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Hypersurfaces with parallel affine curvature tensor R*

by BARBARA OPOzDA (Krakéw) and
LEOPOLD VERSTRAELEN (Leuven)

Abstract. In [OV] we introduced an affine curvature tensor R*. Using it we char-
acterized some types of hypersurfaces in the affine space R™!. In this paper we study
hypersurfaces for which R* is parallel relative to the induced connection.

1. Let M be an n-dimensional connected manifold and f : M — R"*1 its
immersion into the standard affine space R™*!. Denote by D the standard
connection in R™*!. If ¢ is an equiaffine transversal vector field for f, that
is, D¢ is tangential to f, then the formulas of Gauss and Weingarten can
be written as follows:

(1.1) Dxf.Y = f,.VxY + h(X,Y)E,
(1.2) Dx¢ = —f.5X,

where X, Y are tangent vector fields on M, V is the induced connection on
M, h the second fundamental form and S the shape operator. It is known
that the rank of A is independent of the choice of a transversal vector field.
If the rank is equal to n everywhere on M, then f is called nondegenerate.
For a nondegenerate hypersurface there exists a unique (up to a constant)
equiaffine transversal vector field such that

(1.3) trp(Vxh)(-,-) =0
for every X € T'M. This transversal vector field is called the affine normal.
Throughout the paper we shall study nondegenerate hypersurfaces en-

dowed with equiaffine transversal vector fields. The relationship between V,
h and S is given by the fundamental equations

(1.4) R(X,Y)Z = h(Y,Z)SX — h(X,Z)SY  (Gauss),
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(1.5) Vh(X,Y,Z)=Vh(Y,X,Z) (CodazziI),
(1.6) VS(X,Y)=VS(Y, X) (Codazzi II),
(1.7) h(SX,Y) = h(X,SY) (Ricci),

where R is the curvature tensor of V. The tensor field R* given by R*(X,Y)Z
= R(X,Y)SZ is a curvature tensor relative to h, that is, h(R*(X,Y)Z, W)
is skew-symmetric for Z and W. Note that R is not, in general, a curvature
tensor relative to h.

One can study various conditions imposed on R*. For instance, in [OV]
we proved that R} = 0 if and only if rk S, < 1. If R* constantly vanishes
on M, then M = M; U My, where My = {z € M : S, = 0} and My =
{z € M :rkS, =1}. A transversal vector field £ is a curve in Ma, that is,
around each point of My there is a coordinate system (uq, ..., u,) such that
¢ depends only on one variable. Surfaces in R?® with affine normals which
are curves are described in [O] and [OS]. For instance, such surfaces with
nondiagonalizable shape operator are characterized as follows:

THEOREM 1. Let f : M — R? be a nondegenerate surface with affine
normal §&. The following conditions are equivalent:

(a) € is a curve and the affine shape operator S is nondiagonalizable.
(b) f is a minimal ruled surface.
(c) f is a ruled surface with planar generators.

Surfaces with diagonalizable shape operator are characterized by differ-
ential equations. For instance, in the case of surfaces with parallel image of
the shape operator we have

THEOREM 2. Let f: M — R? be a nondegenerate surface equipped with
the affine normal & inducing V, h and S. If S is diagonalizable, im S is
1-dimensional and parallel relative to V, then for every x € M there is a
coordinate system (u,v) around x and functions ¢(u,v), a(u) such that ¢ is
positive valued, ¢ and a satisfy the equation

a _a
51¢uu+515¢u+526 ¢v'u = _(;5

and
/
Vauau = ((log d))u - a2>aua h(8u761L) =ei1¢e” ?,
Vaua = (log ¢)v8w h(aw av) = 07
Vau Oy = _E(IOg (Z))ueaauy h(ava av) = £20,
S0, = e¢p10,, S0, =0,
where €1,e9 = +1 and € = e1e9. The immersion f is equal modulo the

special affine group SA(3,R) to
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f(u,v) =p(v) + q(u,v)
where p(v) and q(u,v) are obtained in the following way. Let U = I x J be
a domain of a coordinate system (u,v) and &(u) : [ — R? =R? x {0} C R3
be a centroaffine curve satisfying the equation

a/
£ = —erf + 5
Let q(u,v) and p(v) be arbitrary functions satisfying the equations

qu = _eia¢§/7 p/, = —Qyoy T+ 5¢u§/ + 29§
and the condition p'(v) € R? for every v € J. The vector field &(u,v) = &(u)
is the affine normal for f(u,v) up to a constant.

