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Index filtrations and Morse decompositions

for discrete dynamical systems

by P. Bart lomiejczyk and Z. Dzedzej (Gdańsk)

Abstract. On a Morse decomposition of an isolated invariant set of a homeomorphism
(discrete dynamical system) there are partial orderings defined by the homeomorphism.
These are called admissible orderings of the Morse decomposition. We prove the existence
of index filtrations for admissible total orderings of a Morse decomposition and introduce
the connection matrix in this case.

Introduction. One of the methods by which the Conley index theory
studies isolated invariant sets is to decompose them into subinvariant sets
(Morse sets) and connecting orbits between them. This structure is called a
Morse decomposition of an isolated invariant set. A filtration of index pairs
associated with a Morse decomposition can be used to find connections be-
tween Morse sets. The existence of such a filtration in the case of continuous
dynamical systems has been proved in [CoZ] and [Sal] for totally ordered
Morse decompositions and in [Fra1] for partially ordered ones. Our purpose
is to study the case of a discrete time dynamical system given by a homeo-
morphism of a locally compact metric space. M. Mrozek [Mr3] has proved
that in this case there exist so-called weak index triples for attractor-repeller
pairs consisting of f -pairs. In many situations they are sufficient, e.g. to ob-
tain the Morse equation. We prove a bit more, the existence of index triples
and index filtrations consisting of index pairs. The reason why we prefer
index triples is that we can use a simple induction argument then. For this
purpose we adapt the proof of existence of index pairs by Mrozek [Mr2].

In [C] and [Fra2] the connection matrix theory for Morse decomposi-
tions is developed for flows. The connection matrices are matrices of maps
between the homology indices of the sets in the Morse decomposition. They
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provide some information on the structure of the Morse decomposition; in
particular, they give an algebraic condition for the existence of connecting
orbits between different Morse sets. We wish to investigate the connection
matrix theory for a homeomorphism.

Similar results have recently been obtained by David Richeson [Ri]. He
defines the analogue of the connection matrix as a pair of matrices corre-
sponding to the functional description of the discrete Conley index developed
by A. Szymczak [Szy]. We define it as a single matrix. Even if his approach
gives more detailed conditions for the existence of connecting orbits, we
think that in several cases it is sufficient to use our method. Moreover,
basing on Franzosa’s results Richeson concentrates more on the connection
matrix theory in his work while we study in detail the properties of Morse de-
compositions and index filtrations following Salamon and Mrozek’s results.
In this aspect our proofs are more detailed.

The organization of the paper is as follows. The first section contains
preliminaries. In the second section we study properties of Morse decompo-
sitions and admissible orderings. In the third section our main result, the
theorem on existence of index filtrations is presented. In the last section we
introduce the connection matrix for discrete time dynamical systems. The
ideas of the proofs of Lemmas 3.5 and 3.6 come from [CoZ]. The proofs of
Proposition 2.7 and Lemma3.7(3) and (5) were motivated by [Sal]. Besides
[CoZ] and [Sal], the works of Szymczak [Szy], Mirozek [Mr1, 2, 3] and Rei-
neck [Re] are important references for the index theory presented here.

1. Preliminaries. We denote by Z, Z+, Z− and N the sets of inte-
gers, nonnegative, nonpositive integers and natural numbers, respectively.
The usual notation for intervals will refer to intervals in Z, for instance
[n,∞) := {m ∈ Z : m ≥ n}.

We assume X is a fixed locally compact metric space. If A ⊂ Y ⊂ X
the notation intY A, clY A,bdY A will be used for the interior, closure and
boundary of A in Y respectively. If it causes no misunderstanding, we drop
the subscript Y .

Assume a discrete time dynamical system on X is given, i.e. a fixed
homeomorphism f : X → X. We use the convenient notation xn := fn(x)
for any x ∈ X and n ∈ Z. If A ⊂ X and ∆ ⊂ Z, then A∆ := {xn : x ∈
A and n ∈ ∆}.

For N ⊂ X the sets Inv+(N) := {x ∈ X : xZ+ ⊂ N}, Inv−(N) :=
x ∈ X : xZ− ⊂ N}, Inv(N) = Inv+(N) ∩ Inv−(N) are called the positively

invariant, negatively invariant and invariant parts of N , respectively. A set
A is called invariant iff Inv(A) = A. Similarly one defines positively invari-

ant and negatively invariant sets.
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Proposition 1.1. Inv(N) is an invariant set , and if N is closed then

so is Inv(N).

The proof is left to the reader.
For A ⊂ X the sets

Ω+(A) :=
⋂

{cl A[n,∞) : n ∈ N}, Ω−(A) :=
⋂

{cl A(−∞, n] : n ∈ N}

are called the positive and negative limit sets of A.

The following statement follows immediately from the definitions.

Proposition 1.2. If I is a closed invariant subset of X and A ⊂ I,
then Ω+(A) and Ω−(A) are closed invariant subsets of I.

Definition 1.3. Let Y be a compact, positively (resp. negatively) invari-
ant subset of X. A set A ⊂ Y is called an attractor (resp. a repeller) relative
to Y iff there exists a neighbourhood U of A in Y such that Ω+(U) = A
(resp. Ω−(U) = A).

From Proposition 1.2 it follows that attractors and repellers are compact
and if Y is invariant then so are every attractor and repeller relative to Y .
For A,B ⊂ X we define the connecting orbit set from A to B by

C(A,B;X) := {x ∈ X : Ω−(x) ⊂ A and Ω+(x) ⊂ B}.

Proposition 1.4 (see [Mr3], Prop. 3.4). Let I ⊂ X be a compact in-

variant set. If A is an attractor in I, then A∗ := {x ∈ I : Ω+(x) ∩ A = ∅}
is a repeller in I. Similarly if A∗ is a repeller in I, then A := {x ∈ I :
Ω−(x) ∩ A∗ = ∅} is an attractor in I.

We call them respectively the complementary repeller of A in I and the
complementary attractor of A∗ in I. A pair (A,A∗) is called an attractor-

repeller pair in I.

The following proposition gives a useful characterization of attractors
and repellers.

Proposition 1.5. Let I ⊂ X be a compact invariant set. Then for any

compact invariant subset A ⊂ I, A is an attractor (resp. a repeller) in I
if and only if there exists a neighbourhood U of A in I such that for all

x ∈ U − A we have xZ− 6⊂ U (resp. xZ+ 6⊂ U).

P r o o f. The necessity of the condition is clear since xZ− ⊂ U implies
x ∈ Ω+(U).

Let U ′ be an open neighbourhood of A in I such that xZ− 6⊂ U ′ for
all x ∈ U ′ − A and let U be an open neighbourhood of A in U ′ such that
A ⊂ U ⊂ clU ⊂ U ′. Then there exists an n∗∈N such that x[−n∗,−1] 6⊂cl U
for all x ∈ I−U . Now choose a neighbourhood V of A such that V [0, n∗]⊂U .
Then V [0,∞) ⊂ U and therefore Ω+(V ) = A.
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Proposition 1.6. If A′ is an attractor in A and A is an attractor in I,
then A′ is an attractor in I.

