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Hypersurfaces with parallel affine curvature tensor R∗

by Barbara Opozda (Kraków) and
Leopold Verstraelen (Leuven)

Abstract. In [OV] we introduced an affine curvature tensor R∗. Using it we char-
acterized some types of hypersurfaces in the affine space Rn+1. In this paper we study
hypersurfaces for which R∗ is parallel relative to the induced connection.

1. Let M be an n-dimensional connected manifold and f : M → Rn+1 its
immersion into the standard affine space Rn+1. Denote by D the standard
connection in Rn+1. If ξ is an equiaffine transversal vector field for f , that
is, Dξ is tangential to f , then the formulas of Gauss and Weingarten can
be written as follows:

DXf∗Y = f∗∇XY + h(X,Y )ξ,(1.1)
DXξ = −f∗SX,(1.2)

where X,Y are tangent vector fields on M , ∇ is the induced connection on
M , h the second fundamental form and S the shape operator. It is known
that the rank of h is independent of the choice of a transversal vector field.
If the rank is equal to n everywhere on M , then f is called nondegenerate.
For a nondegenerate hypersurface there exists a unique (up to a constant)
equiaffine transversal vector field such that

(1.3) trh(∇Xh)(·, ·) = 0

for every X ∈ TM . This transversal vector field is called the affine normal.
Throughout the paper we shall study nondegenerate hypersurfaces en-

dowed with equiaffine transversal vector fields. The relationship between ∇,
h and S is given by the fundamental equations

(1.4) R(X,Y )Z = h(Y,Z)SX − h(X,Z)SY (Gauss),
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∇h(X,Y, Z) = ∇h(Y,X,Z) (Codazzi I),(1.5)

∇S(X,Y ) = ∇S(Y,X) (Codazzi II),(1.6)

h(SX, Y ) = h(X,SY ) (Ricci),(1.7)

whereR is the curvature tensor of∇. The tensor fieldR∗ given byR∗(X,Y )Z
= R(X,Y )SZ is a curvature tensor relative to h, that is, h(R∗(X,Y )Z,W )
is skew-symmetric for Z and W . Note that R is not, in general, a curvature
tensor relative to h.

One can study various conditions imposed on R∗. For instance, in [OV]
we proved that R∗x = 0 if and only if rkSx ≤ 1. If R∗ constantly vanishes
on M , then M = M1 ∪M2, where M1 = {x ∈ M : Sx = 0} and M2 =
{x ∈ M : rkSx = 1}. A transversal vector field ξ is a curve in M2, that is,
around each point of M2 there is a coordinate system (u1, . . . , un) such that
ξ depends only on one variable. Surfaces in R3 with affine normals which
are curves are described in [O] and [OS]. For instance, such surfaces with
nondiagonalizable shape operator are characterized as follows:

Theorem 1. Let f : M → R3 be a nondegenerate surface with affine
normal ξ. The following conditions are equivalent :

(a) ξ is a curve and the affine shape operator S is nondiagonalizable.
(b) f is a minimal ruled surface.
(c) f is a ruled surface with planar generators.

Surfaces with diagonalizable shape operator are characterized by differ-
ential equations. For instance, in the case of surfaces with parallel image of
the shape operator we have

Theorem 2. Let f : M → R3 be a nondegenerate surface equipped with
the affine normal ξ inducing ∇, h and S. If S is diagonalizable, imS is
1-dimensional and parallel relative to ∇, then for every x ∈ M there is a
coordinate system (u, v) around x and functions φ(u, v), a(u) such that φ is
positive valued , φ and a satisfy the equation

ε1φuu + ε1
a′

2
φu + ε2e

−aφvv = −φ

and

∇∂u
∂u =

(
(log φ)u −

a′

2

)
∂u, h(∂u, ∂u) = ε1φe

−a,

∇∂u∂v = (log φ)v∂u, h(∂u, ∂v) = 0,
∇∂v

∂v = −ε(log φ)ue
a∂u, h(∂v, ∂v) = ε2φ,

S∂u = eaφ−1∂u, S∂v = 0,
where ε1, ε2 = ±1 and ε = ε1ε2. The immersion f is equal modulo the
special affine group SA(3,R) to
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f(u, v) = p(v) + q(u, v)
where p(v) and q(u, v) are obtained in the following way. Let U = I × J be
a domain of a coordinate system (u, v) and ξ(u) : I → R2 = R2 × {0} ⊂ R3

be a centroaffine curve satisfying the equation

ξ′′ = −ε1ξ +
a′

2
ξ′.

