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Non-zero constant Jacobian polynomial maps of C2

by Nguyen Van Chau (Hanoi)

Abstract. We study the behavior at infinity of non-zero constant Jacobian polyno-
mial maps f = (P,Q) in C2 by analyzing the influence of the Jacobian condition on the
structure of Newton–Puiseux expansions of branches at infinity of level sets of the com-
ponents. One of the results obtained states that the Jacobian conjecture in C2 is true if
the Jacobian condition ensures that the restriction of Q to the curve P = 0 has only one
pole.

1. Introduction. Let f = (P,Q) be a polynomial mapping of C2 into
itself, P,Q ∈ C[x, y], and denote by J(P,Q) := PxQy − PyQx the Jacobian
of f . The Jacobian conjecture in C2 (JC2), first posed by Keller [K] in 1939
and still open, asserts that a polynomial map f = (P,Q) is an automorphism
of C2 if J(P,Q) ≡ const 6= 0. We refer the readers to [BCW] and [D2] for the
history of the conjecture and related topics, and to [Ka], [H], [LW], [O1–O3],
[P] and [St] for some recent partial results on (JC2).

In this paper we study the behavior at infinity of polynomial maps f =
(P,Q) of C2 satisfying the Jacobian condition J(P,Q) ≡ const 6= 0. First
we try to analyse the influence of the Jacobian condition on the structure
of Newton–Puiseux expansions of branches at infinity of level sets of P and
Q. Then, by applying standard results on the topology of plane curves we
give some estimates on the geometric degree and branched value set of f
and the topology of the generic fibers of the components P and Q.

Denote by deggeo f := max{#f−1(a) : a ∈ C2} the geometric degree of
f , and by χP and χQ the Euler–Poincaré characteristics of the generic fibers
of P and Q, respectively.

Our main results can be stated as follows.
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Theorem A. The Jacobian conjecture in C2 is equivalent to the following
statement :

(∗) If J(P,Q) ≡ const 6= 0, then the restriction of Q to the curve P = 0
has only one pole, that is, there is only one irreducible branch at
infinity of the curve P = 0 such that Q tends to infinity along this
branch.

Theorem B. Let f = (P,Q) be a non-zero constant Jacobian polynomial
map of C2 with degP = kd ≥ degQ = ke, gcd(d, e) = 1. Then either e = 1
or

deggeo f = rd+ se ≥ min{2e, d},
where r ≥ 0, s ≥ 0 and r + s ≥ 1.

Theorem C. For every non-zero constant Jacobian polynomial map f =
(P,Q) of C2,

degP (χQ − deggeo f) = degQ(χP − deggeo f).

In particular , if degP 6= degQ then f is an automorphism if χP = χQ.

In order to prove Theorem A we show that the statement (∗) is equivalent
to the implication

J(P,Q) ≡ const 6= 0⇒ degP | degQ or degQ | degP.

So, Theorems A and B each enable us to recover Jung’s theorem [J] on the
tameness of automorphisms of C2 (see also [CK] and [Kul]). In view of
Theorem C the conjecture (JC2) is equivalent to the implication

J(P,Q) ≡ const 6= 0⇒ χP = χQ.

Indeed, under the Jacobian condition the generic fibers of the non-constant
polynomials aP+bQ with deg(aP+bQ) = max(degP,degQ) have the same
topological type (g, n) with n 6= 2, 3, 4, 5 (Theorem 4.8). Moveover, the
number of punctures of the generic fiber of aP + bQ with deg(aP + bQ) <
max(degP,degQ) must be different from 2 and 3 (Theorem 4.6). The last
statement is an improvement of earlier results due to Abhyankar [A] and
Drużkowski [D1]. In particular, we show that if f is not an automorphism,
then the branched value set of f must be composed of the images of some
polynomial maps (pi(ξ), qi(ξ)) with deg pi/deg qi = degP/degQ (Theorem
4.4). These results and Theorem B could be useful to check (JC2) in special
cases.

The proofs of these results, presented in Sections 3 and 4, are based
on Main Lemma (Lemma 3.3) and its corollary (Theorem 3.6). In these we
describe the influence of the Jacobian condition on the structure of Newton–
Puiseux types of the polynomials P and Q. At this stage the polynomials P
and Q are only considered as polynomials in y with coefficients meromorphic
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in x, but not really as polynomials in x and y. The notion of Newton–Puiseux
type of a polynomial together with its properties are introduced in Section 2.

The first version [C2] of this paper was presented to the Topology and
Geometry Seminar of Hanoi Institute of Mathematics, 1998.

2. Preliminaries. We work with the complex plane C2 endowed with
affine coordinates (x, y). A polynomial g(x, y) is monic in y if g(x, y) =
ydeg g + lower order terms in y.

2.1. Newton–Puiseux expansion at infinity. Let g(x, y) be a non-constant
polynomial in C2, monic in y. Let Bg(c) denote the collection of all irre-
ducible branches at infinity of the curve g = c. Let γ ∈ Bg(c). Since g is
monic in y, γ intersects the line at infinity z = 0 of the compactification
CP2 of C2 at a point (1 : a : 0). Newton’s algorithm allows us to find a
Newton–Puiseux expansion of γ, a fractional power series

(2.1) y(z) =
∞∑
k=0

akz
k/m, gcd({k : ak 6= 0} ∪ {m}) = 1, a0 = a,

for which the map τ 7→ (1 : y(τm) : τm) gives a holomorphic parametrization
of γ for τ small enough (see [BK]). Translating the series y(z) into the
standard coordinates (x, y) of C2, we obtain a fractional power series

(2.2) u(x) = xy(x−1/m) = x

∞∑
k=0

akx
−k/m, gcd({k : ak 6= 0} ∪ {m}) = 1,

for which g(x, u(x)) ≡ c and the map t 7→ (tm, u(tm)) is a meromorphic
parametrization of γ for t large enough. Such a series u(x) is called a
Newton–Puiseux expansion at infinity of γ. We call the natural number
mult(u) := m the multiplicity of the series u(x). The equivalence class of u,
denoted by [u] or [γ], consists of m distinct Newton–Puiseux expansions at
infinity uν(x) of the branch γ,

uν(x) := xy(ενx1/m)(2.3)

= x

∞∑
k=0

akε
νkx−k/m, ν = 0, 1, . . . ,m− 1,

where ε is a primitive mth root of 1, ε = exp(2πi/m). The branch γ then
becomes the zero-set of the meromorphic function

∏m−1
ν=0 (y − uν(x)) and

mult(u) is the intersection number of γ and the line at infinity.
The most important facts on Newton–Puiseux expansions at infinity of

a plane curve are the following:

1) (Newton’s Theorem, see [A]) Every reduced polynomial g(x, y) ∈
C[x, y] monic in y can be factorized with respect to Newton–Puiseux ex-
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pansions at infinity of the curve g = 0, i.e.

(2.4) g(x, y) =
∏

γ∈Bg(0)

∏
u∈[γ]

(y − u(x)).