P r o o f. Let U be a neighbourhood of A in I such Ω+(U) = A and let
U ′ be a neighbourhood of A′ such that A′ ⊂ U ′ ⊂ U ⊂ I and U ′ is open
in U and Ω+(U ′ ∩ A) = A′. Let x ∈ U ′ be such that xZ− ⊂ U ′ ⊂ U .
From Proposition 1.5 we obtain x ∈ Ω+(U) = A. Hence xZ− ⊂ U ′ ∩A and
therefore x ∈ Ω+(U ′ ∩ A) = A′. By Proposition 1.5 this implies that A′ is
an attractor in I.

Later on, we will make use of the following

Proposition 1.7. If {Kn} is a decreasing sequence of compact subsets

of a topological space X and f : X → Y is a continuous map, then

f
( ⋂

n∈N

Kn

)
=

⋂

n∈N

f(Kn).

P r o o f. Suppose that x ∈
⋂

n∈N
f(Kn). Let Fn = f−1(x)∩Kn. Clearly,

Fn is a decreasing sequence of nonempty compact sets. Thus,
⋂

n∈N

Fn = f−1(x) ∩
⋂

n∈N

Kn 6= ∅.

It follows that x ∈ f(
⋂

n∈N
Kn). Since the reverse inclusion is obvious, the

proof is finished.

2. Morse decompositions

Definition 2.1. Let I be a compact invariant subset of X. A Morse

decomposition of I is a finite collection {Mp}p∈P of subsets Mp ⊂ I which
are mutually disjoint, compact and invariant, and which can be ordered as
(M1, . . . ,Mn) so that for every x ∈ I −

⋃n
j=1 Mj there are indices 1 ≤ i <

j ≤ n such that Ω+(x) ⊂ Mi and Ω−(x) ⊂ Mj .

Remark 2.2. Such an ordering will then be called an admissible ordering .
There may be several admissible orderings of the same decomposition. The
elements Mj of a Morse decomposition of I will be called Morse sets of I.

For an admissible ordering (M1, . . . ,Mn) of a Morse decomposition of I
we define the subsets Mji ⊂ I (j ≥ i) as follows:

Mji := {x ∈ I : Ω+(x) ∪ Ω−(x) ⊂ Mi ∪ Mi+1 ∪ . . . ∪ Mj}.

In particular, Mjj = Mj .

Proposition 2.3. Let (M1, . . . ,Mn) be an admissible ordering of a

Morse decomposition of I. If i≤j, then (M1, . . . ,Mi−1,Mji,Mj+1, . . . ,Mn)
is an admissible ordering of a Morse decomposition of I. Moreover ,
(Mi,Mi+1, . . . ,Mj) is an admissible ordering of a Morse decomposition

of Mji.
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P r o o f. It is sufficient to prove that Mji is invariant and compact. It is
evident that Ω+(x) = Ω+(xt) for all t ∈ Z. Let x ∈ Mji and k ∈ Z. Since
x ∈ Mji ⊂ I, we have xZ ⊂ I. Hence xk ∈ I and Ω+(xk) ∪ Ω−(xk) =
Ω+(x) ∪ Ω−(x) ⊂ Mi ∪ . . . ∪ Mj and therefore xk ∈ Mji. Consequently,
xZ ⊂ Mji.

The second assertion is proved in four steps.

Step 1. Mn is a repeller in I.

Let U be a neighbourhood of Mn in I such that clU ∩Mi = ∅ for i < n.
Let x ∈ U − Mn ⊂ I. Then Ω+(x) ⊂ Mi for some i < n and therefore
Ω+(x) ∩ cl U = ∅. We have xZ+ 6⊂ U , for otherwise cl x[n,∞) ⊂ cl U for
all n ∈ N, and consequently Ω+(x) ⊂ cl U , a contradiction. In view of
Proposition 1.5, Mn is a repeller in I.

Step 2. Mn−1,1 is an attractor in I.

Indeed,

Mn−1,1 = {x ∈ I : Ω+(x) ∪ Ω−(x) ⊂ M1 ∪ . . . ∪ Mn−1}.

By the definition of a Morse decomposition, Mn−1,1 = {x ∈ I : Ω−(x) ∩
Mn = ∅}. Therefore Mn−1,1 is an attractor in I by Proposition 1.4.

Step 3. Mj1 is an attractor in I for j = 1, . . . , n.

The proof is by induction on j. We give it for j = n−2. Analysis similar
to that in the proof of Step 2 shows that Mn−2,1 is an attractor in Mn−1,1.
Since Mn−1,1 is an attractor in I (by Step 2), we conclude that Mn−2,1 is
an attractor in I by Proposition 1.6.

Step 4. Mni is a repeller in I for i = 1, . . . , n.

Mni = {x ∈ I : Ω+(x) ∪ Ω−(x) ⊂ Mi ∪ . . . ∪ Mn}

= {x ∈ I : Ω+(x) 6⊂ M1 ∪ M2 ∪ . . . ∪ Mi−1}

= {x ∈ I : Ω+(x) ∩ Mi−1,1 = ∅}.

By Proposition 1.4 the last set is the complementary repeller of the attractor
Mi−1,1 in I, which proves Step 4.

The set Mji = Mj1 ∩ Mni is compact since it is the intersection of an
attractor and a repeller in I.

Definition 2.4 (Isolated invariant set). Let N be a compact subset
of X. If Inv(N) ⊂ intX N , then N is called an isolating neighbourhood

(in X) and Inv(N) is called an isolated invariant set.

Proposition 2.5. Let S be an isolated invariant set in X and let

{Mp}p∈P be a Morse decomposition of S. Then the sets Mp are also isolated

invariant sets in X.
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P r o o f. By assumption there is a compact set N such that Inv(N) =
S ⊂ intX N . By the definition of a Morse decomposition, the Mp are com-
pact, invariant and mutually disjoint. Pick any compact neighbourhood Np

of Mp in X which is disjoint from the remaining Morse sets and is con-
tained in N . Then Np is an isolating neighbourhood of Mp. It is clear that
Mp = Inv(Mp) ⊂ Inv(Np). Let x ∈ Inv(Np) so that xZ ⊂ Np ⊂ N and con-
sequently x ∈ S. Since x[n,∞) ⊂ Np and therefore cl x[n,∞) ⊂ clNp = Np

for all n ∈ N, we see that Ω+(x) ⊂ Np. Similarly, Ω−(x) ⊂ Np. From the
definition of a Morse decomposition it now follows that x ∈ Mp and thus
Inv(Np) = Mp ⊂ intX Np.

Remark 2.6. In the same manner we can see that if (M1, . . . ,Mn) is
an admissible ordering of {Mp}p∈P then Mji is an isolated invariant set for
i ≤ j.

Proposition 2.7. Let N be an isolating neighbourhood for S and let

(M1, . . . ,Mn) be an admissible ordering of a Morse decomposition of S. If

xZ+ ⊂ N then Ω+(x) ⊂ Mi for some i ∈ {1, . . . , n}.

