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On a theorem of Cauchy–Kovalevskaya type

for a class of nonlinear PDE’s of higher order

with deviating arguments

by Antoni Augustynowicz (Gdańsk)

Abstract. We prove an existence theorem of Cauchy–Kovalevskaya type for the equa-
tion

Dtu(t, z) = f(t, z, u(α
(0)(t, z)),Dzu(α

(1)(t, z)), . . . ,Dkzu(α
(k)(t, z)))

where f is a polynomial with respect to the last k variables.

1. Introduction. We study the existence and uniqueness of solutions
to the following Cauchy problem:

(1)
Dtu(t, z) = f(t, z, u(α(0)(t, z)),Dzu(α(1)(t, z)), . . . ,Dk

z u(α(k)(t, z))),

u(0, z) = 0.

The presence of deviating arguments α(1), . . . , α(k) makes problem (1) diffi-
cult. The classical methods, such as the theory of characteristics, difference
schemes for k = 1, transformations to a differential-integral equation (when
k ≥ 2 and f is linear with respect to the last variable), fail to work if
α(k)(t, z) 6= (t, z).

In the case of k = 1 and real variables, applying the Banach contrac-
tion principle, the Neumann series and the Fourier series methods resulted in
getting certain existence theorems for limited classes of deviating arguments
(see [1]), and for some linear equations ([9], [5]). There are more effective
methods concerning analytic solutions to (1). These methods are based on
power series expansions ([2]–[4]), properties of the Bernstein classes of ana-
lytic functions ([11]) and on the Nagumo lemma ([6, 7, 10], [12]–[15]). The
last method is used in the present paper.
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The classical Kovalevskaya counterexample Dtu = D2
zu, u(0, z) =

(1 − z)−1 ([8, 12]) shows that if k > 1 then problem (1) may have no
analytic solutions, even for elementary right-hand side. In [6, 7], existence
results were obtained under the assumption that the deviating arguments
are separated from the lateral boundary of the Haar pyramid. We relax this
condition when the right-hand side in (1) is a polynomial with respect to
the last k variables.

2. Banach spaces Ep. Nagumo lemma. Let Ω be an open bounded
subset of the complex plane C and

d(z) = dist(z, ∂Ω), d(t, z) = d(z) − |t|/η,

Gη = {(t, z) ∈ C
2 : z ∈ Ω, d(t, z) > 0, |t| < t0},

where η, t0 > 0 are fixed. The set Gη is the Haar pyramid with slope η,
and d(t, z) is the distance between (t, z) and the boundary of t-intersection
of Gη.

Let H(G) denote the space of all analytic functions on G. For p ≥ 0 and
u ∈ H(Gη) we define

‖u‖p = sup
(t,z)∈Gη

|u(t, z)|d(t, z)p , Ep = {u ∈ H(Gη) : ‖u‖p < +∞}.

The set Ep is a Banach space with the natural linear structure and the norm
‖ · ‖p.

Our investigations are based on the following

Lemma 1. If a, u ∈ H(Gη), then

(1) ‖Dzu‖p+1 ≤ Cp‖u‖p, where Cp = (p + 1)(1 + 1/p)p, C0 = 1,

(2) ‖a(·)u(·)‖p+q ≤ ‖a‖q‖u‖p,

(3) ‖u(α(·))‖p ≤ λp
α‖u‖p if α(Gη) ⊂ Gη, where

λα = sup
(t,z)∈Gη

d(t, z)

d(α(t, z))
,

(4) ‖Iu‖p ≤ (η/p)‖u‖p+1 , where (Iu)(t, z) =
Tt
0
u(s, z) ds.

The assertion (1) is the Nagumo lemma (cf. [10]). Conditions (2)–(3),
(4) are proved in [6], [13], respectively.

3. Existence and uniqueness results. In order to present the main
idea, we consider a simple case of equation (1):

(2)
Dtu(t, z) = a(t, z, u(α(t, z)))(Dk

z u(β(t, z)))n + b(t, z, u(γ(t, z))),

u(0, z) = 0.
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Theorem 1. Suppose that for some r, h > 0 and κ ∈ (0, 1), there exist

ω ∈ [0, κ), λ, η > 0, and A,B ≥ 0 such that a, b are analytic on Gη ×K(0, r)
(where K(0, r) is the closed ball in C centered at the origin and with ra-

dius r), and α, β, γ : Gη → Gη are analytic. Assume that for (t, z) ∈ Gη,
|u| ≤ r, we have

(3)

‖a(·, u)‖ω ≤ A, ‖b(·, u)‖κ ≤ B,

d(t, z)κ−ω ≤ λd(β(t, z))n(κ+k−1),
η

1 − κ
d̂ 1−κ[Aλ(Cκ,k−1h)n + B] ≤ r,

η

κ
[Aλ(Cκ,k−1h)n(Cω + Cκ−ω) + CκB] ≤ h,

where

d̂ = sup
(t,z)∈Gη

d(t, z), Cp,j = CpCp+1 . . . Cp+j−1, Cp,0 = 1.

