

Pjr(y)ujr(x, |y|)
)

=

∞∑

j=0

r(j)∑

r=1

∆(Pjr(y)ujr(x, |y|))

=
∞∑

j=0

r(j)∑

r=1

Pjr(y)

(
∆ujr +

2j +m− 1

t

∂ujr

∂t

)
(x, |y|).

(The fourth equality is valid because in the case of power series one can
interchange differentiation and summation.) Hence each ujr satisfies (∗) on

B(0, ̺). Note that ujr(x, t) = ujr(x,−t) on B(0, ̺) in Ω̂ and
∂ujr

∂t
(x, 0) = 0

for |x| < ̺.
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Proof of Theorem 2. Fix j, r and (x0, 0) ∈ V and let ̺ > 0 be such that

B((x0, 0), ̺
√

2) ⊂ Ω̂. We already proved that

ujr(x, t) =

∞∑

|α|,β=0

cjrαβ(x− x0)
αt2β on B((x0, 0), ̺).

Thus ujr on B((x0, 0), ̺) can be written as ujr(x, t) =
∑∞

β=0 gβ(x)t2β where
each gβ is analytic on B(x0, ̺) ⊂ R

n. We have

0 = ∆ujr +
2j +m− 1

t

∂ujr

∂t

=
∞∑

β=0

[
(∆xgβ)t2β + hβ(2β − 1)2βt2β−2 +

2j +m− 1

t
2βgβt

2β−1

]

=

∞∑

β=0

[(∆xhβ)t2β + (2β − 1)(2β + 2j +m− 1)gβt
2β−1]

=

∞∑

β=0

[∆xgβ + (2β + 1)(2β + 2 + 2j +m− 1)gβ+1]t
2β .

Hence for each β ≥ 0 we have

gβ+1 = − 1

(2β + 1)(2β + 2j +m+ 1)
∆gβ

and there exist constants cjrβ such that gβ = cjrβ∆
βg0 on B(x0, ̺). Note

that g0(x) = ujr(x, 0).

Since the same construction can be made for each (x0, 0) ∈ V ′, we can
put fjr(x) = ujr(x, 0) and get Theorem 2.

Remark 1. Theorem 2 implies that if ujr(x, 0) ≡ 0 on some open subset

of V ′ then ujr(x, t) ≡ 0 on the whole Ω̂. This is an interesting difference

between our case and the case of harmonic functions on Ω̂.

Proof of Theorem 3. A. Weinstein proved the following fact: If u satisfies
on Ω̂ the equation

∆u+
k

t

∂u

∂t
= 0

then there exists v such that u = 1
t

∂v
∂t

and v satisfies the equation

∆v +
k − 2

t

∂v

∂t
= 0.

(For a generalized version of this result see [10].)
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Let us outline the proof of Weinstein’s result. Since Ω̂ has connected
vertical sections, there exists ϕ such that ∂ϕ/∂t = tu. Hence

0 = ∆

(
1

t

∂ϕ

∂t

)
+
k

t

∂

∂t

(
1

t

∂ϕ

∂t

)
=

1

t

∂

∂t

(
∆ϕ+

k − 2

t

∂ϕ

∂t

)
.

The fact that Ω̂ has connected vertical sections implies further that
(
∆ϕ+

k − 2

t

∂ϕ

∂t

)
(x, t) = f(x), x ∈ Ω′.

Let g(x) be any solution of the equation ∆g = f . We have

1

t

∂

∂t
(ϕ− g) = u and ∆(ϕ− g) +

k − 2

t

∂

∂t
(ϕ − g) = 0.

Thus, we can take v = ϕ − g + h, where h is a harmonic function on Ω′.
In order to prove our Theorem 3 it suffices now to apply Weinstein’s result
k + l times.

However, we must say that the functions hjr are not uniquely determined
by ujr. They also depend on the choice of j+ l functions h1, . . . , hj+l on Ω′

during the subsequent steps in the construction of hjr.

3. Applications

3.1. Conjugate harmonic functions. We assume in this section that n=
1. An (m+1)-tuple of harmonic functions h0, h1, . . . , hm defined on a domain
in R×R

m is called conjugate harmonic functions if the following equations
are satisfied:

∂h0

∂yj

=
∂hj

∂x
, j = 1, . . . ,m,

∂hj

∂yi

=
∂hi

∂yj

, i, j = 1, . . . ,m,

and

∂h0

∂x
+

m∑

j=1

∂hj

∂yj

= 0.

The above equations are equivalent to the fact that every point of our domain
has a neighborhood on which there exists a harmonic function H such that
h0 = ∂H/∂x and hj = ∂H/∂yj for j = 1, . . . ,m.

Assume now that Ω is a Hartogs domain in R which has the form either

Ω = {(x, y) : |y| < ϕ(x), x ∈ (a, b)}
where ϕ is concave and there is x0 ∈ (a, b) such that ϕ(x0) = sups∈(a,b) ϕ(s)
= R, or

Ω = {(x, y) : 0 ≤ ̺(x) < |y| ≤ ϕ(x)}
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where ̺ is convex on (a, b), ϕ is concave on (a, b) and there is x0 ∈ (a, b)
for which sups∈(a,b) ϕ(s) = ϕ(x0) = R2, infs∈(a,b) ̺(s) = ̺(x0) = R1 (an

example of a domain of this last type is the filled-in torus in R× R
2 = R

3).