P r o o f. (a)We first prove the proposition for n=2. Proposition 1.2 shows
that Ω+(x) is a compact invariant subset of N and therefore Ω+(x)⊂S.
From this we can see that either:

1. Ω+(x) ⊂ M1,

2. Ω+(x) ⊂ M2,

3. Ω+(x) ⊂ M1 ∪ M2 and Ω+(x) 6⊂ M1 and Ω+(x) 6⊂ M2, or

4. there exists an x′ ∈ Ω+(x) ⊂ S such that x′ 6∈ M1 ∪ M2, and
then from the definition of a Morse decomposition, Ω+(x′) ⊂ M1 and
Ω−(x′) ⊂ M2. Since Ω+(x) is invariant, x′Z+ ⊂ Ω+(x). Let y be a limit
point of {x′k}k∈Z+ (it exists because x′Z+ ⊂ S and S is compact). We
have y ∈ Ω+(x′)⊂M1 and y ∈ Ω+(x) because x′Z+ ⊂ Ω+(x) and Ω+(x) is
closed. Hence Ω+(x) ∩ M1 6= ∅. Similarly, Ω+(x) ∩ M2 6= ∅.

It follows from the above that either the proposition holds, or Ω+(x) ∩
M1 6= ∅ and Ω+(x) ∩ M2 6= ∅. Suppose the latter holds. Let U be a neigh-
bourhood of M1 in N such that cl U∩M2 = ∅. There is a sequence {tn} ⊂ N

with tn → ∞ such that xtn ∈ U and x0 = lim xtn ∈ M1 and x[tn, tn+1] 6⊂ U .
Hence there exists a sequence {t′n} ⊂ N with t′n ∈ [tn, tn+1] such that
x[tn, t′n] ⊂ cl U and x(t′n + 1) 6∈ U . Let x1 be any limit point of {x(t′n + 1)}.
We have x1 ∈ N − U and x1 ∈ Ω+(x) ⊂ S.

The rest of the proof is divided into 3 steps.

Step 1. The sequence {t′n − tn} is unbounded.

Suppose on the contrary that {t′n−tn} is bounded and let t∗ be any limit
point of it. Take a subsequence t′nm

− tnm
such that t′nm

− tnm
= t∗ and
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therefore x(t′nm

+1) = xtnm
(t∗+1). Letting m→∞ we obtain x1 =x0(t

∗+1)
and consequently x1 ∈ x0Z ⊂ M1. This contradicts the fact that x1 ∈ N−U .

Step 2. x1(−∞,−1] ⊂ cl U .

Suppose that x1(−∞,−1] 6⊂ cl U , i.e. there is a k ∈ N such that
x1(−k) 6∈ cl U . Since x1 = limn→∞ x(t′n + 1) for some subsequence, we have
limn→∞ x(t′n + 1− k) = x1(−k) 6∈ clU and therefore there exists an n∗ ∈ N

such that x(t′n + 1 − k) 6∈ cl U for n > n∗. On the other hand, {t′n − tn} is
unbounded by Step 1 and therefore there is an ñ > n∗ such that t′n − tn ≥ k
and in consequence t′n + 1 − k ≥ tn for n > ñ. Hence t′n ≥ t′n + 1 − k ≥ tn,
which gives x(t′n + 1 − k) ∈ x[tn, t′n] ⊂ cl U , a contradiction.

Step 3. We have Ω−(x1) ⊂ Inv(cl U) = M1 and x1 6∈ M1, which con-
tradicts the definition of a Morse decomposition and completes the proof
of (a).

(b) The general case. Observe that if n > 2, then we obtain the two-
decomposition (Mn−1,1,Mn) of S. From (a) we conclude that either Ω+(x)
⊂ Mn or Ω+(x) ⊂ Mn−1,1. If Ω+(x) ⊂ Mn−1,1, we consider the Morse
decomposition (Mn−2,1,Mn−1) of Mn−1,1 and replacing S by Mn−1,1 in (a)
we get Ω+(x) ⊂ Mn−1 or Ω+(x) ⊂ Mn−2,1. We continue in this fashion
obtaining i ∈ {1, . . . , n} such that Ω+(x) ⊂ Mi.

3. Index filtrations for Morse decompositions. A subset A of N is
called positively invariant with respect to N provided A∩f−1(N) ⊂ f−1(A).

Definition 3.1 (Index pair). Let S be an isolated invariant set. A pair
(N1, N0) of compact subsets of X is called an index pair for S in X if:

(1) N0 ⊂ N1,

(2) S = Inv(cl(N1 − N0)) ⊂ int(N1 − N0),

(3) N0 is positively invariant with respect to N1,

(4) N1 − N0 ⊂ f−1(N1) (N0 is an exit set for N1).

M. Mrozek (see [Mr2], Thm. 2.3) has proved the following

Theorem 3.2 (Existence of index pairs). Assume S ⊂ X to be an isolated

invariant set. Then for each neighbourhood O of S there exists an index pair

(N1, N0) for S such that N1 ⊂ O.

We can now present the main results of this paper.

Theorem 3.3 (Existence of index triples). Let S ⊂ X be an isolated

invariant set and let (M1,M2) be an admissible ordering of a Morse decom-

position of S, i.e. (M1,M2) is an attractor-repeller pair in S. Then there

exists a triple N0 ⊂ N1 ⊂ N2 of compact sets such that :
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(1) (N2, N0) is an index pair for S,
(2) (N2, N1) is an index pair for M2,
(3) (N1, N0) is an index pair for M1.

The next result is a consequence of the above by induction on n.

Theorem 3.4 (Existence of index filtrations). Let S ⊂ X be an isolated

invariant set and let (M1, . . . ,Mn) be an admissible ordering of a Morse

decomposition of S. Then there exists a filtration N0 ⊂ N1 ⊂ . . . ⊂ Nn−1

⊂ Nn of compact sets such that , for any i ≤ j, the pair (Nj , Ni−1) is

an index pair for Mji. In particular , (Nn, N0) is an index pair for S, and

(Nj , Nj−1) is an index pair for Mj .

The rest of this section is devoted to the proofs of these theorems. We
have divided the proof of Theorem 3.3 into a sequence of lemmas. First we
choose any isolating neighbourhood N of S, i.e. Inv(N) = S ⊂ int N , and
define, for j = 1, 2, the following subsets of N :

I+
j := {x ∈ N : xZ+ ⊂ N and Ω+(x) ⊂ Mj ∪ M2},

I−j := {x ∈ N : xZ− ⊂ N and Ω−(x) ⊂ M1 ∪ Mj}.

Lemma 3.5. I+
i ∩ I−j = Mji.

P r o o f. It is obvious that Mji ⊂ I+
i ∩ I−j . If x ∈ I+

i ∩ I−j , then xZ ⊂ N

and hence x ∈ S. Furthermore Ω+(x) ⊂ Mi ∪ M2 and Ω−(x) ⊂ M1 ∪ Mj .
The claim now follows from the definition of a Morse decomposition.

Lemma 3.6. The sets I+
j , I−j are compact.