The case where im S is not V-parallel is more complicated and we refer
to [OS] for information about it.

In [OV] we also introduced the Ricci and Weyl tensors determined by R*.
We proved that for a quasi-umbilical hypersurface the Weyl tensor vanishes.
The converse (for manifolfds of dimension greater than 3) is proved in [D];.
In [D]; and [D]2 other conditions on R* are studied.

2. In this paper we prove the following result.

THEOREM 3. Let f: M — R"*! be a nondegenerate hypersurface equip-
ped with an equiaffine transversal vector field & inducing a connection V. If
VR* =0, then R* constantly vanishes on M or f is a nondegenerate central
quadric in R"*Y and € is its affine normal (up to a constant).

Proof. If there exists a point € M such that R} = 0, then R* =0 on
the whole M because R* is parallel relative to a connection. From now on
we assume that R* # 0 everywhere on M. In this case rk S, > 1 for every
x e M.

We first consider the condition R - R* = 0. We have
(2.1) (R(X,Y)-R")(Z, V)W

= (W(V,SW)h(Y,SZ) — h(Z, SW)h(Y,SV))SX
+ (h(Z, SW)h(X,SV) — h(V,SW)h(X,SZ))SY
+ (R(Y,V)W(Z,SW) — h(Y, Z)h(V,SW))S*X
+ (h(X, Z)W(V,SW) — W(X,V)h(Z, SW))S*Y
+ (X, V)h(SY, SW) — h(Y, V)h(5X, SW)
+ h(X, W)h(V, S?Y) — h(Y,W)h(V, S*X))SZ
+ (WY, Z)h(SX,SW) — h(X, Z)h(SY,SW)
+ h(Y,W)h(Z,8*X) — h(X,W)h(Z, S*Y))SV.

We consider a few cases. In all the cases x denotes any point of M.
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CAsE I. Assume first that S, is diagonalizable. By Lemma 1 of [VV]
we know that S, and h, are simultaneously diagonalizable. Let eq,..., e,
be an h-orthonormal basis of T, M consisting of eigenvectors of S,. Let
01,--.,0n be the eigenvalues of S, corresponding to es,...,e, respectively.
If dim M = 2, then, by (2.1), we get

0= (R(e1,e2) - R*)(e1,e2)er = 0102(02 — 01)h(e1, e1)h(ez, e2)er
and consequently g1 = go. If dim M > 2 and i, j, k are mutually distinct,
then (R(ej,e;) - R*)(ex, €;)er = 0 yields
(2.2) or0j(0j — 0i) = 0.

Since rk S, >1, we can assume that p; and g are not zero. If we put g =01
and g; = g2 in (2.2), then we get pp = p; for every i > 3. By taking k = 2,
j =1and i > 3 we obtain g9; = g;. Consequently, o1,..., 0, are all equal,
that is, S, = ol for some nonzero ¢ where I, is the identity endomorphism
of T, M.

In the next cases we assume that S, is not diagonalizable. In particular,
h; is not definite.