Let q(u, v) and p(v) be arbitrary functions satisfying the equations
qu = −e−aφξ′, p′′ = −qvv + εφuξ

′ + ε2φξ

and the condition p′(v) 6∈ R2 for every v ∈ J . The vector field ξ(u, v) = ξ(u)
is the affine normal for f(u, v) up to a constant.

The case where imS is not ∇-parallel is more complicated and we refer
to [OS] for information about it.

In [OV] we also introduced the Ricci and Weyl tensors determined by R∗.
We proved that for a quasi-umbilical hypersurface the Weyl tensor vanishes.
The converse (for manifolfds of dimension greater than 3) is proved in [D]1.
In [D]1 and [D]2 other conditions on R∗ are studied.

2. In this paper we prove the following result.

Theorem 3. Let f : M → Rn+1 be a nondegenerate hypersurface equip-
ped with an equiaffine transversal vector field ξ inducing a connection ∇. If
∇R∗ = 0, then R∗ constantly vanishes on M or f is a nondegenerate central
quadric in Rn+1 and ξ is its affine normal (up to a constant).

P r o o f. If there exists a point x ∈M such that R∗x = 0, then R∗ = 0 on
the whole M because R∗ is parallel relative to a connection. From now on
we assume that R∗ 6= 0 everywhere on M . In this case rkSx > 1 for every
x ∈M .

We first consider the condition R ·R∗ = 0. We have

(2.1) (R(X,Y ) ·R∗)(Z, V )W
= (h(V, SW )h(Y, SZ)− h(Z, SW )h(Y, SV ))SX

+ (h(Z, SW )h(X,SV )− h(V, SW )h(X,SZ))SY
+ (h(Y, V )h(Z, SW )− h(Y,Z)h(V, SW ))S2X

+ (h(X,Z)h(V, SW )− h(X,V )h(Z, SW ))S2Y

+ (h(X,V )h(SY, SW )− h(Y, V )h(SX,SW )
+ h(X,W )h(V, S2Y )− h(Y,W )h(V, S2X))SZ

+ (h(Y, Z)h(SX,SW )− h(X,Z)h(SY, SW )
+ h(Y,W )h(Z, S2X)− h(X,W )h(Z, S2Y ))SV.

We consider a few cases. In all the cases x denotes any point of M .
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Case I. Assume first that Sx is diagonalizable. By Lemma 1 of [VV]
we know that Sx and hx are simultaneously diagonalizable. Let e1, . . . , en

be an h-orthonormal basis of TxM consisting of eigenvectors of Sx. Let
%1, . . . , %n be the eigenvalues of Sx corresponding to e1, . . . , en respectively.
If dimM = 2, then, by (2.1), we get

0 = (R(e1, e2) ·R∗)(e1, e2)e1 = %1%2(%2 − %1)h(e1, e1)h(e2, e2)e1

and consequently %1 = %2. If dimM > 2 and i, j, k are mutually distinct,
then (R(ej , ei) ·R∗)(ek, ei)ek = 0 yields

(2.2) %k%j(%j − %i) = 0.

Since rkSx>1, we can assume that %1 and %2 are not zero. If we put %k =%1

and %j = %2 in (2.2), then we get %2 = %i for every i ≥ 3. By taking k = 2,
j = 1 and i ≥ 3 we obtain %1 = %i. Consequently, %1, . . . , %n are all equal,
that is, Sx = %Ix for some nonzero % where Ix is the identity endomorphism
of TxM .

In the next cases we assume that Sx is not diagonalizable. In particular,
hx is not definite.

Case II. Assume that dimM = 2. Let X,Y be an h-orthonormal basis
of TxM , i.e. h(X,Y ) = 0, h(X,X) = 1 = −h(Y, Y ). By (2.1) we get

0 = (R(X,Y ) ·R∗)(X,Y )X

= (h(Y, SX)2 − h(X,SX)h(Y, SY ) + h(SX, SX) + h(SY, SY ))SX

− 2h(SX,SY )SY − h(X,SX)S2X + h(Y, SX)S2Y.