Then problem (2) has an analytic solution defined on Gη. Moreover , if there

exist constants λ1, λ3, p > 0 and A′, B′, ω′, κ′ ≥ 0 such that

(4)

|a(t, z, u) − a(t, z, v)| ≤ A′d(t, z)−ω′

|u − v|,

|b(t, z, u) − b(t, z, v)| ≤ B′d(t, z)−κ′

|u − v|,

d(t, z)p+1+ω−κ−ω′

≤ λ1d(α(t, z))p, d(t, z)p+1−κ′

≤ λ3d(γ(t, z))p,

L =
η

p
[A′(Cκ,k−1h)nλλ1 + An(Cκ,k−1h)n−1Cp,kλλp+1−κ

2 + B′λ3] < 1

for (t, z) ∈ Gη, |u|, |v| ≤ r, where λ2 = sup{d(t, z)d(β(t, z))−1 : (t, z) ∈ Gη},
then the solution is unique in the set

D = {u ∈ E0 : ‖u‖0 ≤ r, ‖Dzu‖κ ≤ h}.

Remark 1. If δ : Gη → Gη and d(t, z) ≤ τd(δ(t, z)), then d(t, z)q ≤

τ ′d(δ(t, z))q′

for q ≥ q′ and some τ ′ > 0. This shows that the existence of
constants λ1 and λ3 follows from the natural assumption

d(t, z) ≤ τ1d(α(t, z)), d(t, z) ≤ τ2d(γ(t, z)) if κ + ω′ ≤ 1 + ω and κ′ ≤ 1.

Since κ − ω ≤ n(κ + k − 1), from (3) we have λ2 < +∞. Observe also
that L < 1 and the last two inequalities in (3) are satisfied, provided η is
sufficiently small.

P r o o f (of Theorem 1). Define

(Fu)(t, z) =

t\
0

[a(s, z, u(α(s, z)))(Dk
z u(β(s, z)))n + b(s, z, u(γ(s, z)))] ds.
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We now prove that F (D) ⊂ D. If u ∈ D then

|(Dk
z u(β(t, z)))n| ≤ (‖Dk

z u‖κ+k−1d(β(t, z))−κ−k+1)n

≤ (Cκ,k−1‖Dzu‖κ)nd(β(t, z))−n(κ+k−1)

≤ (Cκ,k−1h)nλd(t, z)−κ+ω,

so we obtain

|Dt(Fu)(t, z)| ≤ Aλd(t, z)−ωd(t, z)−κ+ω(Cκ,k−1h)n + Bd(t, z)−κ

= (Aλ(Cκ,k−1h)n + B)d(t, z)−κ,

hence

|(Fu)(t, z)| ≤
η

1 − κ
d̂1−κ[Aλ(Cκ,k−1h)n + B] ≤ r.

Moreover, we get

|DtDz(Fu)(t, z)| ≤ ACωd(t, z)−ω−1(Cκ,k−1hd(β(t, z))−κ−k+1)n

+ Ad(t, z)−ω

∣∣∣∣
∂

∂z
(Dk

z u(β(t, z)))n

∣∣∣∣ + CκBd(t, z)−κ−1

≤ ACω(Cκ,k−1h)nλd(t, z)−κ−1

+ AλCκ−ω(Cκ,k−1h)nd(t, z)−κ−1 + CκBd(t, z)−κ−1

hence

|Dz(Fu)(t, z)|d(t, z)κ ≤
η

κ
[Aλ(Cκ,k−1h)n(Cω + Cκ−ω) + CκB] ≤ h

and Fu ∈ D. The set D is a convex and compact subset of Eq for every
q > 0. We now prove that the operator F is continuous on D with respect
to the norm ‖ · ‖q , provided q is sufficiently large. For any u, v ∈ D, we have

|(Fu)(t, z) − (Fv)(t, z)|

≤

|t|\
0

|a(s, z, u(α(s, z))) − a(s, z, v(α(s, z)))||Dk
z u(β(s, z))|n |ds|

+

|t|\
0

|a(s, z, v(α(s, z)))||(Dk
z u(β(s, z)))n − (Dk

zv(β(s, z)))n| |ds|

+

|t|\
0

|b(s, z, u(γ(s, z))) − b(s, z, v(γ(s, z)))| |ds|

≤

|t|\
0

|a(s, z, u(α(s, z))) − a(s, z, v(α(s, z)))|

× (Cq,k−1‖Dzu‖qd(β(s, z))−q−k+1)n |ds|
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+