P r o o f. (a) The sets I+
1 and I−2 are compact.

Observe that I+
1 = {x ∈ N : xZ+ ⊂ N} by Proposition 2.7. We prove

that N − I+
1 is open relative to N . If x ∈ N − I+

1 then there exists an
n ∈ N such that xn 6∈ N . By the compactness of N there exists an open
neighbourhood V ⊂ X of xn such that V ∩ N = ∅. Let U = f−n(V ) and

Ũ = U ∩ N . Then Ũ is a neighbourhood of x in N such that if y ∈ Ũ then
y ∈ N − I+

1 . Consequently, N − I+
1 is open relative to N and hence I+

1 is
compact. The proof that I−2 is compact is similar.

(b) Let (M1,M2) be an admissible ordering of a Morse decomposition
of S. By definition I+

2 ⊂ I+
1 and by (a) the set I+

1 is compact. It remains
to show that I+

2 is closed. Let x = lim xn, xn ∈ I+
2 . Then x ∈ I+

1 and
hence Ω+(x) ⊂ M1 ∪ M2. We have to show that Ω+(x) ⊂ M2. Assume
by contradiction that Ω+(x) ⊂ M1. Since M1 and M2 are disjoint and
compact, we can choose open neighbourhoods U1 and U2 of M1 and M2

with cl U1 ∩ cl U2 = ∅. Observe that Ω+(xn) ⊂ M2 for all n ∈ N, because
xn ∈ I+

2 .
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Step 1. There exists a sequence {t′′n} ⊂ N such that xnt′′n ∈ U1 and

xn[t′′n + 1,∞) ⊂ N − U1.

There is a t∗ ∈ N such that xt∗ ∈ U1, because Ω+(x) ⊂ M1 ⊂ U1.
Let V be a neighbourhood of xt∗ in U1 and U = f−t∗(V ). Then U is a
neighbourhood of x such that yt∗ ∈ U1 for all y ∈ U and xn ∈ U for almost
all n ∈ N. Since Ω+(xn) ⊂ M2 ⊂ U2, we have xn[an,∞) ⊂ U2 for an ∈ N

large enough. From this we can define t′′n := max{t∗ : xnt∗ ∈ U1}.

Step 2. There exists a sequence {t′n} ⊂ N with t′n → ∞ such that

xn[t′n,∞) ⊂ U2 and xn(t′n − 1) 6∈ U2.

Suppose it were false. Then we could find k ∈ N such that xk[t,∞) 6⊂ U2

for all t ∈ N and, in consequence, there is a sequence {t̃l} ⊂ N with
t̃l → ∞ such that xk t̃l 6∈ U2. Consider the sequence {xk t̃l}l∈N and let x̃
be any limit point of it. We obtain x̃ ∈ N − U2, because xkZ+ ⊂ N and
xk t̃l 6∈ U2 for all l ∈ N. This contradicts the fact that x̃ ∈ Ω+(xk) ⊂ M2.
We have proved that there is a sequence {t′n} ⊂ N such that t′n → ∞ and
xn[t′n,∞) ⊂ U2.

In fact, any sequence {t′n} ⊂ N such that xn[t′n,∞) ⊂ U2 is unbounded.
To see this, suppose that there is a t∗ ∈ N such that t′n ≤ t∗ for all
n ∈ N. Then xn[t∗,∞) ⊂ U2 for all n ∈ N. Consider x[t∗,∞). We ob-
tain limn→∞ xnt = xt ∈ cl U2 for t ≥ t∗ and so x[t∗,∞) ⊂ cl U2. Hence
Ω+(x) ⊂ cl U2 and Ω+(x) ⊂ M1, a contra- diction.

The above remark and Step 1 show that {t′n} can be chosen such that
xn(t′n − 1) 6∈ U2.

Step 3. There exists a sequence {tn} ⊂ N such that xntn ∈ N−(U1∪U2)
and xn[tn,∞) ⊂ N − U1.

Observe that if {t′′n} is bounded then tn = t′n−1 is as required, by Step 2.

Suppose that {t′′n} is unbounded and f(xnt′′n) ∈ U2 for almost all n ∈ N.
We first choose from {t′′n} a subsequence tending to ∞. We use the same
notation for it. Then we take a subsequence of {xnt′′n} such that x∗ =
lim xnt′′n exists. For any t ∈ Z+ we have x∗[−t, 0] = lim xntn[−t, 0] =
lim xn[tn − t, tn] ⊂ N since xnt′′n ∈ I+

1 and I+
1 is closed. Thus x∗Z

⊂ N and so x∗ ∈ S. Since x∗ ∈ cl U1, it follows that either x∗ ∈ M1 or
x∗ ∈ C(M2,M1;S) by the definition of a Morse decomposition. If x∗ ∈ M1

then f(x∗) ∈ M1, contrary to f(x∗) = f(lim xnt′′n) = lim f(xnt′′n) ∈ cl U2.
Consequently, x∗ ∈ C(M2,M1;S). But Ω+(x∗) ⊂ M2, since fk(x∗) =
lim fk(xnt′′n) ∈ N −U1 for k ∈ N, a contradiction. This completes the proof
of Step 3.

Let {xntn} be as in Step 3. Take a subsequence of {xntn} such that
x∗ = lim xntn exists. We have x∗ 6∈ M1 ∪ M2 and x∗[0,∞) ⊂ N − U1 and
hence Ω+(x∗) ⊂ M2. Consider again two cases:
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1. {tn} ⊂ N is bounded and therefore tn = t∗ for infinitely many n.
Then x∗ = lim xntn = lim xnt∗ = xt∗, which implies that x∗ ∈ xZ. Hence
Ω+(x∗) = Ω+(x) ⊂ M1, contradicting Ω+(x∗) ⊂ M2.

2. {tn} ⊂ N is unbounded. Since xnZ+ ⊂ N , we have x∗[−t, 0] =
lim xntn[−t, 0] = lim xn[tn − t, tn] ⊂ N for all t ∈ N. Hence x∗Z− ⊂ N and
thus x∗Z ⊂ N . Recalling that Ω+(x∗) ⊂ M2, we conclude that x∗ ∈ M2 by
the definition of a Morse decomposition. But this contradicts x∗ 6∈ M1∪M2.
This completes the proof of Lemma 3.6.

For any subset K ⊂ N we define the maximal positively invariant set in
N which contains K by

P (K,N) := {x ∈ N : ∃t ∈ Z+ such that x[−t, 0] ⊂ N and x(−t) ∈ K}.

In the next lemma formulations and proofs of (1), (2), (4) come
from [Mr2].

Lemma 3.7. Let M be an isolating neighbourhood for the isolated invari-

ant set S and let

I+
1 = {x ∈ M : xZ+ ⊂ M}, I−2 = {x ∈ M : xZ− ⊂ M}.

In (3), (5) and (8) we assume additionally that (M1,M2) is an admissible

ordering of a Morse decomposition of S. Then:

(1) If B ⊂ M is compact and disjoint from I+
1 then so is P (B,M).

(2) If I−2 ⊂ B and B is compact then P (B,M) is compact.

