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On the delay differential equation y′(x) = ay(τ(x)) + by(x)

by Jan Čermák (Brno)

Abstract. The paper discusses the asymptotic properties of solutions of the scalar
functional differential equation

y
′(x) = ay(τ (x)) + by(x), x ∈ [x0,∞].

Asymptotic formulas are given in terms of solutions of the appropriate scalar functional
nondifferential equation.

1. Introduction. The linear functional differential equation

(1.1) y′(x) = ay(τ(x)) + by(x), x ∈ I = [x0,∞),

has been studied, under special hypotheses, in many papers, for theoretical
reasons as well as with a view to applications. In these problems a and b
are usually real constants and y is a real-valued function. However, in our
paper we also allow complex values for a and y.

Equations (1.1) with bounded r(x) = x−τ(x) are fairly well understood,
whereas for r(x) unbounded the theory is less developed. Among papers
dealing with such equations we can mention, e.g., [6] and [5]. The paper
[6] discusses the asymptotic behaviour of solutions of (1.1) with τ(x) = λx,
λ > 0, λ 6= 1. The paper [5] is devoted to relating the asymptotic properties
of solutions of the delay equation (1.1) to the behaviour of solutions of the
linear functional nondifferential equation

(1.2) aψ(τ(x)) + bψ(x) = 0, x ∈ I.

The resemblance between the asymptotic behaviour of solutions of (1.1) and
(1.2) has been shown for b < 0 and holds for certain delay equations (1.1)
with r(x) unbounded. Our aim is to show this asymptotic resemblance also
in the case b > 0. Similarly to [5] we study delay equations (1.1) with r(x)
unbounded.
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Let us remark that the idea of establishing estimates of solutions of linear
functional differential equations by means of solutions of auxiliary functional
nondifferential equations has also been used in some other cases (see, e.g.,
[2]). Nevertheless, as remarked above, it is usually required that the function
r(x) = x− τ(x) is constant (or at least bounded).

Throughout this paper we assume that τ is an increasing differentiable
function on I such that τ(x) < x for every x ∈ I and limx→∞ τ(x) = ∞.
Nevertheless, our results are also valid for equations (1.1) with τ(x0) = x0

(the proofs require only small modifications).

We say that a real- or complex-valued function y is a solution of (1.1) if
y ∈ C0([τ(x0),∞))∩C1([x0,∞)) and satisfies (1.1) on [x0,∞). The symbol
τn, where n ∈ Z, stands for the nth iterate of τ (for n > 0) or the (−n)th
iterate of the inverse function τ−1 (for n < 0); we put τ0 = id.

2. Main results. We introduce a parameter λ defined as

λ = sup{τ ′(x) : x ∈ I}.

Further, we consider the Schröder functional equation

(2.1) ϕ(τ(x)) = λϕ(x), x ∈ I,

where τ is known, λ is defined above, and ϕ is unknown. A survey of results
concerning this equation can be found in [7]. Here we only state the result
that we need.

Proposition 1. Let τ ∈ Cr(I), r ≥ 1, be such that τ ′(x) > 0 for every

x ∈ I and λ < 1. Further , let ϕ0 ∈ Cr(I0), where I0 = [τ(x0), x0], be a

positive function with a positive derivative on I0 satisfying

(ϕ0 ◦ τ)
(k)(x0) = λϕ

(k)
0 (x0), k = 0, 1, . . . , r.

Then there exists a unique positive solution ϕ ∈ Cr(I) of (2.1) such that

ϕ′ is positive and bounded on I and ϕ(x) = ϕ0(x) for every x ∈ I0. This

solution is given by the formula

(2.2) ϕ(x) = λ−nϕ0(τ
n(x)), τ−n+1(x0) ≤ x ≤ τ−n(x0), n = 0, 1, 2, . . .