2) The Euler–Poincaré characteristic of a smooth reduced plane curve
(and hence, the topological type of a smooth irreducible plane curve) can
be completely determined by the data of its Newton–Puiseux expansions at
infinity (see [BK]).

2.2. Newton–Puiseux types of a polynomial. By a π-series we mean a
finite fractional power series of the form

(2.5)
ϕ(x, ξ) =

nϕ−1∑
k=0

akx
1−k/mϕ + ξx1−nϕ/mϕ ,

gcd({nϕ,mϕ} ∪ {k : ak 6= 0}) = 1,

where ξ is a complex parameter. For such a π-series ϕ we put mult(ϕ) := mϕ

and ind(ϕ) := iϕ := mϕ/mult(ϕ(x, 0)). Note that by definition

(2.6) mult(ϕ(x, 0)) = mϕi
−1
ϕ and gcd(nϕ, iϕ) = 1.

Two π-series ϕ(x, ξ) and ψ(x, ξ) are equivalent if mϕ = mψ, nϕ = nψ and
ψ(x, 0) ∈ [ϕ(x, 0)]. We denote by [ϕ] the equivalence class of a π-series ϕ. It
consists of mϕi

−1
ϕ distinct π-series,

(2.7) ϕν(x, ξ) =
∑
k<nϕ

akε
νiϕkx1−k/mϕ + ξx1−nϕ/mϕ ,

ν = 0, 1, . . . ,mult(ϕ(x, 0))− 1,

where ε is a primitive mϕth root of 1, ε = exp(2πi/mϕ).
For each π-series ϕ we can write

(2.8) g(x, ϕ(x, ξ)) = gϕ(ξ)xaϕ/mϕ + lower order terms in x1/mϕ ,

where 0 6= gϕ ∈ C[ξ]. The number aϕ is an integer and depends only on the
equivalence class of ϕ. The polynomial gϕ depends on ϕ. But, for ϕν ∈ [ϕ]
in (2.7),

(2.9) gϕν (ξ) = gϕ(ενiϕξ)ενiϕaϕ .

Notation. For each c ∈ C and a π-series ϕ we denote by Bg([ϕ], c) the
collection of all γ ∈ Bg(c) such that γ has a Newton–Puiseux expansion of
the form ϕ(x, a) + lower order terms in x for some a ∈ C. The collection
Bg([ϕ], c) depends only on the equivalence class [ϕ].

From now on, sometimes we will use the lower index “[ϕ]” instead of “ϕ”
to indicate characteristics of an equivalence class [ϕ].
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Proposition 2.1. Let g∈C[x, y] be monic in y. For a given π-series ϕ:

(i) A value c is a zero of gϕ if and only if there exists an irreducible
branch γ ∈ Bg(0) having a Newton–Puiseux expansion at infinity of the
form ϕ(x, c) + lower order terms in x. Such a branch γ is unique if c is a
simple zero of gϕ.

(ii) gϕ(ξ)=ξkg∗(ξiϕ) for some k ≥ 0 and a polynomial g∗ with g∗(0) 6=0.

P r o o f. Write

g(t−mϕ , ϕ(t−mϕ , ξ)) = t−aϕ(gϕ(ξ) + higher order terms in t) =: t−aϕh(t, ξ).

Obviously, h(t, ξ) is a non-zero polynomial in (t, ξ). The conclusions (i) and
(ii) result from the following simple observations:

1) The curve h = 0 has an irreducible branch β at a point (0, c) if and
only if c is a zero of gϕ. Such a branch β is unique if c is a simple zero of gϕ.

2) For each Newton–Puiseux expansion β(t) of such a branch β, the
branch γ determined by the series

u(x) := ϕ(x, c+ β(x−1/mϕ))

is a branch at infinity of the curve g = 0.
3) By using the representation of g in (2.4), we can see that each such

branch γ contributes to gϕ(ξ) a factor (ξiϕ−ciϕ)r for c 6= 0 and ξr for c = 0,
where r := mult(u)mult(ϕ(x, c))−1.

Definition 2.2. A π-series ϕ is a Newton–Puiseux type of g if aϕ = 0
and deg gϕ > 0. Denote by Πg the collection of all equivalence classes of
Newton–Puiseux types of g.

Remark 2.3. (i) Let ϕ be a Newton–Puiseux type of g and ϕν ∈ [ϕ] be
as in (2.7). By Lemma 2.1(ii), (2.8) and (2.9),

(2.10) gϕ(ξ) ∈ C[ξiϕ ] and gϕν (ξ) = gϕ(ενiϕξ).

(ii) For each given Newton–Puiseux expansion at infinity u(x) of γ ∈
Bg(0) we can construct a unique Newton–Puiseux type ϕ so that u(x) =
ϕ(x, c) + lower order terms in x, c ∈ C. Indeed, assume that u(x) =∑∞
k=0 akx

1−k/m. By using the representation of g in (2.4) we can see that
the greatest power of x in g(x,

∑i
k=1 akx

1−k/m), viewed as a function of
i ∈ N with values in Q ∪ {−∞}, is decreasing and tends to −∞ as i
tends to ∞. This ensures that there exists a unique rational number α
and an index n such that 1− (n− 1)/m < α ≤ 1− n/m and the π-series
ϕ(x, ξ) =

∑n−1
k=0 akx

1−k/m + ξxα is a Newton–Puiseux type of g. In certain
cases the series u(x) and the Newton–Puiseux type ϕ(x, ξ) have the same
Puiseux pairs.

(iii) There is a natural one-to-one correspondence φ : [ϕ] 7→ l between Πg

and the collection of all dicritical (horizontal) components l of the divisor
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curve D in a regular extension g∗ of g, g∗ : M = C2 tD → CP, which can
be obtained by resolution of singularities (cf. [LW] and [O1]). The meaning
of the correspondence φ is the following: If an analytic irreducible branch at
infinity γ ⊂ C2 is a branch at a point of a dicritical component l = φ([ϕ]),
then γ has a Newton–Puiseux expansion at infinity of the form ϕ(x, c)+
lower order terms in x. This observation is not used in this paper. However,
it should be useful to view Main Lemma and Theorem 3.6, presented in
Section 3, from the viewpoint of regular extensions.

It is well known from [Ve] that for every non-constant polynomial g on
C2 there is a finite set E such that the map g : C2 − g−1(E) → C − E
determines a locally trivial fibration. The fiber of this fibration is called the
generic fiber of g. The smallest Eg among such sets E is said to be the
exceptional value set of g.

Denote by χg the Euler–Poincaré characteristic of the generic fiber of g,
by Cg the critical value set of g and by C∞g the union of all critical value
sets of gϕ(ξ), [ϕ] ∈ Πg.