CASE II. Assume that dim M = 2. Let X,Y be an h-orthonormal basis
of T,M,ie. h(X,Y)=0,h(X,X)=1=—-h(Y,Y). By (2.1) we get

0= (R(X,Y) - R)(X, V)X
= (h(Y,SX)? — h(X,SX)W(Y,SY) + h(SX,SX) + h(SY,SY))SX
—2h(SX,SY)SY — h(X,SX)S?X + h(Y, SX)S?Y.
Since X, Y is an h-orthonormal basis, we obtain
0=h((R(X,Y) R)(X,Y)X,Y)
= h(Y,SX)?*h(SX,Y) — h(X,SX)h(Y,SY)h(SX,Y)
+ h(SX, X)*h(SX,Y) — h(SX,Y)?h(SX,Y)
+ h(SY, X)?h(SX,Y) — h(SY,Y)?h(SX,Y)
—2h(SX, X)h(SY, X)h(SY,Y) + 2h(SX,Y)h(SY,Y)?
— h(X,SX)*h(SY, X) + h(X,SX)h(SX,Y)h(SY,Y)
+ h((Y, SX)h(SY, X)? — h(Y,SX)h(SY,Y)?
= 2h(X, SY)(h(X,SY)? — h(SX, X)h(SY,Y)).
Since S, is not diagonalizable, we have h(SX,Y") # 0. Thus
h(X,SY)? — h(SX, X)h(Y,SY) = 0.

This means that det S, = 0, which contradicts the assumption rk S, > 1.
In cases III and IV the dimension of M is assumed to be greater than 2.
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CAsSE III. Assume that rk S, < n. We first show that Sﬁ =0on T, M.
By (2.1) applied to any X,Y, Z,V € T, M and 0 # W € ker S, we get

(2.3) (WX, W)h(S?*V,Y) — h(Y,W)h(V,S*X))SZ
+ (WY, W)h(Z,5%X) — (X, W)h(Z,S?Y))SV =0,

Let V € T,M \ ker S,. Since rk S, > 1, there is Z such that SV, SZ are
linearly independent. Then, by (2.3), we have

h(X, W)h(S?*V,Y) = h(Y,W)h(V, S2X)
for every X, Y. It follows that

(2.4) h(S?V, Y)W = h(Y,W)S*V
for every Y € T,,M. Hence
(2.5) h(S?*V,Y) =0

for every Y € (W)*, where (W)1 is the subspace h-orthogonal to W. If
there is a vector W € ker S,, such that h(W, W) # 0, then the space (W) is
an algebraic complement to span{W} in T, M. Therefore, by (2.5) and the
obvious fact h(S?V, W) = h(SV,SW) = 0, we get S? = 0 on T, M. Assume
now that h(W, W) = 0 for every W € ker S,.. To get a contradiction we also
assume that S? is not identically zero on T, M. If there exist W € ker S
and V such that S?V is not parallel to W, then (by (2.4)) h(Y,W) = 0 for
every Y € T, M, that is, W = 0, which is a contradiction. Hence for every
V € ker S and every W € ker S the vector S2V is parallel to W. It follows
that

(2.6) dimker S, =1
and
(2.7) im S2 = ker S,,.

Assume that n > 3. Let £ be an algebraic complement to ker S, in T, M.
Then dim £ = n — 1 and S| is an injection. Since rk.S, =mn —1 and n > 3,
we have dim(£Nim S, ) > 2. Since S, restricted to £LNim .S, is an injection,
we have rk S2 > 2, which contradicts (2.6) and (2.7).

Assume n = 3. Then rk S, = 2. We now take 0 # X € ker S,. By (2.7)
there is Y such that X = S?Y. We set Z = SY and choose V such that
X = SZ and SV are linearly independent. By (2.1) we get

(2.8)  (W(X, Z)h(V,SW) + h(X,V)h(X, W)X — 2h(X, Z)h(X,W)SV =0

for every W € T, M. Tt follows that h(X,Z) = 0, i.e. Z € (X)*. Hence,
by (2.8), h(X,V)h(X,W) =0 for every W, that is, V € (X)*. Since Z,V
are linearly independent, they span (X)*. But X € (X)* and consequently
X =x1Z+x5V for some numbers z1, x5. Therefore 0 = SX = 21 SZ+x,5V,
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i.e. SZ, SV are linearly dependent, which is a contradiction. Consequently,
S%2 =0on T, M.