(3) If U is a neighbourhood of I−1 in X and W is a compact neighbour-

hood of I+
2 in M such that W ∩ I−1 = ∅, and K ⊂ M is a compact set such

that

I−1 ⊂ K ⊂ P (K,M) ⊂ U ∩ (M − W ),

then P (K,M) is compact.

(4) If U is a neighbourhood of I−2 in M then there exists a compact

neighbourhood K of I−2 in M such that P (K,M) ⊂ U .

(5) If V ′ is a neighbourhood of I−1 in X then there exists a compact

neighbourhood L of I−1 in M such that P (L,M) ⊂ V ′ and P (L,M) is

compact.

(6) If x ∈ P (B,M) and f(x) ∈ M then f(x) ∈ P (B,M).

(7) There exist open neighbourhoods U, V of I+
1 and I−2 in M such that

f(U ∩ V ) ⊂ M .

(8) Let N ⊂ M also be an isolating neighbourhood for S. We can choose

simultaneously U , V as in (7) and open neighbourhoods U ′, V ′ of the sets

Ĩ+
1 = {x ∈ N : xZ+ ⊂ N}, Ĩ−1 = {x ∈ N : xZ− ⊂ N and Ω−(x) ⊂ M1}

in N such that U ′ = U ∩ N , V ′ ∩ M2 = ∅, V ′ ⊂ V and f(U ′ ∩ V ′) ⊂ N .
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P r o o f. (1) See [Mr2, Lemma 5.6].

(2) See [Mr2, Lemma 5.7].

(3) Let xn ∈ P (K,M) converge to x and let {tn} ⊂ Z+ be such that
xn[−tn, 0] ⊂ M and xn(−tn) ∈ K. Then we have xn[−tn, 0] ⊂ P (K,M) ⊂
U ∩ (M − W ) for all n ∈ N. Consider two cases:

(a) {tn} is unbounded. Then x(−t) = lim xn(−t) ∈ cl(U ∩ (M − W ))
for all t ∈ Z+, because xn(−t) ∈ xn[−tn, 0] for n large enough. Hence
Ω−(x) ⊂ M1 and therefore x ∈ I−1 ⊂ P (K,M).

(b) {tn} is bounded with a limit point t ∈ Z+. Then we conclude that
x[−t, 0] = lim xn[−t, 0] = lim xn[−tn, 0] ⊂ M and x(−t) = lim xn(−t) =
lim xn(−tn) ∈ K, and therefore x ∈ P (K,M).

(4) See [Mr2, Lemma 5.8].

(5) We prove this statement in four steps.

Step 1. There is a compact neighbourhood W of I+
2 in M such that

W ∩ I−1 = ∅.

Since I−1 and I+
2 are compact and I−1 ∩ I+

2 = ∅, it follows that for every
x ∈ I+

2 there exists a neighbourhood Ux in M such that clUx is compact and
cl Ux∩I−1 = ∅. Then {Ux}x∈I

+

2

is an open covering of the compact set I+
2 . We

choose a finite covering {Ux1
, . . . , Uxm

} and define W = cl Ux1
∪ . . .∪clUxm

.

Step 2. There exists a t∗ ∈ N such that for every x ∈ M if x[−t∗,−1] ⊂
cl(M − W ) then x ∈ V ′ ∩ (M − W ).

If this implication did not hold, then there would exist sequences {xn} ⊂
M and {tn} ⊂ N with tn → ∞ such that xn[−tn,−1] ⊂ cl(M − W )
and xn 6∈ V ′ ∩ (M − W ). Any limit point x of {xn} would then satisfy
x(−∞,−1] ⊂ cl(M − W ) and x 6∈ V ′ ∩ (M − W ). But this would imply
Ω+(x) ⊂ M1 and therefore x ∈ I−1 ⊂ V ′ ∩ (M − W ), in contradiction to
x 6∈ V ′ ∩ (M − W ).

Step 3. Construction of L. Define A = {x ∈ I−1 : x[0, t∗] ⊂ M}
and B = {x ∈ I−1 : x[0, t∗] 6⊂ M}. For every x ∈ A there exists an open
neighbourhood U(x) of x in X such that U(x)[0, t∗] ⊂ V ′ ∩ (X − W ). For
every x ∈ B there exists t(x) ∈ N such that x[0, t(x)] ⊂ V ′ ∩ (X − W ) and
xt(x) 6∈ M . Hence for every x ∈ B there exists an open neighbourhood of x
in X such that U(x)[0, t(x)] ⊂ V ′ ∩ (X − W ) and U(x)t(x) ∩ M = ∅. Since
I−1 is compact, there exist finitely many x1, . . . , xk ∈ I−1 such that the sets
U(xi), i = 1, . . . , k, cover I−1 . We choose a compact neighbourhood L of I−1
such that L ⊂

⋃k
i=1 U(xi).

Step 4. P (L,M) ⊂ V ′ ∩ (M − W ).
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Let x ∈ P (L,M) and let t ∈ Z+ with x[−t, 0] ⊂ M and x(−t) ∈ L. Then
x(−t) ∈ U(xi) for some i ∈ {1, . . . , k}. Suppose that x 6∈ V ′ ∩ (X −W ) and
consider two cases.

1. If xi ∈ A then x[−t, t∗ − t] ⊂ V ′ ∩ (X − W ) and therefore t∗ − t < 0.
Hence there exists a t′ ∈ [0, t− t∗] such that x[−t,−t′) ⊂ V ′∩ (M −W ) and
x(−t′) 6∈ V ′∩(M−W ). This implies x[−t′−t∗,−t′−1] = x(−t′)[−t∗,−1] ⊂
cl(M − W ) and x(−t′) 6∈ V ′ ∩ (M − W ), contrary to Step 2.

2. If xi ∈ B then x(−t)[0, t(xi)] ⊂ V ′∩(X−W ) and x(−t)t(xi) 6∈ M , i.e.
x[−t,−t+t(xi)] ⊂ V ′∩(X−W ) and x(t(xi)−t) 6∈M . From x[−t, 0] ⊂ M we
obtain t(xi) > t, and from x 6∈ V ′∩(X−W ) we get t(xi) < t, a contradiction.

We conclude that x ∈ M ∩ (V ′ ∩ (X − W )) = V ′ ∩ (M − W ), which
proves the assertion of Step 4.

Step 4 implies that P (L,M) ⊂ V ′. From (3) it follows that P (L,M) is
compact, which completes the proof of (5).

(6) The proof is immediate.

(7) For the proof, take two decreasing sequences {Un}n∈N, {Vn}n∈N of
compact neighbourhoods of I+

1 and I−2 in M intersecting in I+
1 and I−2

respectively. Proposition 1.7 now leads to
⋂

n∈N

f(Un ∩ Vn) = f
( ⋂

n∈N

(Un ∩ Vn)
)

= f(I+
1 ∩ I−2 ) = f(S) = S ⊂ int M.

By compactness, f(Un ∩ Vn) ⊂ intM for some n ∈ N. Obviously, the sets
U = intM Un and V = intM Vn satisfy f(U ∩ V ) ⊂ int M .