Since X, Y is an h-orthonormal basis, we obtain

0 = h((R(X,Y ) ·R∗)(X,Y )X,Y )

= h(Y, SX)2h(SX, Y )− h(X,SX)h(Y, SY )h(SX, Y )

+ h(SX,X)2h(SX, Y )− h(SX, Y )2h(SX, Y )

+ h(SY,X)2h(SX, Y )− h(SY, Y )2h(SX, Y )

− 2h(SX,X)h(SY,X)h(SY, Y ) + 2h(SX, Y )h(SY, Y )2

− h(X,SX)2h(SY,X) + h(X,SX)h(SX, Y )h(SY, Y )

+ h((Y, SX)h(SY,X)2 − h(Y, SX)h(SY, Y )2

= 2h(X,SY )(h(X,SY )2 − h(SX,X)h(SY, Y )).

Since Sx is not diagonalizable, we have h(SX, Y ) 6= 0. Thus

h(X,SY )2 − h(SX,X)h(Y, SY ) = 0.

This means that detSx = 0, which contradicts the assumption rkSx > 1.
In cases III and IV the dimension of M is assumed to be greater than 2.
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Case III. Assume that rkSx < n. We first show that S2
x = 0 on TxM .

By (2.1) applied to any X,Y, Z, V ∈ TxM and 0 6= W ∈ kerSx we get

(2.3) (h(X,W )h(S2V, Y )− h(Y,W )h(V, S2X))SZ
+ (h(Y,W )h(Z, S2X)− h(X,W )h(Z, S2Y ))SV = 0,

Let V ∈ TxM \ kerSx. Since rkSx > 1, there is Z such that SV , SZ are
linearly independent. Then, by (2.3), we have

h(X,W )h(S2V, Y ) = h(Y,W )h(V, S2X)

for every X, Y . It follows that

(2.4) h(S2V, Y )W = h(Y,W )S2V

for every Y ∈ TxM . Hence

(2.5) h(S2V, Y ) = 0

for every Y ∈ 〈W 〉⊥, where 〈W 〉⊥ is the subspace h-orthogonal to W . If
there is a vector W ∈ kerSx such that h(W,W ) 6= 0, then the space 〈W 〉⊥ is
an algebraic complement to span{W} in TxM . Therefore, by (2.5) and the
obvious fact h(S2V,W ) = h(SV, SW ) = 0, we get S2 = 0 on TxM . Assume
now that h(W,W ) = 0 for every W ∈ kerSx. To get a contradiction we also
assume that S2 is not identically zero on TxM . If there exist W ∈ kerS
and V such that S2V is not parallel to W , then (by (2.4)) h(Y,W ) = 0 for
every Y ∈ TxM , that is, W = 0, which is a contradiction. Hence for every
V 6∈ kerS and every W ∈ kerS the vector S2V is parallel to W . It follows
that

(2.6) dim kerSx = 1

and

(2.7) imS2
x = kerSx.

Assume that n > 3. Let L be an algebraic complement to kerSx in TxM .
Then dimL = n− 1 and S|L is an injection. Since rkSx = n− 1 and n > 3,
we have dim(L∩ imSx) ≥ 2. Since Sx restricted to L∩ imSx is an injection,
we have rkS2

x ≥ 2, which contradicts (2.6) and (2.7).
Assume n = 3. Then rkSx = 2. We now take 0 6= X ∈ kerSx. By (2.7)

there is Y such that X = S2Y . We set Z = SY and choose V such that
X = SZ and SV are linearly independent. By (2.1) we get

(2.8) (h(X,Z)h(V, SW ) + h(X,V )h(X,W ))X − 2h(X,Z)h(X,W )SV = 0

for every W ∈ TxM . It follows that h(X,Z) = 0, i.e. Z ∈ 〈X〉⊥. Hence,
by (2.8), h(X,V )h(X,W ) = 0 for every W , that is, V ∈ 〈X〉⊥. Since Z, V
are linearly independent, they span 〈X〉⊥. But X∈〈X〉⊥ and consequently
X=x1Z+x2V for some numbers x1, x2. Therefore 0 = SX = x1SZ+x2SV ,
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i.e. SZ, SV are linearly dependent, which is a contradiction. Consequently,
S2 = 0 on TxM .

Let Y , X be such that SY , SX are linearly independent. By (2.1) we
have

(2.9) h(V, SW )h(Y, SZ)− h(Z, SW )h(Y, SV ) = 0

for every V,Z,W ∈ TxM . Since dim〈Y 〉⊥ = n − 1 and rkSx ≥ 2, we have
〈Y 〉⊥ ∩ imSx 6= {0}. It follows that there is Z such that SZ 6= 0 and
h(Y, SZ) = 0. For such a Z, by (2.9), we get h(SZ,W )h(Y, SV ) = 0 for
every W and V , i.e. h(SY, V ) = 0 for every V , contrary to SY 6= 0.