Theorem 2.4. Let g(x, y) be a primitive polynomial and monic in y.
Then

Bg(c) =
⊔

[ϕ]∈Πg

Bg([ϕ], c) for all c ∈ C,

#Bg(c) =
∑

[ϕ]∈Πg

deg g[ϕ]

i[ϕ]
for all c ∈ C− C∞g ,

Eg = Cg ∪ C∞g .
P r o o f. The first formula can be obtained from the definition and Re-

mark 2.3(ii). Then the second results from Lemma 2.1(ii) (and (2.10)). We
prove the last conclusion. Recall from [HL] that for a primitive polynomial g
we have c ∈ Eg if and only if the Euler–Poincaré characteristic of the curve
g = c is greater than χg. We can consider {Bg(c) =

⋃
[ϕ]Bg([ϕ], c) : c ∈ C}

as a family of analytic curve germs. Let ϕ be a Newton–Puiseux type of g.
For regular values c of gϕ the curve germs Bg([ϕ], c) have the same Puiseux
data: the number of branches; Puiseux pairs; the intersection number of each
of these branches and other branches in Bg(c). As in the proof of Lemma
2.1, we can see that such Puiseux data must change when c is a critical value
of gϕ. Therefore, by the standard results on the topology of plane curves
(see, for example, [BK] and [HL]) the Euler–Poincaré characteristic of the
curves g = c must change at each of the critical values of g and the values
in C∞g .

In view of Theorem 2.4, the topology of the generic fiber as well as the
“critical values at infinity” of a primitive polynomial g(x, y), monic in y,
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can be completely determined by the Newton–Puiseux types ϕ of g and the
corresponding polynomials gϕ.

3. The Jacobian condition and structure of Newton–Puiseux
types of P and Q. From now on our object of study is a given polynomial
map f of C2, f = (P,Q), satisfying the Jacobian condition, i.e. PxQy −
PyQx≡C 6=0. To avoid trivial cases, we also assume that max(degP,degQ)
> 1. Under the Jacobian condition P and Q are primitive polynomials. By
choosing suitable affine coordinates (x, y) in C2, we can assume that P and
Q are monic in y. Then we can work with the collections ΠP and ΠQ of
equivalence classes of Newton–Puiseux types of P and Q.

In this section we describe the structure of ΠP ∪ΠQ and give a proof of
Theorem A.

3.1. Jacobian condition. For any π-series ϕ,

(3.1) ϕ(x, ξ) =
nϕ−1∑
k=0

akx
1−k/mϕ + ξx1−nϕ/mϕ ,

we write

P (x, ϕ(x, ξ)) = Pϕ(ξ)xaϕ/mϕ + lower order terms in x1/mϕ ,

Q(x, ϕ(x, ξ)) = Qϕ(ξ)xbϕ/mϕ + lower order terms in x1/mϕ ,

where Pϕ, Qϕ ∈ C[ξ]− {0}, and define

Jϕ := aϕPϕ
d

dξ
Qϕ − bϕQϕ

d

dξ
Pϕ,(3.2)

∆ϕ :=
aϕ
mϕ

+
bϕ
mϕ

+
nϕ
mϕ

.(3.3)

Our starting point is the following.

Lemma 3.1. Let ϕ be a π-series and assume that

(3.4) max{degPϕ,degQϕ} > 0, aϕ ≥ 0, bϕ ≥ 0, aϕ + bϕ > 0.

Then

(3.5) ∆ϕ ≥ 2

and

(3.6) Jϕ ≡
{
mϕJ(P,Q) if ∆ϕ = 2,
0 if ∆ϕ > 2.

P r o o f. Defining the holomorphic maps Φ and Fϕ from C \ {0}×C into
C2 by Φ(t, ξ) := (t−mϕ , ϕ(t−mϕ , ξ)) and Fϕ(t, ξ) := (P (Φ(t, ξ)), Q(Φ(t, ξ)))
and writing

P (Φ(t, ξ)) = Pϕ(ξ)t−aϕ + higher order terms in t,
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Q(Φ(t, ξ)) = Qϕ(ξ)t−bϕ + higher order terms in t,

by (3.4) we can differentiate Φ and Fϕ to obtain

detDFϕ(t, ξ) = J(P,Q) detDΦ(t, ξ) = −mϕJ(P,Q)tnϕ−2mϕ−1

and

detDFϕ(t, ξ) = −
[
aϕPϕ

d

dξ
Qϕ − bϕQϕ

d

dξ
Pϕ

]
t−aϕ−bϕ−1

+ higher order terms in t.

It follows that

−mϕJ(P,Q)tnϕ−2mϕ−1 = −Jϕt−aϕ−bϕ−1 + higher order terms in t.

Since J(P,Q) ≡ const 6= 0, by comparing the first terms of the two sides in
this equality we get the conclusion.

Considering the equation Jϕ ≡ 0 and Jϕ ≡ mϕJ(P,Q) in detail, we can
easily obtain the following.

Lemma 3.2. Let ϕ be a π-series and assume that the condition (3.4) of
Lemma 3.3 holds. Then

(a) If Jϕ ≡ mϕJ(P,Q), then the polynomials Pϕ and Qϕ have only
simple zeros and they have no common zero.

(b) If Jϕ ≡ 0, then P
bϕ
ϕ = cQ

aϕ
ϕ for some number c 6= 0.

(c) If Pϕ ≡ const 6= 0, then Jϕ ≡ mϕJ(P,Q) and degQϕ = 1, Qϕ(0) 6=
0 in the case aϕ > 0 and bϕ > 0.

(d) If aϕ = 0 then Jϕ ≡ mϕJ(P,Q), degPϕ = 1 and Qϕ ≡ const 6= 0.

Remark. Lemma 3.1 is still true if condition (3.4) is replaced by

(3.4)′ max{degPϕ,degQϕ} > 0, aϕ ≤ 0, bϕ ≤ 0, aϕ + bϕ < 0.

3.2. Main Lemma and the structure of ΠP ∪ΠQ. To analyze the struc-
ture and relationship of Newton–Puiseux types of P and Q we will use the
following object, which is constructed for each Newton–Puiseux type ϕ of
P and Q.

Associate sequence. Given a Newton–Puiseux type ϕ of P , we can write

(3.7) ϕ(x, ξ) =
K−1∑
k=0

ckx
αk + ξx1−nϕ/mϕ , ck ∈ C,

where ck may be zero, so that the sequence {ϕi}Ki=0 of π-series defined by

ϕi(x, ξ) :=
i−1∑
k=0

ckx
αk + ξxαi , i = 0, 1, . . . ,K − 1,

ϕK := ϕ and αK := 1− nϕ/mϕ, has the following properties:
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(S1) For every i < K either Pϕi or Qϕi has a zero different from the
origin.

(S2) For every ψ(x, ξ) = ϕi(x, ci) + ξxα, αi > α > αi+1, each of Pψ and
Qψ is either a constant or a monomial in ξ.

The representation (3.7) and the sequence {ϕi}Ki=0 are unique. This se-
quence is called the associate sequence of ϕ. For simplicity of notation, we
put

Pk := Pϕk , Qk := Qϕk , ak := aϕk , bk := bϕk ,

mk := mult(ϕk), nk := nϕk , ik := ind(ϕk), Jk := Jϕk .

One can easily verify the following properties of the associate sequence
{ϕi}Ki=0.