Theorem 4. Let Ω be as above. If h0(x, y) is a harmonic function on

Ω then there exists a harmonic function H on Ω such that ∂H/∂x = h0

on Ω. Hence h0, h1, . . . , hm where hi = ∂H/∂yi, i = 1, . . . ,m, form an

(m+ 1)-tuple of conjugate harmonic functions on Ω. If

h0(x, y) =

∞∑

j=0

r(j)∑

r=1

Pjr(y)ujr(x, |y|)

then

H(x, y) = g(y) +
∑

jr

Pjr(y)
[ x\

x0

ujr(s, |y|) ds + ψjr(|y|)
]

where ψjr(t) satisfies the equation

(∗∗∗) ∂2ψjr

∂t2
+

2j +m− 1

t

∂ψjr

∂t
= −∂ujr

∂x
(x0, t)

and g(y) is an arbitrary harmonic function defined either on {y ∈ R
m :

|y| < R} or on {y ∈ R
m : R1 < |y| < R2}. The equation (∗∗∗) is equivalent

to the harmonicity of Pjr(y)[
Tx
x0
ujr(s, |y|) ds + ψjr(|y|)].

P r o o f. Define f(x, y) =
Tx
x0
h0(s, y) ds. We have

∆f(x, y) =
∂h0

∂x
(x, y) +

x\
x0

∆h0(s, y) ds

=
∂h0

∂x
(x, y) +

x\
x0

(
−∂

2h0

∂s2

)
ds =

∂h

∂x
(x0, y).

Let g0(y) be a solution of the equation ∆g0 = ∂h
∂x

(x0, y) on {y ∈ R
m :

|y| < R} (or on {y ∈ R
m : R1 < |y| < R2}).

Put H(x, y) = f(x, y) − g0(y). The function H(x, y) is harmonic and
∂H/∂x = h0. By Theorem 1 we can write a Hartogs series for H,

H(x, y) =

∞∑

j=0

r(j)∑

r=1

Pjr(y)vjr(x, |y|).

We have
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− g0(y) = H(x, y) − f(x, y)

=

∞∑

j=0

r(j)∑

r=1

[
vjr(x, |y|) −

x\
x0

ujr(s, |y|) ds
]
Pjr(y)

=

∞∑

j=0

r(j)∑

r=1

ψjr(|y|)Pjr(y),

where

ψjr(|y|) = vjr(x, |y|) −
x\
x0

ujr(s, |y|) ds

depends only on |y| since g0 depends only on y. The fact that ψjr(t) satisfies
(∗∗∗) can be checked by simple calculation.

Remark 2. It follows from the proof of Theorem 4 that in contrast to
the case of m = 1, the m-tuple h1, . . . , hm of harmonic functions which are
conjugate to a given harmonic h0 is not uniquely determined. If h′1, . . . , h

′
m

is another such m-tuple and gi = hi − h′i, i = 1, . . . ,m, then the gi de-
pend locally only on y and form locally an m-tuple of conjugate harmonic
functions in R

m.

Remark 3. Theorem 4 can be extended to a wider class of domains,
namely those Ω which have connected horizontal sections. Let Ω′′ denote
the orthogonal projection of Ω onto R

m. We assume that for each y∈Ω′′ the
set {x ∈ R : (x, y) ∈ Ω} is connected. Let w(y) be a real-analytic function
Ω′′ → R

m whose graph is contained in Ω.

We can now define f(x, y) =
Tx
w(y)

h0(s, y) ds (as in the proof of Theo-

rem 4). The rest of the proof remains unchanged.

Remark 4. Conjugate harmonic functions on half-spaces of R
m+1 were

considered by E. Stein [8] in connection with Riesz transforms. Conjugate
harmonic functions on domains in R

m+1 were studied by R. Z. Yeh [11].

3.2. The space of square integrable harmonic functions on Ω. Let Ω be
a bounded Hartogs domain in R

n × R
m, m ≥ 2. The following fact holds:

Proposition 1. The space L2 Harm(Ω) of square integrable harmonic

functions can be expressed as the l2-sum of spaces L2 Harmα(j)(Ω̂, |t|2α(j)+1),

α(j) = (2j +m− 1)/2, with each L2 Harmα(j) (Ω̂, |t|2α(j)+1) repeated r(j)

times. Here L2 Harmα(j) (Ω̂, |t|2α(j)+1) denotes the space of functions on Ω̂

which satisfy the equation (∗) and are square integrable with weight |t|2α(j)+1.
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P r o o f. It follows from Theorem 1 that for harmonic h ∈ L2(Ω),

‖h‖2
L2(Ω) =

∞∑

j=0

r(j)∑

r=1

\̂
Ω

|ujr(x, t)|2|t|2j+m−1 dVx dt

=
∞∑

j=0

r(j)∑

r=1

‖ujr‖L2(Ω̂,|t|2α(j)+1), α(j) =
2j +m− 1

2
.
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