(8) Let N ⊂ M be an isolating neighbourhood for S. Consider

Ĩ+
1 = {x ∈ N : xZ+ ⊂ N} ⊂ I+

1 ,

Ĩ−1 = {x ∈ N : xZ− ⊂ N and Ω−(x) ⊂ M1} ⊂ I−2 .

Let {Un}n∈N be a decreasing sequence of compact neighbourhoods of I+
1 in

M such that
⋂

n∈N
Un = I+

1 . Let Ũn = Un ∩ N . Then
⋂

n∈N
Ũn = I+

1 ∩ N .

Let {Vn}n∈N be a decreasing sequence of compact neighbourhoods of I−2
in M such that

⋂
n∈N

Vn = I−2 , and let {Ṽn}n∈N be a decreasing sequence

of compact neighbourhoods of Ĩ−1 in N such that Ṽn ⊂ Vn and Ṽ1 ∩M2 = ∅,

and
⋂

n∈N
Ṽn = Ĩ−1 . Using Proposition 1.7 we get:

⋂

n∈N

f(Ũn ∩ Ṽn) = f
(⋂

n

(Ũn ∩ Ṽn)
)

= f(I+
1 ∩ N ∩ Ĩ−1 )(a)

= f(M1) = M1 ⊂ int N.

By compactness, f(Ũn ∩ Ṽn) ⊂ int N for some n1 ∈ N.
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(b)
⋂

n∈N

f(Un∩Vn) = f
(⋂

n

(Un∩Vn)
)

= f(I+
1 ∩I−2 ) = f(S) = S ⊂ int M.

By compactness, f(Un ∩ Vn) ⊂ int M for some n2 ∈ N.
Put n = max(n1, n2). Then the sets U = intM Un, V = intM Vn,

U ′ = intN Ũn and V ′ = intN Ṽn satisfy our claim.

Proof of Theorem 3.2 (Construction of an index pair). Let M be an iso-
lating neighbourhood for S, contained in O. Set I+ ={x ∈ M : xZ+ ⊂ M}
and I− = {x ∈ M : xZ− ⊂ M}. By Lemma 3.7(7), there exist open
neighbourhoods U , V of I+ and I− in M such that f(U ∩ V ) ⊂ M . By
Lemma 3.7(5), there exists a compact neighbourhood K of I− in M such
that P (K,M) ⊂ V . We put N0 := P (M − U,M) and

N1 := N0 ∪ P (K ∪ (M − U),M) = N0 ∪ P (K,M).

Let us check the conditions defining an index pair.

(o) N0 ⊂ N1 and by Lemma 3.7(1), (2), N0 and N1 are compact.

(i) cl(N1 − N0) is an isolating neighbourhood for S.

By Lemma 3.7(1), N0 is compact and disjoint from S. Since S ⊂ int K ⊂
int P (K,M), we conclude that S ⊂ intP (K,M)−N0 = int(P (K,M)−N0)
⊂ M . This gives Inv(cl(N1 − N0)) = S ⊂ int(N1 − N0).

(ii) N0 is positively invariant with respect to N1.

Assume that x ∈ N0 = P (M − U,M) and f(x) ∈ N1 ⊂ M . By
Lemma 3.7(6), f(x) ∈ P (M − U,M) = N0.

(iii) N0 is an exit set for N1, i.e. x ∈ N1 − N0 implies that f(x) ∈ N1.

Assume that x ∈ N1−N0 ⊂ P (K∪(M−U),M). Then f(x) ∈ f(N1−N0)
= f(P (K,M)−P (M −U,M)) ⊂ f(V − (M −U)) = f(U ∩ V ) ⊂ M . Thus,
by Lemma 3.7(6), f(x) ∈ P (K ∪ (M − U),M) ⊂ N1.

Proof of Theorem 3.3 (Construction of an index triple). Let M be an iso-
lating neighbourhood for S and let (N2, N0) be an index pair for S as in the
proof of Theorem 3.2. Then N = cl(N2 −N0) is an isolating neighbourhood
for S and N ⊂ M . Recall that

Ĩ+
1 = {x ∈ N : xZ+ ⊂ N},

Ĩ+
2 = {x ∈ N : xZ+ ⊂ N and Ω+(x) ⊂ M2},

Ĩ−1 = {x ∈ N : xZ− ⊂ N and Ω−(x) ⊂ M1},

Ĩ−2 = {x ∈ N : xZ− ⊂ N}.

By Lemma 3.7(8), there exist open neighbourhoods U, V of I+
1 and I−2 in

M and open neighbourhoods U ′, V ′ of Ĩ+
1 and Ĩ−1 in N such that U ′ =

U ∩N, V ′ ∩M2 = ∅, V ′ ⊂ V and f(U ′∩V ′) ⊂ N . By Lemma 3.7(5) , there
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exists a compact neighbourhood L of Ĩ−1 in N such that P (L,N) ⊂ V ′ and
P (L,N) is compact. We put

N1 := N0 ∪ P (L,N) = N0 ∪ P (L ∪ (N − U ′), N).

Let us first check that (N1, N0) is an index pair for M1.

(o) N0 ⊂ N1 and from the definition of an index pair, N0 is compact.
By Lemma 3.7(5), P (L,N) is compact and so is N1.

(i) cl(N1 − N0) is an isolating neighbourhood for M1.

We have M1 ⊂ Ĩ−1 ⊂ int L ⊂ int P (L,N) ⊂ int N1 and N0 ∩ M1 = ∅,
since N0∩S = ∅. Hence M1 ⊂ intN1−N0 = int(N1−N0). Since M2∩V ′ = ∅
and P (L,N) ⊂ V ′, we obtain N1∩M2 = ∅. We thus get Inv(cl(N1−N0)) =
M1 ⊂ int(N1 − N0).

(ii) N0 is positively invariant with respect to N1.

Let x ∈ N0 and f(x) ∈ N1 ⊂ N2. Since N0 is positively invariant in N2,
we see that f(x) ∈ N0.

(iii) N0 is an exit set for N1.

Let x ∈ N1 − N0 and therefore x ∈ P (L ∪ (N − U ′), N), and f(x) ∈
f(N1−N0) = f(P (L,N)−N0). We have P (N−U ′, N) ⊂ P (M−U,M) = N0

and hence P (L,N)−N0 ⊂ P (L,N)−P (N−U ′, N) ⊂ V ′−(N−U ′) = U ′∩V ′.
Consequently, f(x) ∈ f(P (L,N)−N0) ⊂ f(U ′∩V ′) ⊂ N . By Lemma 3.7(6),
f(x) ∈ P (L ∪ (N − U ′), N) ⊂ N1.

Let us now check that (N2, N1) is an index pair for M2.

(o) N1 = N0 ∪ P (L,N) ⊂ N0 ∪ N ⊂ N2 and N1, N2 are compact.

(i) cl(N2 − N1) is an isolating neighbourhood for M2.