(S3) a0/m0 > a1/m1 > . . . > aK/mK and Pi(ci) = 0 for all 0 ≤ i < K.
(S4) If Qk(ck) 6= 0 for some k, then

bi/mi = bk/mk, Qi ≡ const 6= 0 for all k < i ≤ K.
Note that ϕ0(x, ξ) = ξx. As in our first assumption, max(degP,degQ)

> 1, by the Jacobian condition we can verify that

(3.8) J0 ≡ 0, m0 = 1, a0 = degP0 = degP, b0 = degQ0 = degQ.

Therefore, we can determine the greatest index S such that

Ji ≡ 0, ai ≥ 0, bi ≥ 0, ai + bi > 0 for all 0 ≤ i ≤ S − 1.

The marked series ϕS plays a special role in the associate sequence {ϕi}Ki=0

of ϕ.
Now, we can state our main lemma on the influence of the Jacobian

condition on associate sequences of Newton–Puiseux types of P and Q. The
proof of this lemma will be given in Section 3.4.

Lemma 3.3 (Main Lemma). Let ϕ be a Newton–Puiseux type of P ,
{ϕi}Ki=0 be the associate sequence of ϕ and ϕS be the corresponding marked
series. Then:

(i) For all indices 0 ≤ i ≤ S − 1,
ai
bi

=
degPi
degQi

=
degP
degQ

and P degQ
i = CiQ

degP
i , Ci 6= 0.

(ii) Case S = K:

aK = bK = 0 and
degPK
degQK

=
degP
degQ

.

(iii) Case S < K:

JS ≡ mSJ(P,Q) and
aS
bS

=
degPS
degQS

=
degP
degQ
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and for all S < i ≤ K,

Ji ≡ miJ(P,Q),
bi
mi

=
bS
mS

> 0, degPi = 1, Qi ≡ const 6= 0.

This lemma contains more information than what we will use to describe
the structure of ΠP ∪ΠQ below.

Definition 3.4. A π-series ϕ is a dicritical series of f if either [ϕ] ∈ ΠP

and bϕ ≤ 0 or [ϕ]∈ΠQ and aϕ ≤ 0. A π-series ϕ is a separative series of the
pair (P,Q) if aϕ > 0, bϕ > 0, Jϕ 6= 0 and min(degPϕ,degQϕ) > 0. Denote
by Πf and S(P,Q) the collection of all equivalence classes of dicritical series
of f and the collection of all equivalence classes of separative series of (P,Q),
respectively.

Remark 3.5. By definitions, Main Lemma and Proposition 2.1 we can
see the following.

(i) [ϕ] ∈ Πf ∪ S(P,Q) if and only if ϕ is a marked series in the as-
sociate sequence of a Newton–Puiseux type of P or Q. Corresponding to
each Newton–Puiseux type ϕ there is at most one separative series. Some
Newton–Puiseux types of P and of Q may have the same separative series.
Furthermore, Πf ∩ S(P,Q) = ∅.

(ii) For c ∈ C and every Newton–Puiseux type ϕ of P such that [ϕ] ∈
ΠP −Πf , the map f tends to infinity along each branch in BP ([ϕ], c).

(iii) Πf is a subset of ΠP ∪ΠQ, but it is independent of the coordinate
presentation (P,Q) of f . In other words, Πf = ΠA.f for all A ∈ Aut(C2).

(iv) The collection Πf is empty if and only if f is a proper map, and
then f is an automorphism.

Convention and notation. We call a π-series ϕ such that [ϕ] ∈
(ΠP ∪ΠQ)−Πf a polar series of (P,Q) and define

Pol(f, P ) := ΠP −Πf , Pol(f,Q) := ΠQ −Πf .

For each class [ϕ] we put

N(P, [ϕ]) := {[ψ] ∈ ΠP : ∃ϕ′ ∈ [ϕ] such that
ψ(x, ξ) = ϕ′(x, c) + lower order terms in x},

N(Q, [ϕ]) := {[ψ] ∈ ΠQ : ∃ϕ′ ∈ [ϕ] such that
ψ(x, ξ) = ϕ′(x, c) + lower order terms in x}.

Now, we can give a description of ΠP ∪ΠQ.

Theorem 3.6. Suppose f = (P,Q) is a non-zero constant Jacobian poly-
nomial map of C2, where P,Q ∈ C[x, y] are monic in y. Then

ΠP ∪ΠQ = Pol(f, P ) t Pol(f,Q) tΠf , ΠP ∩ΠQ = Πf ,
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Pol(f, P ) =
⊔

[ϕ]∈S(P,Q)

N(P, [ϕ]), Pol(f,Q) =
⊔

[ϕ]∈S(P,Q)

N(Q, [ϕ]).

and the following properties hold :

(i) For a separative series ϕ of (P,Q),

Jϕ ≡ nϕJ(P,Q) and
aϕ
bϕ

=
degPϕ
degQϕ

=
degP
degQ

.

(ii) For a dicritical series ϕ of f ,

aϕ = 0, bϕ = 0,
degPϕ
degQϕ

=
degP
degQ

.

(iii) For a polar series ϕ,{
degPϕ = 1, Qϕ ≡ const 6= 0 if [ϕ] ∈ Pol(f, P ),
Pϕ ≡ const 6= 0, degQϕ = 1 if [ϕ] ∈ Pol(f,Q).

P r o o f. This results immediately from Main Lemma and definitions.

3.3. Proof of Theorem A. First, as an immediate consequence of Theorem
3.6(iii) and Theorem 2.4, we have

Corollary 3.7. For all c ∈ C the number of poles of Q on the curve
P = c is equal to #Pol(f, P ).

We need to know more about separative series of (P,Q).

Lemma 3.8. Let ϕ be a separative series of (P,Q).

(i) Case iϕ = 1: #N(P, [ϕ]) = degPϕ and #N(Q, [ϕ]) = degQϕ.
(ii) Case iϕ > 1: then either (a) or (b) below holds:

(a) Pϕ(ξ) = ξp∗ϕ(ξiϕ) and Qϕ(ξ) = q∗ϕ(ξiϕ), where p∗ϕ(0)q∗ϕ(0) 6= 0,
and

#N(P, [ϕ]) =
degPϕ − 1

iϕ
+ 1, #N(Q, [ϕ]) =

degQϕ
iϕ

.

(b) Pϕ(ξ) = p∗ϕ(ξiϕ) and Qϕ(ξ) = ξq∗ϕ(ξiϕ), where p∗ϕ(0)q∗ϕ(0) 6= 0,
and

#N(P, [ϕ]) =
degPϕ
iϕ

, #N(Q, [ϕ]) =
degQϕ − 1

iϕ
+ 1.

P r o o f. Since ϕ is a separative series of (P,Q), Pϕ and Qϕ have only
simple zeros. Let d ∈ C be a zero of Pϕ. Then, by Main Lemma (iii) there
exists a unique Newton–Puiseux type ψ of P such that ψd(x, ξ) = ϕ(x, d)+
lower order terms in x. This series is a polar series and [ψd] ∈ N(P, [ϕ]).
If iϕ = 1 or if d = 0, then there is no other zero d∗ 6= d of Pϕ such that
ψd∗ ∈ [ψd]. In case iϕ > 1 and d 6= 0, by Remark 2.3(i), dν = ενd, ν =
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0, 1, . . . , iϕ− 1, are also zeros of Pϕ and ψdν ∈ [ψd], where ε := exp(2πi/iϕ).
By these observations we can easily verify the conclusions of the lemma.