Remark 1. Looking for a solution ψ of (1.2) by means of a solution ϕ
of (2.1) we suppose ψ has the form ψ(x) = (ϕ(x))α, x∈I. Substituting this
into (1.2) we obtain

aλα(ϕ(x))α + b(ϕ(x))α = 0,

i.e., α = log(a/(−b))/log λ−1. Note that log will always mean the principal
branch of the corresponding logarithm.
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Proposition 2. Let τ satisfy the hypotheses of Proposition 1 and let ϕ
be given by (2.2). Then the function

ψ(x) = (ϕ(x))α, α =
log a

−b

log λ−1
,

is a solution of (1.2) such that |ψ(x)| > 0 for every x ∈ I.

Lemma. Let a 6= 0, b > 0 be scalars and let τ ∈ C1(I) be such that

λ < 1. If y is any solution of (1.1), then e−bxy(x) tends to a finite (possibly
zero) constant as x → ∞. Moreover , there exists a σ ≥ x0 and a solution

y∗ of (1.1) defined on [τ(σ),∞) such that e−bxy∗(x) tends to 1 as x→ ∞.

P r o o f. We introduce a change of variables z(x) = e−bxy(x) in (1.1) to
obtain

(2.3) z′(x) = p(x)z(τ(x)), x ∈ I,

where p(x) = aeb(τ(x)−x), x ∈ I. Every solution z of (2.3) tends to a finite
constant provided

(2.4)

∞\
x0

|p(s)| ds <∞

(see, e.g., [9]). By our assumptions on b and τ condition (2.4) is satisfied,
which implies the first assertion.

Now set

p−(x) = max(0,−p(x)), x ∈ I.

In addition to (2.4) assume that

(2.5)

∞\
x0

p−(s) ds < 1.

Then the converse statement holds as well, i.e., for every ξ ∈ R there exists
a solution z∗ of (2.3) such that limx→∞ z∗(x) = ξ (see [4]). Therefore, once
σ ≥ x0 has been chosen large enough we can obtain

∞\
σ

p−(s) ds < 1

and there exists a solution z∗ of (2.3) defined on [τ(σ),∞) and tending to
1 as x → ∞. We put y∗(x) = ebxz∗(x), x ∈ [τ(σ),∞), and the lemma is
proved.

Remark 2. If, moreover, a/b > λ−1, then there exists a solution y∗(x)
of (1.1) asymptotic to ebx as x→ ∞ and defined on [τ(x0),∞), i.e., we can
put σ = x0.

Indeed, let a > 0. Then p− is identically zero on I and (2.5) is satisfied.
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Let a < 0. Then
∞\
x0

p−(s) ds = −a

∞\
x0

eb(τ(s)−s) ds ≤
−a

b(1 − λ)

and (2.5) holds if a/b > λ− 1.
Notice that the equation

y′(x) = b(y(x) − y(λx)), x ∈ [0,∞),

where b > 0, 0 < λ < 1, has a one-parameter family of solutions y = c,
hence no solution y(x) defined on [0,∞) is asymptotic to ebx as x→ ∞.

Theorem 1. Let a 6= 0, b > 0 be scalars, τ ∈ C1(I) be such that τ ′ is

positive and nonincreasing on I, λ = τ ′(x0) < 1, and let y∗ be given by the

Lemma. Then for any solution y of (1.1) there exists a constant c ∈ R and

a continuous periodic function g of period log λ−1 such that

(2.6) y(x) = cy∗(x) + (ϕ(x))αg(log ϕ(x)) +O{(ϕ(x))αr−1} as x→ ∞,

where ϕ is a solution of (2.1) given by (2.2), α =
log a

−b

log λ−1 , αr = Reα.

Remark 3. It can be easily verified that the function (ϕ(x))αg(logϕ(x))
is a solution of (1.2). Consequently, the asymptotic formula (2.6) essentially
says that the difference of any two solutions y1, y2 of (1.1) satisfying

(2.7) lim
x→∞

e−bxyi(x) = c ∈ R as x→ ∞, i = 1, 2,

with the same constant c approaches a solution of (1.2).