Let Y, X be such that SY, SX are linearly independent. By (2.1) we
have
(2.9) h(V,SW)h(Y,SZ) — h(Z, SW)h(Y,SV) =0

for every V, Z,W € T, M. Since dim(Y)* =n — 1 and rk S, > 2, we have
(Y)+ nimS, # {0}. It follows that there is Z such that SZ # 0 and
h(Y,SZ) = 0. For such a Z, by (2.9), we get h(SZ,W)h(Y,SV) = 0 for
every Wand V, i.e. h(SY,V) =0 for every V, contrary to SY # 0.

CASE IV. Assume that rk S, = n. Since n > 3 and S, is an isomorphism,
there are vectors ey, eq,e3 € T, M such that e, es, Ses are h-orthonormal.
Weput X =e, Y =¢3, Z=e€1, V=ey, W==¢3. By (2.1) we get

(2.10) h(es,ea)h(Ses, Ses) = h(es, es3)h(Ses, Ses)
and
(2.11)  h(es, e1)h(Sea, S€3) + h(€s, €3)h(er, S%ex)
— h(€3,ez)h(er, S%€3) = 0.

Since h(eg, e2) # 0 and h(Ses, Ses) # 0, we obtain h(es,e3) # 0. By (2.10)
and the fact that h(es,es) = +1 we get

h(Ses, Ses)
(2.12) h(es,e2)h(Ses, Ses) = W.
If we take X =e1, Y =¢€3, Z =e1, V = ey, W = e3, then (2.1) yields
(2.13)  — h(e3,ex)h(Se1, S€3) + h(ey, e3)h(eq, S%E3)

— h(€3,e3)h(ea, S%e1) = 0

and

h(Ses, Ses)
(2.14) h(e1,e1)h(Sey, Sey) = )

Formulas (2.12) and (2.14) imply
h(el, el)h(Sel, Sel) = h(€2, eg)h(Seg, 562).

Since ej, es can be an arbitrary h-orthonormal pair, for any h-orthonormal
basis ey, ..., e, of T, M we have

(2.15) h(ei,ei)h(S%e;, e;) = h(e;, e;)h(S%e;, e;)

for every i,7 = 1,...,n. By comparing (2.11) and (2.13) we obtain
h(€s,e3)h(S%e1,e2) = 0,

that is,

(2.16) h(S%ey1,es) = 0.
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Therefore, if eq,..., e, is an h-orthonormal basis of T, M, then
(2.17) h(S?e;,ej) =0

for any i # j, i,j = 1,...,n. Formulas (2.15), (2.17) imply that S? = al,.
Of course o # 0. Suppose a < 0. Then S/y/—a is a complex structure on
T,.M. In particular, n is even. Hence n > 4. Let eq,...,e,_1,5€¢, be an
h-orthonormal basis of T,M and let X =e1,Y =¢e3, V =¢,, W =e3 and
Z be such that h(Ses, Z) # 0. Then

R(S?*Y,W) = h(S2X, W) = h(X,W) = h(Y, W)
= h(SV,X) = h(SV,Y) = h(SV,W) = 0.

Consequently, by (2.1), h(e1,e,)h(Ses, Z) =0, i.e. h(e1,e,) = 0. Since the
order of eq,...,e,_1 is not important, we have

(2.18) h(En,ei) =0

for every i = 1,...,n — 1, i.e. Se, is parallel to €,. Let Se,, = §¢,,. Then
S2%e,, = p%e,. But S%¢,, = a€, and a < 0, that is, we have a contradiction.
Hence a > 0 and there are two complementary subspaces T7 and 75 of
T.M such that S, r, = Val, and Sy, = —y/al,. In particular S, is
diagonalizable, which is again a contradiction.

Summing up, for each z € M we have S, = ol,. By the Codazzi equation
o is constant on M. Since R* # 0, ¢ is not zero. Hence

R*(X,Y)Z = ¢*(MY,Z2)X — h(X,Z)Y)
and consequently
(Vv R (X, Y)Z = *(VMV,Y,Z)X — Vh(V, X, Z)Y).

Therefore VR* = 0 implies that VA = 0 and, by a theorem of Berwald,
f: M — R is a quadratic hypersurface. The proof is complete.
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