The following is a variation of the Lemma on Automorphisms, a crucial
step in some proofs of Jung’s theorem on automorphisms of C2 ([J], see also
[Kul] and [MK]).

Lemma 3.9 (Lemma on Divisibility).

#Pol(f, P ) = #Pol(f,Q) = 1⇒ degP | degQ or degQ | degP.

P r o o f. If #Pol(f, P ) = #Pol(f,Q) = 1, then Theorem 3.6 shows that
S(P,Q) = {[ϕ]} and #N(P, [ϕ]) = N(Q, [ϕ]) = 1. Then, by Lemma 3.8,

degPϕ = degQϕ = 1 for iϕ = 1,
degPϕ = 1, degQϕ = iϕ for iϕ > 1 and Pϕ(0) = 0,
degPϕ = iϕ, degQϕ = 1 for iϕ > 1 and Qϕ(0) = 0.

This together with the equality degPϕ/degQϕ = degP/degQ of Theorem
3.6(i) concludes the proof.

Proof of Theorem A. Consider the following three statements:

(J1) (JC2) is true;
(J2) J(P,Q) ≡ const 6= 0⇒ #Pol(f, P ) = #Pol(f,Q) = 1;
(J3) J(P,Q) ≡ const 6= 0⇒ degP | degQ or degQ | degP.

In view of Corollary 3.7, Theorem A can be restated as (J1)⇔(J2). The
equivalence (J1)⇔(J3) is well known (see, e.g., [A], [AM] and [BCW]). The
implication (J1)⇒(J2) is obvious, and (J2)⇒(J3) by Lemma 3.9. So, we get
(J1)⇔(J2).

3.4. Proof of Main Lemma. Let ϕ be a given Newton–Puiseux type of P ,
{ϕi}Ki=0 be the associate sequence of ϕ and ϕS be the corresponding marked
series.

First, consider the subsequence {ϕi}Si=0. From the definition and prop-
erty (S1), we have max(degP,degQ) > 0, Ji ≡ 0, ai > 0 and bi > 0 for all
0 ≤ i < S. Therefore, by Lemma 3.1 (and Lemma 3.2(b))

(3.9) P bii = CiQ
ai
i , Ci 6= 0,

and hence

(3.10)
ai
bi

=
degPi
degQi

for all 0 ≤ i < S.

Assertion 1. For every π-series

ψ(x, ξ) = ϕk(x, ck) + ξxα, α ∈ Q, αk > α > αk+1, 0 ≤ k < S,

the polynomials Pψ and Qψ are monomials in ξ and Jψ ≡ 0.
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P r o o f. Use the expansions P (x, ψ(x, ξ)) = P (x, ϕk(x, ck) + ξxα) and
Q(x, ψ(x, ξ)) = Q(x, ϕk(x, ck) + ξxα), property (S2) and Lemma 3.2(b).

Assertion 2.
degPk
degQk

=
degPk+1

degQk+1
for k = 0, . . . , S − 1.

P r o o f. Let 0 ≤ k ≤ S − 1. By (S3) and (3.9) the value ck is a common
zero of Pk and Qk. Write

P (x, ϕk(x, ξ)) =
M∑
i=0

(ξ − ck)uipi(ξ)xaki/mk ,(3.11)

Q(x, ϕk(x, ξ)) =
N∑
j=0

(ξ − ck)vjqjxbkj/mk ,(3.12)

where pi(0) 6= 0, qj(0) 6= 0, ak0 > ak1 > . . . > akM and bk0 > bk1 > . . . >
bkN . Note that

(3.13) ak0 = ak, bk0 = bk

and ui, vj are non-negative integers. The natural numbers u0 and v0 are
just the multiplicity of the zero ck of Pk and Qk, respectively. Therefore, by
(3.9) and (3.10) we have

(3.14)
u0

v0
=

degPk
degQk

.

Let us construct a kind of Newton polygon relative to the representations
(3.11) and (3.12) as follows:

V := Conv({(0, 0)} ∪ {(aki, ui) : i = 0, 1, . . . ,M}+ R− × R+),
W := Conv({(0, 0)} ∪ {(bkj , vj) : j = 0, 1, . . . , N}+ R− × R+).

Here, the notation Conv(·) indicates the convex hull.
Let SV and SW denote the steepest slope segments of V and W . Observe

that (ak0, u0) (resp. (bk0, v0)) is the highest vertex of the polygon V and of
the segment SV (resp. of the polygon W and of the segment SW ). The line
containing SV (resp. SW ) intersects the first axis at the point (δP , 0) (resp.
(δQ, 0)). Since the point (0, 0) lies in each of these polygons, we have δP ≥ 0
and δQ ≥ 0.

Now, rewriting ϕk+1(x, ξ) = ϕk(x, ck + ξxαk+1−αk) and substituting it
into (3.11) and (3.12), by the construction of ϕk and the properties (S1–S2)
we can verify the following:

1) Case where Pk+1 has a zero different from the origin:

Pk+1(ξ) =
∑

(aki,ui)∈SV

ξuipki(ck), degPk+1 = u0,
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ak+1

mk+1
=

ak
mk

+ (αk − αk+1)u0,

Qk+1(ξ) = ξv0qk0(ck) + . . . , degQk+1 = v0,

bk+1

mk+1
=

bk
mk

+ (αk − αk+1)v0.

2) Case where Qk+1 has a zero different from the origin:

Qk+1(ξ) =
∑

(bkj ,vj)∈SW

ξvjqkj(ck), degQk+1 = v0,

bk+1

mk+1
=

bk
mk

+ (αk − αk+1)v0,

Pk+1(ξ) = ξu0pk0(ck) + . . . , degPk+1 = u0,
ak+1

mk+1
=

ak
mk

+ (αk − αk+1)u0.

In both cases we have degPk+1 = u0, degQk+1 = v0. This together with
(3.14) concludes the proof.

Assertion 3.
degPk
degQk

=
degP
degQ

for k = 0, . . . , S,

ak
bk

=
degP
degQ

for k = 0, . . . , S − 1.

P r o o f. By (3.9) and (3.10),

degP0

degQ0
=
a0

b0
=

degP
degQ

,
degPi
degQi

=
ai
bi

for 0 ≤ i < S.

The conclusion, then, is clear by Assertion 2.

Proof of Main Lemma. (i) Combine Assertion 3 and (3.10).
(ii) By definition aK = 0 and bK ≤ 0. By Assertion 3 we need only

show that bK = 0. Otherwise, assuming bK < 0, we can determine a unique
π-series ψ(x, ξ) of the form

ψ(x, ξ) = ϕk−1(x, ξ)

or

ψ(x, ξ) = ϕk−1(x, ck−1) + ξxα, αk−1 > α > αk,

such that bψ = 0. It is obvious that

aψ/mψ > aK/mK = 0.