We have N0 ∩ M2 = ∅ and P (L,N) ∩ M2 = ∅, because P (L,N) ⊂ V ′

and V ′ ∩ M2 = ∅. Therefore N1 ∩ M2 = (N0 ∪ P (L,N)) ∩ M2 = ∅. We see
at once that M2 ⊂ S ⊂ int(N2 − N0) ⊂ int N2. Hence M2 ⊂ int N2 − N1 =
int(N2 − N1). Observe that M1 ⊂ int L ⊂ P (L,N) ⊂ int N1 and therefore
M1∩ cl(N2 − intN1) = ∅. But this implies M1 ∩ cl(N2 −N1) = ∅ and clearly
forces Inv(cl(N2 − N1)) = M2 ⊂ int(N2 − N1).

(ii) N1 is positively invariant in N2.

Let x ∈ N1 and f(x) ∈ N2. One of two cases holds:

1. x ∈ N0 and f(x) ∈ N2. Since N0 is positively invariant with respect
to N2, it follows that f(x) ∈ N0 ⊂ N1.

2. x ∈ P (L,N) and f(x) ∈ N2, and then either f(x) ∈ N0 ⊂ N1, or
f(x) ∈ N2 −N1 ⊂ cl(N2 − N0) ⊂ N and therefore f(x) ∈ P (L,N) ⊂ N1 by
Lemma 3.7(6).
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(iii) N1 is an exit set for N2.

Let x ∈ N2 −N1 ⊂ N2 −N0. Since N0 is an exit set for N2, we conclude
that f(x) ∈ N2.

Proof of Theorem 3.4. The proof is by induction. Assume that the the-
orem holds for k ≤ n; we will prove it for n + 1.

Let (M1, . . . ,Mn+1) be an admissible ordering of a Morse decomposition
of S.

Let N0 ⊂ Nn ⊂ Nn+1 be an index filtration for the admissible ordering
of the two-decomposition (Mn1,Mn+1) of S. Then (Nn+1, N0) is an index
pair for S, (Nn, N0) is an index pair for Mn1, and (Nn+1, Nn) is an index
pair for Mn+1.

Let N0 ⊂ N1 ⊂ . . . ⊂ Nn be an index filtration for the admissible
ordering of the n-decomposition (M1, . . . ,Mn) of Mn1. Then, for any 1 ≤
i ≤ n, (Nj , Ni−1) is an index pair for Mji.

It remains to prove that, for any 1 < i ≤ n, (Nn+1, Ni−1) is an index
pair for Mn+1,i.

(o) Ni−1 ⊂ Nn+1 and Ni−1, Nn+1 are compact .

(i) cl(Nn+1 − Ni−1) is an isolating neighbourhood for Mn+1,i.

We have Ni−1 ∩ Ml = ∅ for i ≤ l ≤ n + 1, because (Nl, Nl−1) is an
index pair for Ml and Ni−1 ⊂ Nl−1. Suppose that x ∈ C(Mm,Ml;S) for
i ≤ l < m ≤ n+1 and x ∈ Ni−1. We obtain Ω+(x) ⊂ Ml ⊂ int(Nl−Ni−1) =
int Nl − Ni−1 and therefore xt ∈ int Nl − Ni−1 for every sufficiently large
t ∈ N. Since xZ ⊂ cl(Nm − N0), it follows that there exists y ∈ Ni−1 such
that f(y) ∈ Nl − Ni−1. This contradicts the fact that Ni−1 is positively
invariant with respect to Nl. From what has already been proved, we con-
clude that Ni−1∩Mn+1,i = ∅. But Mn+1,i ⊂ S ⊂ int(Nn+1−N0) ⊂ intNn+1

and therefore Mn+1,i ⊂ int Nn+1 − Ni−1 = int(Nn+1 − Ni−1). In addition,
if x ∈ S and Ω+(x) ⊂ Ml for l < i, then xZ ∩ int Ni−1 6= ∅. Hence
Inv(cl(Nn+1 − Ni−1)) = Mn+1,i ⊂ int(Nn+1 − Ni−1).

(ii) Ni−1 is positively invariant with respect to Nn+1.

Let x ∈ Ni−1 ⊂ Nn and f(x) ∈ Nn+1. Since Nn is positively invariant in
Nn+1, we get f(x) ∈ Nn. Thus x ∈ Ni−1 and f(x) ∈ Nn, and consequently
f(x) ∈ Ni−1, because Ni−1 is positively invariant in Nn.

(iii) Ni−1 is an exit set for Nn+1.

Let x ∈ Nn+1 − Ni−1 ⊂ Nn+1 − N0. Since N0 is an exit set for Nn+1,
we obtain f(x) ∈ Nn+1.

4. The discrete Conley index and connection matrices. We re-
call the notion of the Leray functor introduced by Mrozek ([Mr2], [Mr3]).
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Denote by E the category of graded vector spaces and linear maps of degree
zero. A new category Endo(E) of graded vector spaces with distinguished
endomorphism is defined as follows. Objects are pairs (E, e), where E ∈ E
and e∈E(E,E). Morphisms from (E, e) to (F, f) are all maps Φ ∈ E(E,F )
such that Φ◦e = f ◦Φ. Auto(E) is the full subcategory of Endo(E) consisting
of graded vector spaces with a distinguished isomorphism. The full subcate-
gory of Endo(E) consisting of all objects with finite-dimensional components
and their morphisms will be denoted by Endo0(E).

For (E, e) ∈ Endo(E) we define the generalized kernel of e as

gker(e) :=
⋃

{e−n(0) | n ∈ N}.

Put

L(E, e) := (E/gker(e), e′)

where e′ : E/gker(e) ∋ [x] 7→ [e(x)] ∈ E/gker(e) is the induced endomor-
phism. Assume that Φ : (E, e) → (F, f) is a morphism. Let

Φ′ : E/gker(e) ∋ [x] 7→ [Φ(x)] ∈ f/gker(f)

denote the induced morphism. We then put L(Φ) := Φ′. Thus we have de-
fined a covariant functor L : Endo0(E) → Auto(E) called the Leray functor.

Let H∗ be the singular homology functor with rational coefficients. If we
consider an index pair N = (N1, N0), then the map fN : N1/N0 → N1/N0

given by

fN([x]) :=

{
[f(x)] if x, f(x) ∈ N1\N0,
[N0] otherwise,

is continuous (see e.g. [Szy], Lemma 4.3), and it induces an endomorphism
f∗ : H∗(N1, N0) → H∗(N1, N0). Therefore (H∗(N1, N0), f∗) ∈ Endo(E). We
also denote by H∗ the extension of the homology functor to this category.

Definition 4.1. The homology Conley index of an isolated invariant
set S is defined as

CH∗(S) := LH∗(N),

where N is any index pair for S in X.

Due to [Mr2], Thm. 2.6, the above definition makes sense.