P r o o f (of Theorem 1). Suppose that y1, y2 are solutions of (1.1) satis-
fying (2.7) and put y = y1 − y2. We show that if α 6= 0 then

(2.8) y(n)(x) = O{|ψ(n)(x)|} as x→ ∞, n = 0, 1,

where ψ(x) = (ϕ(x))α, x ∈ I, is a solution of (1.2). If α = 0 then we replace
(2.8) by

(2.9) y(x) = O{1} as x→ ∞, y′(x) = O

{

ϕ′(x)

ϕ(x)

}

as x→ ∞.

Once (2.8) and (2.9) have been proved we can set

t = logϕ(x), w(t) = (ϕ(x))−αy(x).

Then w(t) satisfies the equation

1

b
s(t)ẇ(t) =

(

1 −
α

b
s(t)

)

w(t) − w(t+ log λ),

where s(t) = ϕ′(ϕ−1(et))/et. By Proposition 1, s(t) = O{e−t} as t → ∞,
hence in view of (2.8) and (2.9),

w(t) −w(t+ log λ) = O{e−t} as t→ ∞.
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Repeating this process we can obtain the uniform convergence of the
sequence {w(t − n log λ)}∞n=1 to a continuous periodic function g of period
log λ−1 such that

w(t) = g(t) +O{e−t} as x→ ∞.

Substituting back y(x) into the last relation we have

y(x) = y1(x) − y2(x) = (ϕ(x))αg(log ϕ(x)) +O{(ϕ(x))αr−1} as x→ ∞.

It remains to prove the asymptotic relations (2.8) and (2.9). Since both
can be proved in the same way we consider only (2.8) for n = 0, 1.

First let n = 0. Obviously limx→∞ e−bxy(x) = 0. Multiplying both sides
of (1.1) by e−bx we obtain

d

dx
[e−bxy(x)] = ae−bxy(τ(x)).

Integrating this we get

y(x) = −aebx
∞\
x

(e−bsy(τ(s))) ds.

Since |y(x)| ≤ Mebx for x ≥ x0, where M > 0 is a suitable constant, we
have, in view of τ ′ ≤ λ on I,

|y(x)| ≤M |a|ebx
∞\
x

eb(τ(s)−s) ds ≤M
|a|

b(1 − λ)
ebτ(x) for x ≥ τ−1(x0).

Repeating this idea we obtain

|y(x)| ≤M
|a|nebτn(x)

bn(1 − λ) . . . (1 − λn)
for x ≥ τ−n(x0), n = 1, 2, . . .

Further, ebτn(x) ≤ ebτ−1

(x0) for x ≤ τ−n−1(x0), i.e.,

(2.10) |y(x)| ≤M1
|a|n

bn
for τ−n(x0) ≤ x ≤ τ−n−1(x0), n = 1, 2, . . . ,

where M1 = Mebτ−1

(x0)(
∏

∞

j=1(1 − λj))−1.

Now let N1 = inf{|ψ(x)| : x ∈ [x0, τ
−1(x0)]} > 0. Then

|ψ(x)| = |ψ(τ−n(τn(x)))| ≥ N1
|a|n

bn
> 0

for τ−n(x0) ≤ x ≤ τ−n−1(x0) and it is easy to deduce that this estimate
together with relation (2.10) implies y(x) = O{|ψ(x)|} as x→ ∞.

Now we show that (2.8) holds for n = 1 as well. Since y′ is a solution of

y′′(x) = aτ ′(x)y′(τ(x)) + by′(x),
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it is easy to check that limx→∞ e−bxy′(x) = 0. Similarly to the previous
part we can estimate y′ as

|y′(x)| ≤M2
|a|n(τn)′(x)

bn
for τ−n(x0) ≤ x ≤ τ−n−1(x0), n = 1, 2, . . . ,

by use of the fact that τ ′ is nonincreasing on I.
Further, let N2 = inf{|ψ′(x)| : x ∈ [x0, τ

−1(x0)]} > 0. Then

|ψ′(x)| = |ψ′(τ−n(τn(x)))| ≥ N2
|a|n(τn)′(x)

bn
> 0

for τ−n(x0) ≤ x ≤ τ−n−1(x0), i.e., y′(x) = O{|ψ′(x)|} as x → ∞, which
completes the proof.