Then, applying Lemma 3.2(c) to ψ we obtain Jψ 6= 0 and Pψ ≡ const 6= 0,
which is impossible by Assertion 1. This proves bK = 0.
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(iii) Suppose S < K. By Property (S3), aS/mS > aS+1/mS+1 ≥ 0.
Analogously to the proof of (ii) we can show that bS ≥ 0. Therefore, JS 6= 0
by the definition of ϕS . Hence, JS ≡ mSJ(P,Q) by Lemma 3.1.

Put PK(ξ) := AKpK(ξ) and QK(ξ) := BKqK(ξ), where pK , qK ∈ C[ξ]
with leading coefficient 1. Then

aKpK q̇K − bK ṗKqK ≡ const 6= 0,

since JS ≡ mSJ(P,Q). Comparing the two sides of this equality, we get

aS
bS

=
degPS
degQS

.

Hence, by Assertion 3,

aS
bS

=
degPS
degQS

=
degP
degQ

.

4. Geometric degree and branched value set of f and topology
of generic fibers of P and Q. In this section, by applying Theorem 3.6
and the Riemann–Hurwitz relation we will get information on the geometry
of (P,Q) from the data of ΠP ∪ΠQ and give the proofs of Theorems B and
C. We will consider the level sets of P and Q as punctured Riemann surfaces
and view each of their branches β at infinity as a small enough punctured
disk Dβ centered at the corresponding puncture. By the degree degβ f of f
on β we mean the topological degree of the restriction f : Dβ → f(Dβ).

From now on, for simplicity, we set degP := kd and degQ := ke, where
k := gcd(degP,degQ). Sometimes we use the lower index [ϕ] instead of “ϕ”
to indicate characteristics of an equivalence class [ϕ].

4.1. Geometric degree of f and proof of Theorem B. Recall that the
geometric degree deggeo f of f is the number of solutions of the equation
f = a for generic values a ∈ C2. This is a topological invariant of f under
the action of homeomorphisms of C2.

Theorem 4.1. (i) For [ϕ] ∈ S(P,Q),∑
β∈BP ([ϕ],0)

degβ f = gcd(aϕ, bϕ) gcd(degPϕ,degQϕ)
de

iϕ
.

Furthermore, gcd(aϕ, bϕ, iϕ) = 1, gcd(degPϕ,degQϕ, iϕ) = 1 and either iϕ
divides d or iϕ divides e.

(ii) The geometric degree deggeo f is equal to∑
[ϕ]∈S(P,Q)

gcd(a[ϕ], b[ϕ]) gcd(degP[ϕ],degQ[ϕ])
de

i[ϕ]
.



302 Nguyen Van Chau

P r o o f. (i) Given a separative series ϕ, [ϕ] ∈ S(P,Q), let β ∈ BP ([ϕ], 0)
be given by a Newton–Puiseux expansion at infinity β(x) = ϕ(x, d) + lower
order terms in x. Then degβ f can be determined from the expansion

Q(x, β(x)) = Qϕ(d)xdegβ f/mult(β)(4.1)
+ lower order terms in x, Qϕ(d) 6= 0,

and hence,

degβ f =
{
bϕ for d 6= 0,
bϕ/iϕ for d = 0.

This together with Lemma 3.8 implies that

(4.2)
∑

β∈BP ([ϕ],0)

degβ f =
bϕ degPϕ

iϕ
.

On the other hand, according to Theorem 3.6(i),

bϕ = gcd(aϕ, bϕ)e and degPϕ = gcd(degPϕ,degQϕ)d.

Then by (4.2) we get the desired formula for the total degree of f on
BP ([ϕ], 0).

To prove the rest, we need only consider the case of iϕ > 1. The conclu-
sion

gcd(Pϕ, Qϕ, iϕ) = 1 and either iϕ | d or iϕ | e
follows from Lemma 3.8. Since Jϕ ≡ mϕJ(P,Q) by Lemma 3.1, we have

aϕ + bϕ + nϕ = 2mϕ.

So, if gcd(aϕ, bϕ, iϕ) > 1, then gcd(nϕ, iϕ) > 1. This is impossible by defini-
tion of mϕ and nϕ. Thus, we get gcd(aϕ, bϕ, iϕ) = 1.

(ii) It is a well known elementary fact that

deggeo f =
∑

β∈BP (0) a pole of Q onP=0

degβ f.

Then, in view of Theorem 3.6,

deggeo f =
∑

[ψ]∈Pol(f,P )

∑
β∈BP ([ψ],0)

degβ f =
∑

[ϕ]∈S(P,Q)

∑
β∈BP ([ϕ],0)

degβ f.

Therefore, we get the desired formula by (i).

Proof of Theorem B. We need only consider the situation d > e > 1 and
show that

deggeo f = rd+ se, r ≥ 0, s ≥ 0, r + s ≥ 1
and

deggeo f ≥ min(2e, d).
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The first conclusion is immediate from Theorem 4.1. For the second, it is
sufficient to prove that for ϕ ∈ S(P,Q),

gcd(aϕ, bϕ) gcd(degPϕ,degQϕ)
de

iϕ
≥ min(2e, d).

Following Lemma 3.8, we consider three cases.
1) Case iϕ = 1: By Theorem 4.1(i),∑

β∈BP ([ϕ],0)

degβ f = gcd(aϕ, bϕ) gcd(degPϕ,degQϕ)de ≥ de.

2) Case iϕ > 1 and Pϕ(0) = 0: By Lemma 3.8, iϕ divides degQϕ, and
hence, by Theorem 4.1(i), iϕ divides e. It follows that∑

β∈BP ([ϕ],0)

degβ f = gcd(aϕ, bϕ) gcd(degPϕ,degQϕ)
e

iϕ
d ≥ d.

3) Case iϕ > 1 and Qϕ(0) = 0: By Lemma 3.8, iϕ divides degPϕ and iϕ
divides degQϕ−1, and hence, by Theorem 4.1(i), iϕ divides d. In particular,
either iϕ < d or gcd(Pϕ,degQϕ) > 1, since d > e > 1. Hence,∑

β∈BP ([ϕ],0)

degβ f = gcd(aϕ, bϕ) gcd(degPϕ,degQϕ)
d

iϕ
e ≥ 2e.

4.2. Dicritical series and branched value set of f . Here, we are concerned
with the situation Πf 6= ∅. As in Remark 3.5(iv), in this situation the
branched value set Ef of f , Ef := {a ∈ C2 : #f−1(a) < deggeo f}, is not
empty. As in the proof of Proposition 2.1, we can verify that

Ef =
⋃

[ϕ]∈Πf

C[ϕ],

where C[ϕ] = {(Pϕ(ξ), Qϕ(ξ)) : ξ ∈ C}. The curve C[ϕ] depends only on the
class [ϕ] ∈ Πf by (2.10). For each class [ϕ] ∈ Πf we introduce the map

Fϕ(t, ξ) := (P (t−mϕ , ϕ(t−mϕ , ξ)), Q(t−mϕ , ϕ(t−mϕ , ξ))).