Case IV. Assume that rkSx = n. Since n ≥ 3 and Sx is an isomorphism,
there are vectors e1, e2, ẽ3 ∈ TxM such that e1, e2, Sẽ3 are h-orthonormal.
We put X = e2, Y = ẽ3, Z = e1, V = e2, W = ẽ3. By (2.1) we get

(2.10) h(e2, e2)h(Sẽ3, Sẽ3) = h(ẽ3, ẽ3)h(Se2, Se2)

and

(2.11) h(ẽ3, e1)h(Se2, Sẽ3) + h(ẽ3, ẽ3)h(e1, S2e2)
− h(ẽ3, e2)h(e1, S2ẽ3) = 0.

Since h(e2, e2) 6= 0 and h(Sẽ3, Sẽ3) 6= 0, we obtain h(ẽ3, ẽ3) 6= 0. By (2.10)
and the fact that h(e2, e2) = ±1 we get

(2.12) h(e2, e2)h(Se2, Se2) =
h(Sẽ3, Sẽ3)
h(ẽ3, ẽ3)

.

If we take X = e1, Y = ẽ3, Z = e1, V = e2, W = e3, then (2.1) yields

(2.13) − h(ẽ3, e2)h(Se1, Sẽ3) + h(e1, ẽ3)h(e2, S2ẽ3)
− h(ẽ3, ẽ3)h(e2, S2e1) = 0

and

(2.14) h(e1, e1)h(Se1, Se1) =
h(Sẽ3, Sẽ3)
h(ẽ3, ẽ3)

.

Formulas (2.12) and (2.14) imply

h(e1, e1)h(Se1, Se1) = h(e2, e2)h(Se2, Se2).

Since e1, e2 can be an arbitrary h-orthonormal pair, for any h-orthonormal
basis e1, . . . , en of TxM we have

(2.15) h(ei, ei)h(S2ei, ei) = h(ej , ej)h(S2ej , ej)

for every i, j = 1, . . . , n. By comparing (2.11) and (2.13) we obtain

h(ẽ3, ẽ3)h(S2e1, e2) = 0,

that is,

(2.16) h(S2e1, e2) = 0.
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Therefore, if e1, . . . , en is an h-orthonormal basis of TxM , then

(2.17) h(S2ei, ej) = 0

for any i 6= j, i, j = 1, . . . , n. Formulas (2.15), (2.17) imply that S2
x = αIx.

Of course α 6= 0. Suppose α < 0. Then S/
√
−α is a complex structure on

TxM . In particular, n is even. Hence n ≥ 4. Let e1, . . . , en−1, Sẽn be an
h-orthonormal basis of TxM and let X = e1, Y = e2, V = ẽn, W = e3 and
Z be such that h(Se3, Z) 6= 0. Then

h(S2Y,W ) = h(S2X,W ) = h(X,W ) = h(Y,W )
= h(SV,X) = h(SV, Y ) = h(SV,W ) = 0.

Consequently, by (2.1), h(e1, ẽn)h(Se3, Z) = 0, i.e. h(e1, ẽn) = 0. Since the
order of e1, . . . , en−1 is not important, we have

(2.18) h(ẽn, ei) = 0

for every i = 1, . . . , n − 1, i.e. Sẽn is parallel to ẽn. Let Sẽn = βẽn. Then
S2ẽn = β2ẽn. But S2ẽn = αẽn and α < 0, that is, we have a contradiction.
Hence α > 0 and there are two complementary subspaces T1 and T2 of
TxM such that Sx|T1 =

√
α Ix and Sx|T2 = −

√
α Ix. In particular Sx is

diagonalizable, which is again a contradiction.
Summing up, for each x∈M we have Sx = %Ix. By the Codazzi equation

% is constant on M . Since R∗ 6= 0, % is not zero. Hence

R∗(X,Y )Z = %2(h(Y, Z)X − h(X,Z)Y )

and consequently

(∇V R
∗)(X,Y )Z = %2(∇h(V, Y, Z)X −∇h(V,X,Z)Y ).

Therefore ∇R∗ = 0 implies that ∇h = 0 and, by a theorem of Berwald,
f : M → Rn+1 is a quadratic hypersurface. The proof is complete.
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