As remarked above, the case a 6= 0, b < 0 has been studied in [5]. We
state here the relevant result.

Theorem 2 [5, Theorem 3.1]. Let a 6= 0, b < 0 be scalars, τ ∈ C2(I)
be such that τ ′ is positive and decreasing on I and λ = τ ′(x0) < 1. Then

for any solution y of (1.1) there exists a continuous periodic function g of

period log λ−1 such that

(2.11) y(x) = (ϕ(x))αg(log ϕ(x)) +O{(ϕ(x))αr−1} as x→ ∞,

where ϕ is the solution of (2.1) given by (2.2), α = log(a/(−b))/log λ−1 and

αr = Reα.

Remark 4. Considering the case a 6= 0, b = 0 we cannot expect any
connection between the asymptotic behaviour of solutions of (1.1) and (1.2)
because equation (1.2) then admits only the zero solution. It is perhaps
curious that the case b = 0 is in many ways more difficult to discuss than
the case b 6= 0.

We make a few remarks about the transformation approach which can
help us in the study of asymptotic properties of solutions of (1.1) with b = 0,
i.e.

(2.12) y′(x) = ay(τ(x)).

Using this approach we can convert equation (2.12) via the transformation

t = log ϕ(x)
log λ−1 , w(t) = y(x) into the equation

(2.13) s(t)ẇ(t) = aw(t− 1),

where ϕ is the solution of (2.1) given by (2.2) and

s(t) = ϕ′(ϕ−1(λ−t))/(λ−t log λ−1)

(see also [8] and [5]). The asymptotic behaviour of equation (2.13) has been
studied, under special hypotheses, in many papers. Therefore we can use
some of these results to obtain asymptotic results for certain equations of
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type (2.12). As an example we consider equation (2.12) with the retarded
argument τ(x) = λx (0 < λ < 1), i.e.,

(2.14) y′(x) = ay(λx).

Then ϕ(x) = x is obviously a solution of (2.1) and the substitution t =
log x/log λ−1, w(t) = y(x) converts (2.14) into

(2.15)
λt

log λ−1
ẇ(t) = aw(t− 1).

A very complete account of the asymptotic results concerning equation
(2.15) has been given in [1]. Then it is not difficult to restate these results
in the form corresponding to (2.14).

3. Applications

Example 1. First we consider the equation

(3.1) y′(x) = ay(λx) + by(x), x ∈ [0,∞),

where a, b, λ are constants, a 6= 0, 0 < λ < 1. The asymptotic behaviour of
solutions of (3.1) has been deeply investigated in [6]. Applying our previous
results to this equation (with b 6= 0) we note that the deviation τ(x) = λx
satisfies all the required assumptions except τ(x) 6= x for each x ∈ [0,∞).
Nevertheless, using a small modification in Proposition 1 we find that the
results of the previous sections are also valid for delays τ intersecting the
identity function at the initial point. Schröder equation (2.1) then becomes

ϕ(λx) = λϕ(x), x ∈ [0,∞),

and admits the identity ϕ(x) = x as the required solution. Substituting this
ϕ into (2.6) and (2.11) we obtain the coincidence between our asymptotic
formulas and the corresponding results of [6].

We note that the case b = 0 has been dealt with in Remark 4.