This is a polynomial in (t, ξ) and

detDFϕ(t, ξ) = −mϕJ(P,Q)tnϕ−2mϕ−1.

The singular set of Fϕ is either empty or the line t = 0. This allows us to
determine deg(0,d) Fϕ by the formula

(4.3) deg(0,d) Fϕ =
∑
β

degβ Fϕ,

where the summation is taken over all irreducible branches β at (0, d) of the
curve P (t−mϕ , ϕ(t−mϕ , ξ)) = Pϕ(d).

Using (4.3) it is easy to verify the following.
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Lemma 4.2. Let [ϕ] ∈ Πf , c ∈ C and d ∈ C so that Pϕ(d) = c. Then∑
γ

degγ f =
{

deg(0,d) Fϕ for d 6= 0,
deg(0,0) Fϕi

−1
ϕ for d = 0,

where the summation is taken over all branches γ ∈ BP (c) having a Newton–
Puiseux expansion at infinity of the form ϕ(x, d) + lower order terms in x.

It is well known (see for example Lemma 3.1 of [O1]) that deg(0,d) Fϕ is
the same natural number µϕ for almost d ∈ C, except at most a finite number
of values d for which deg(0,d) Fϕ > µϕ. Moreover, the natural number µϕ
depends only on the class [ϕ].

Denote by Eϕ the singular set of the map (Pϕ, Qϕ)(ξ). By Remark 2.3(i),
Eϕ is a finite set depending only on the class [ϕ].

Lemma 4.3. Let [ϕ] ∈ Πf . Then

(4.4) deg(0,d) Fϕ

{
≡ µϕ for d ∈ C− Eϕ,
> µϕ for d ∈ Eϕ.

P r o o f. Let d ∈ C. Consider the map Fϕ(t, ξ) in a small enough ball B
around (0, d). Put D := B∩({0}×C) and V := Fϕ(D), which can be viewed
as an irreducible curve germ at Fϕ(0, d). If d ∈ Eϕ, then V is smooth. In this
case we know from Lemma 3.1 of [O1] that deg(0,ξ) Fϕ ≡ µϕ for all ξ ∈ D. If
d ∈ Eϕ, then the germ V is singular and the germ F−1

ϕ V at (0, d) contains
D and at least one other branch. Then for every point a ∈ V close enough
to Fϕ(0, d) we have

deg(0,d) Fϕ =
∑

u∈B,Fϕ(u)=a

degu Fϕ > kµϕ,

where k is the degree of the restriction Fϕ : D → V .

Remark. In the case iϕ > 1 we always have 0 ∈ Eϕ and deg(0,0) Fϕ >
iϕµϕ (by Lemma 4.3).

Theorem 4.4. Let f = (P,Q) be a non-zero constant Jacobian polyno-
mial map of C2, monic in y. Then

Ef =
⋃

[ϕ]∈Πf

C[ϕ],

where:

(E1)
degPϕ
degQϕ

=
degP
degQ

.

(E2) If iϕ > 1, then 0 ∈ Eϕ and (Pϕ, Qϕ)(0) is always a singular point
of (Pϕ, Qϕ)(D) for every neighborhood D of zero.

(E3) Every curve C[ϕ] has a singularity.
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P r o o f. The representation of Ef is obtained by definition of Πf and
Proposition 2.1. Properties (E1) and (E2) are stated in Theorem 3.6(ii) and
the remark after Lemma 4.3. To see (E3), if Ef 6= ∅, in view of Jung’s theo-
rem on automorphisms of C2, in suitable coordinates f can be represented
as f = (p, q) with deg p = kd, deg q = ke, d > e > 1 and gcd(d, e) = 1.
If a curve C[ϕ] is smooth, the corresponding map (pϕ, qϕ) is a regular em-
bedding of C into C2. Therefore, by the Abhyankar–Moh–Suzuki theorem
([AM], [Su]) either deg pϕ divides deg qϕ or vice versa. This contradicts (E1),
since d > e > 1.

4.3. Generic fibers of components of f . Remember that the generic
fiber of P and of Q is a connected Riemann surface with a finite number of
punctures, since P and Q are primitive. Denote by gP and nP the genus
and the number of punctures of FP . We will determine the Euler–Poincaré
characteristic χP and topological type (gP , nP ) of the generic fiber of P by
calculating those numbers for a generic level P = c.

Consider the curve P = c. Set
b∞P (c) := {γ ∈ BP (c) : lim

γ3(x,y)→∞
f(x, y) =∞},

bP (c) := {γ ∈ BP (c) : lim
γ3(x,y)→∞

f(x, y) is finite}.

The number of punctures of the curve P = c is equal to b∞P (c) + bP (c).
Let V be the normalization of P = c, which is a smooth compact Riemann
surface, and let q : V → CP1 be the regular extension of the restriction of
Q to the curve P = c over V . Remember that the curve P = c is embedded
into V so that V − {P = c} consists of #BP (c) distinct points and each
branch γ ∈ BP (c) can be viewed as a punctured disk centered at a point zγ
of V −{P = c}. The branched set of q is contained in V −{P = c} and the
local degree degzγ q is equal to degγ f . Furthermore, the topological degree
deggeo q is equal to deggeo f . Then, by the Riemann–Hurwitz relation (see
[BK]),

χ(V ) = 2 deggeo q −
∑
z∈V

(degz q − 1)

= 2 deggeo f −
∑

γ∈b∞
P

(c)

(degγ f − 1)−
∑

γ∈bP (c)

(degγ f − 1)

= deggeo f + #b∞P (c) + #bP (c)−
∑

γ∈bP (c)

degγ f,

where χ(·) indicates the Euler–Poincaré characteristic. Thus, we obtain the
formula

(4.4) χ({P = c}) = deggeo f −
∑

γ∈bP (c)

degγ f.
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For the number #b∞P (c), by Corollary 3.7 we have

(4.5) #b∞P (c) ≡ #Pol(f, P ) for all c ∈ C.

Now, we assume that {P = c} is a generic level, i.e. c 6∈ EP . For the
number bP (c), by Theorems 3.4(ii) and 2.4 we have

(4.6) #bP (c) = d
∑

[ϕ]∈Πf

gcd(degP[ϕ],degQ[ϕ])
i[ϕ]

for c 6∈ EP .

Furthermore, by definition, Theorem 2.4 and Lemma 4.2 we can verify that∑
γ∈bP (c)

degγ f =
∑

[ϕ]∈Πf

∑
γ∈BP ([ϕ],c)

degγ f =
∑

[ϕ]∈Πf

degP[ϕ]

i[ϕ]
µ[ϕ].