Let P = {1, . . . , n} be a finite totally ordered set. A subset I ⊆ P is an
interval if i, j ∈ I and i < k < j imply k ∈ I. Two elements i, j ∈ P are
adjacent if {i, j} is an interval. Similarly, a pair of disjoint intervals (I, J)
is called adjacent if

(1) I ∪ J is an interval,

(2) i ∈ I and j ∈ J imply i < j.
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Let (M1, . . . ,Mn) be an admissible ordering of a Morse decomposition
of an isolated invariant set S. For an interval I ⊆ P , define

M(I) :=
( ⋃

i∈I

Mi

)
∪

( ⋃

i,j∈I

C(Mi,Mj ;S)
)
.

From Proposition 2.3 we see that M(I) is an isolated invariant set and we
define

CH∗(I) := CH∗(M(I)).

If (A,A∗) is an attractor-repeller pair in an isolated invariant set S
such that CH∗(S), CH∗(A

∗) and CH∗(A) are graded vector spaces with
finite-dimensional components (this assumption is satisfied e.g. when X is
a compact ANR), then we can construct a long exact sequence relating the
homology indices of S,A∗ and A (see [Mr3]). Namely, there is a long exact
sequence

. . . → H1(N2, N1)
∂

−→ H0(N1, N0) → H0(N2, N0) → H0(N2, N1) → 0

where (N2, N1, N0) is the filtration given by Theorem 3.3. Applying the
Leray functor we obtain an exact sequence of homology Conley indices

. . . → CH1(A
∗)

∂
−→ CH0(A) → CH0(S) → CH0(A

∗) → 0.

This sequence, called the homology index sequence of the attractor-re-

peller pair, provides an algebraic condition for the existence of connecting
orbits. The map ∂ is called the connection map. Exactness implies that if
CH∗(S) = 0, then ∂ is an isomorphism. If C(A∗, A;S) = ∅, then CH∗(S) ≃
CH∗(A

∗) ⊕ CH∗(A) and it follows that ∂ = 0. So we have

Theorem 4.2. If the connection map is nontrivial then C(A∗, A;S) is

nonempty.

Since we need the Leray functor to maintain exactness of homological
sequences, from now on we assume that X is a compact ANR, which is
sufficient according to [Mr3].

Given a Morse decomposition {Mp}p∈P , if (I, J) is an adjacent pair of
intervals, then (M(I),M(J)) is an attractor-repeller pair in M(IJ), where
IJ := I ∪ J . So there is an exact sequence

(4.3) . . . → CHq(I) → CHq(IJ) → CHq(J)
∂(I,J)
−−−−→CHq−1(I) → . . .

The connection matrix condenses the Morse-theoretic information con-
tained in the maps ∂(I, J) into maps defined between the sets {Mp}p∈P . To
do this, for an interval I ⊆ P define

C∆(I) :=
⊕

i∈I

CH∗(i)



68 P. Bart lomiejczyk and Z. Dzedzej

and let C∆ denote C∆(P ). A Q-linear map ∆ : C∆ → C∆ can be thought
of as a matrix

[∆(i, j) : CH∗(j) → CH∗(i) | i, j ∈ P ].

We say that ∆ = ∆(P ) is upper triangular if ∆(i, j) = 0 for j ≤ i, and
∆ is a boundary map if each ∆(i, j) has degree −1 and ∆ ◦ ∆ = 0.

It is not difficult to show that if ∆ is an upper triangular boundary map,
then so is the restriction ∆(I) : C∆(I) → C∆(I). If I and J are adjacent
intervals, then there is an obvious exact sequence of chain complexes

0 → C∆(I) → C∆(IJ) → C∆(J) → 0,

which gives a long exact homology sequence

(4.4) . . . → Hq∆(I) → Hq∆(IJ) → Hq∆(J) → Hq−1∆(I) → . . .

Definition 4.5. We say that the upper triangular boundary map
∆ : C∆ → C∆ is a connection matrix if for each interval I ⊆ P there
exists a homomorphism Φ(I) : H∆(I) → CH∗(I) such that

(1) for i ∈ P , Φ(i) : H∆(i) = CH∗(i) → CH∗(i) is the identity,
(2) for each adjacent pair of intervals (I, J) the following diagram com-

mutes:

. . . Hq∆(I) Hq∆(IJ) Hq∆(J) Hq−1∆(I) . . .

. . . CHq(I) CHq(IJ) CHq(J) CHq−1(I) . . .

// //

Φ(I)

��

//

Φ(IJ)

��

//

Φ(J)

��

//

Φ(I)

��
// // // // //

where the top row is (4.4) and the bottom row is (4.3).

We denote the collection of all connection matrices of the admissible
ordering M = {Mi}

n
i=1 of the Morse decomposition of S by CM(M).

The existence of connection matrices was shown by Franzosa in the case
of continuous dynamical systems (see [Fra2]). The same conclusion can be
drawn for discrete dynamical systems.

Theorem 4.6. The set CM(M) is nonempty.

P r o o f. First observe that if X is a compact ANR then the homology
functor and the Leray functor commute (see [Mr3]). Now the theorem is an
easy consequence of Thm. 3.4 and [Fra2], Thm. 3.8.

We can now state the analogue of Theorem 4.2.

Theorem 4.7. If ∆ ∈ CM(M), i and j are adjacent and ∆(i, j) 6= 0,
then C(Mj ,Mi;S) 6= ∅.

P r o o f. It is sufficient to observe that the first condition of Definition 4.5
implies that if i and j are adjacent, then ∆(i, j) = ∂(i, j).
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Remark 4.8. Using induction and the five-lemma, the second condition
of Definition 4.5 implies that H∆(I) ≃ CH∗(I) for any interval I.

Example 4.9. This example is adapted from [Mr3]. Let D ⊂ R2 be a
square and let f0 : D → D be a continuous map as indicated in Fig. 1.
Extend f0 to a homeomorphism f : S2 → S2 with a repelling point r
outside D.

Fig. 1

Take M1 := Inv(D7 ∪ D8), M2 := Inv(D1 ∪ D2), M3 := {r}. It is easy
to check that M = {M1,M2,M3} is a Morse decomposition of S = S2 with
admissible ordering (1 < 2 < 3) and N = {Ni}

3
i=0 with N0 = ∅, N1 =

D7 ∪D8 ∪P (P is the union of the shaded areas), N2 = D1 ∪D2 ∪D7 ∪D8,
N3 = S2 is an index filtration for M . Moreover, a simple verification shows

CHk(M1) =

{
Q2 for k = 0,
0 otherwise,

CHk(M2) =

{
Q for k = 1,
0 otherwise,

CHk(M3) =
{

Q for k = 2,
0 otherwise.

Let us compute the connection matrix of the above Morse decomposition.
Because we have chosen field coefficients, the connection matrix is upper
triangular. CH1(M21) is easily seen to be trivial; therefore so is H1∆(12).
Since the homology indices CH1(M2) and CH0(M1) are nontrivial, it follows
that ∆(1, 2) 6= 0. It is not difficult to see that it is the only nonzero entry
of ∆. Thus CM(M) consists of one matrix of the form




0 ∗ 0
0 0 0
0 0 0



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where ∗ indicates the only nonzero entry.Then since M2 and M1 are adjacent
in the admissible ordering it follows that C(M2,M1;S) is nonempty.
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