Example 2. Now we discuss the asymptotic behaviour of solutions of
the equation

(3.2) y′(x) = ay(xγ) + by(x), x ∈ [1,∞),

where a, b, γ are constants, a 6= 0, 0 < γ < 1. Schröder equation (2.1) has
the form

ϕ(xγ) = γϕ(x), x ∈ [1,∞),

with ϕ(x) = log x being the required solution.
In the sequel we put α = log(a/(−b))/log λ−1, αr = Reα and distinguish

three cases:
Let b > 0. Then by the Lemma and Theorem 1 there exists a solution

y∗ of (3.2) defined on [τ(σ),∞), σ ≥ x0, such that limx→∞ e−bxy∗(x) = 1.
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Moreover, for any solution y of (3.2) there exists a constant c ∈ R and a
continuous periodic function g of period log γ−1 such that

y(x) = cy∗(x) + (log x)αg(log log x) +O{(log x)αr−1} as x→ ∞.

Let b < 0. Then by Theorem 2 for any solution y of (3.2) there exists a
continuous periodic function g of period log γ−1 such that

y(x) = (log x)αg(log log x) +O{(log x)αr−1} as x→ ∞.

Finally, let b = 0. Then equation (3.2) becomes

(3.3) y′(x) = ay(xγ), x ∈ [1,∞).

In accordance with Remark 4 we can convert (3.3) via the transformation
t = log log x/log γ−1, w(t) = y(x) into

ẇ(t)

eλ−tλ−t log λ−1
= aw(t− 1)

(see also [8, Example]). However, we have no precise asymptotic results
concerning this equation as we had in the case of equation (2.15). Therefore
we need to proceed differently and introduce a transformation converting
equation (3.3) into an equation of the type (3.1) considered in [6] and in
Example 1. Indeed, let µ = 1/(γ − 1) < 0 and y be any solution of (3.3).
Then the function w(t) = eµty(et) satisfies

(3.4) ẇ(t) = aw(γt) + µw(t), t ∈ [0,∞).

Applying Theorem 2 to (3.4) we see, in view of y(x) = w(log x)x1/(1−γ),
that for any solution y of (3.3) there exists a continuous periodic function g
of period log γ−1 such that

y(x) = x1/(1−γ)(log x)̺g(log log x) +O{(log x)̺r−1} as x→ ∞,

where ̺ = log a(1 − γ)/log γ−1 and ̺r = Re ̺.

Example 3. Consider the equation

(3.5) y′(x) = b[y(x) − y(τ(x))], x ∈ I,

where b is a nonzero constant and τ satisfies the assumptions introduced in
the previous sections. Since obviously α = 0 it is easy to restate (2.6) and
(2.11) in the corresponding simplified form.

In particular, let b > 0 and τ(x) < x for x ≥ x0. Then the Lemma and
Theorem 1 imply that for any solution y of (3.5) there exists a constant
c ∈ R and a continuous periodic function g of period log λ−1 such that

(3.6) y(x) = cy∗(x) + g(logϕ(x)) +O{(ϕ(x))−1} as x→ ∞,

where y∗ is given by the Lemma. In addition to the Lemma and Theorem
1 we show that there exists a solution y∗(x) of (3.5) asymptotic to ebx and
defined on [τ(x0),∞) (i.e., we can put σ = x0). Suppose not and consider
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a solution y of (3.5) defined on [τ(x0),∞) such that in the initial interval
[τ(x0), x0] both y′ > 0 and y′′ > 0. Notice that then c = 0 in (3.6), i.e., y is
bounded. However, since

y′′(x) = b(y′(x) − τ ′(x)y′(τ(x))), x ≥ x0,

we have y′′ > 0 on I, hence y′ is positive and increasing on I. Then y is
unbounded, which is impossible.

Now together with (3.5) we consider the equation

(3.7) ẇ(t) = β(t)(w(t) − w(t− 1)), t ∈ J = [t0,∞).

Setting b = 1, t = k(x) = logϕ(x)/log λ−1 and w(t) = y(x) in (3.5) we
obtain (3.7) with β(t) = ḣ(t) > 0 for all t ∈ J , where h = k−1 on J . The
asymptotic behaviour of solutions of (3.7) with β continuous and positive
has been discussed, e.g., in [3]. Using our transformation approach we can
obtain further asymptotic properties of solutions of (3.5) as well as of (3.7).
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