Therefore, we get

(4.7)
∑

γ∈bP (c)

degγ f = d
∑

[ϕ]∈Πf

gcd(degP[ϕ],degQ[ϕ])
i[ϕ]

µ[ϕ] for c 6∈ EP

since degPϕ = d gcd(degPϕ,degQϕ) by Theorem 3.6(ii).
Thus, from (4.4)–(4.7) we obtain

Theorem 4.5.

nP = #Pol(f, P ) + d
∑

[ϕ]∈Πf

gcd(degP[ϕ],degQ[ϕ])
i[ϕ]

,

χP = deggeo f − d
∑

[ϕ]∈Πf

gcd(degP[ϕ],degQ[ϕ])
i[ϕ]

µ[ϕ],

2− 2gP = deggeo f + #Pol(f, P )− d
∑

[ϕ]∈Πf

gcd(degP[ϕ],degQ[ϕ])
i[ϕ]

(µ[ϕ] − 1).

Proof of Theorem C. By applying Theorem 4.5 to P and Q we get the
desired formula

degP (deggeo f − χQ) = degQ(deggeo f − χP ).

If χP = χQ but degP 6= degQ, by the above formula we get deggeo f =
χP ≤ 1. Therefore, since χP = 2 − 2gP − nP ≤ 1, we conclude that χP =
deggeo f = 1 and f is an automorphism.

Abhyankar [A] proved that a non-zero constant Jacobian polynomial
map f = (P,Q) is an automorphism if some level set of P has only one
irreducible branch at infinity. Later, Drużkowski [D1] proved that f=(P,Q)
is an automorphism if nP ≤ 2. In view of Theorem 4.5 either nP = 1 or
nP ≥ 1 + d. In fact, we have
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Theorem 4.6. A non-zero constant Jacobian polynomial map f = (P,Q)
of C2 is an automorphism if one of the following holds:

(i) The curve Q = 0 has at most two punctures.
(ii) The generic fiber of Q has at most three punctures.

P r o o f. Let c ∈ C. By the above-mentioned results in [A] and [D1],
Theorem 4.5 and the fact that b∞Q (c) ≥ 1 it is sufficient to consider the
following situations: (1) #bQ(c) = 1; (2) #bQ(c) = 2 and c 6∈ EQ. In both,
by Theorems 4.4 and 4.5, we can verify that Πf = {[ϕ]} and Qϕ has only
one critical point. It follows that Q has only one exceptional value. Such a
situation is impossible by the following.

Proposition 4.7. Let f = (P,Q) be a non-zero constant Jacobian poly-
nomial map of C2. Then the number of exceptional values of Q must be
different from one.

P r o o f. It is well known from [Su] that for every primitive polynomial
g in C2,

(4.8)
∑
c∈Eg

(χ{g = c} − χg) = 1− χg.

If EQ = {c}, then f is not bijective and χ{Q = c} = 1. Since {Q = c} is
smooth, it has a unique component diffeomorphic to C. Then, by applying
the Abhyankar–Moh–Suzuki Theorem ([AM], [Su]) on embeddings of C into
C2 one can verify that the curve {P = c} is isomorphic to C and f is an
automorphism (see, for example, Theorem 5.6 of [Ca] or Lemma 2.2 of [C1]).
Hence, we get a contradiction.

Concerning the topological type of the generic fiber of the polynomials
aP + bQ we have

Theorem 4.8. For a non-zero constant Jacobian polynomial map f =
(P,Q) of C2 the generic fibers of the polynomials aP+bQ with deg(aP + bQ)
= max{degP,degQ} have the same topological type (g, n) with n 6= 2, 3, 4, 5.

P r o o f. First, we prove that the generic fibers of the polynomials aP+bQ
with deg(aP + bQ) = max{degP,degQ} have the same topological type.
To do it we need only prove that the generic fibers of P and Q have the
same topological type if degP = degQ. Assume that degP = degQ. From
Lemma 3.8(ii) and Theorem 3.6(i) we have iϕ = 1 and degPϕ = degQϕ for
all [ϕ] ∈ S(P,Q). Then by Theorem 3.4 and Lemma 3.8(i) we get

#Pol(f, P ) =
∑

[ϕ]∈S(P,Q)

# degP[ϕ] =
∑

[ϕ]∈S(P,Q)

# degQ[ϕ] = #Pol(f,Q).

This together with the formulas of Theorem 4.5 proves that (gP , nP ) =
(gQ, nQ).
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Now, assume that degP > degQ and (gP , nP ) is the topological type
of the generic fiber of P . Assuming nP 6= 1, we want to show that nP > 5.
From Theorem 4.5 we know that

nP = #Pol(f, P ) + dD, nQ = #Pol(f,Q) + eD,

where

D :=
∑

[ϕ]∈Πf

gcd(degP[ϕ],degQ[ϕ])
i[ϕ]

.

As in the proof of Proposition 4.7, dD > 2 and eD > 2. Therefore, we get
dD > 3 and nP > 4, since d > e. If nP = 5, we have to consider only the
case dD = 4. In this case #Pol(f, P ) = 1, d = 4, D = 1 and e = 3, since
eD > 2. Lemma 3.8 shows that #Pol(f,Q) = 1. Then by Lemma 3.9 we
get the contradiction that e = 1. Thus, we proved nP > 5.

Let us conclude the paper with a remark on the geometric degree of f .

Remark 4.9. In [O1] Orevkov constructed a a reduction f∗ of a regular
extension of f , f∗ : (C2 t D t {∞}, D,∞) → (C2 t {∞}, Ef ,∞), where
D is the union of a finite number of curves homeomorphic to C. From this
Orevkov obtained a nice formula for the geometric degree of f :

(4.9) deggeo f − 1 =
∑
l⊂D

[
µl +

∑
u∈l

(degu f
∗ − µl)

]
(Lemma 4.2 of [O1]), where µl is the degree degu f∗ for generic u ∈ l. Using
this formula, he checked (JC2) for the cases deggeo f ≤ 5 ([O1, O2]). It is
possible to rewrite Orevkov’s formula in terms of the data of Πf and to
obtain the following formula:

(4.10) deggeo f − 1

=
∑

[ϕ]∈Πf

i−1
[ϕ]

[
deg(0,0) F[ϕ] +

∑
d∈E[ϕ], d 6=0

(deg(0,d) F[ϕ] − µ[ϕ])
]
,

where in the summation F[ϕ] := Fϕ for a series ϕ ∈ [ϕ]. This formula can
also be obtained in the way used for Theorem 4.5 and the equalities (4.4)
and (4.8) on Euler–Poincaré characteristics. By using (4.10) and Theorem
4.4 we can claim that the branched value set Ef can never be the image of
an imbedding of C into C2. It is worth noting here that the curve Ef can
never be the image of a polynomial injection from C into C2 ([C1]) and
that there exists the so-called Vitushkin covering, a branched finite covering
between two complex manifolds homeomorphic to R4 with branched value
set diffeomorphic to R2 ([Vi] and [O3]). As part of (JC2), it is conjectured
that the exceptional value set Ef of a non-zero constant Jacobian polynomial
map f in C2 can never be an irreducible curve.
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et automorphismes algébriques de l’espace C2, J. Math. Soc. Japan 26 (1974),
241–257.

[Ve] J. L. Verd ier, Stratifications de Whitney et théorème de Bertini–Sard, Invent.
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