|t|\
0

Ad(s, z)−ωn[Cq,k−1 max{‖Dzu‖q , ‖Dzv‖q}d(β(s, z))−q−k+1]n−1

× |Dk
z u(β(s, z)) − Dk

zv(β(s, z))| |ds|

+

|t|\
0

|b(s, z, u(γ(s, z))) − b(s, z, v(γ(s, z)))| |ds|

≤ (Cq,k−1‖Dzu‖q)
n sup

µ∈[0,1]

|a(µt, z, u(α(µt, z))) − a(µt, z, v(α(µt, z)))|

× d(µt, z)

|t|\
0

d(s, z)−q−1 d(s, z)q

d(β(s, z))n(q+k−1)
|ds|

+ An[Cq,k−1 max{‖Dzu‖q , ‖Dzv‖q}]
n−1

×

|t|\
0

d(s, z)−ωd(β(s, z))−(n−1)(q+k−1)Cq,k‖u − v‖qd(β(s, z))−q−k |ds|

+

|t|\
0

|b(s, z, u(γ(s, z))) − b(s, z, v(γ(s, z)))| |ds|.

Since

sup
(s,z)∈Gη

d(s, z)q

d(β(s, z))nq+m

≤ λq/(κ−ω) sup
(s,z)∈Gη

d(β(s, z))qn(κ+k−1)/(κ−ω)

d(β(s, z))nq+m

= λq/(κ−ω) sup
(s,z)∈Gη

d(β(s, z))qn(k−1+ω)/(κ−ω)−m < +∞

for any m > 0 and for sufficiently large q, there exists a constant c such that

‖Fu − Fv‖q ≤ c‖u − v‖q + c sup
(t,z)∈Gη

∆u,v(t, z)d(t, z)

for some q > 0, where

∆u,v(s, z) = |a(s, z, u(α(s, z))) − a(s, z, v(α(s, z)))|

+ |b(s, z, u(γ(s, z))) − b(s, z, v(γ(s, z)))|.

Fix u ∈ D. Let d0 > 0 and G(d0) = {(t, z) ∈ Gη : d(t, z) ≥ d0}. Then we
get

‖Fu − Fv‖q ≤ c‖u − v‖q + c sup
(t,z)∈Gη\G(d0)

∆u,v(t, z)d(t, z)

+ c sup
(t,z)∈G(d0)

∆u,v(t, z)d(t, z) = S1 + S2 + S3.
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We prove that S1 + S2 + S3 tends to zero if v tends to u in the norm ‖ · ‖q .
Since u, v ∈ D, we have

∆u,v(t, z)d(t, z) ≤ 2Ad(t, z)1−ω + 2Bd(t, z)1−κ,

hence S2 becomes small when d0 is small enough. Given any fixed d0, we
observe that the functions a, b are uniformly continuous on G(d0)×K(0, r)
and the functions α, γ are uniformly continuous on G(d0). Therefore, S3 → 0
as ‖v−u‖q → 0. This proves the continuity of F on D. The Schauder fixed
point theorem completes the proof of the first assertion.

Applying conditions (4) with u, v ∈ D, (t, z) ∈ Gη, we have

|Dt[(Fu) − (Fv)](t, z)|

≤ |a(t, z, u(α(t, z))) − a(t, z, v(α(t, z)))||Dk
z u(β(t, z))|n

+ |a(t, z, v(α(t, z)))||(Dk
z u(β(t, z)))n − (Dk

z v(β(t, z)))n|

+ |b(t, z, u(γ(t, z))) − b(t, z, v(γ(t, z)))|

≤ A′d(t, z)−ω′

|u(α(t, z)) − v(α(t, z))|d(α(t, z))pd(α(t, z))−p

× (Cκ,k−1hd(β(t, z))−κ−k+1)n

+ Ad(t, z)−ωn(Cκ,k−1hd(β(t, z))−κ−k+1)n−1

× |Dk
zu(β(t, z)) − Dk

zv(β(t, z))|

+ B′d(t, z)−κ′

|u(γ(t, z)) − v(γ(t, z))|d(γ(t, z))pd(γ(t, z))−p

≤ A′(Cκ,k−1h)n‖u − v‖pd(t, z)−ω′

d(α(t, z))−pd(β(t, z))−n(κ+k−1)

+ An(Cκ,k−1h)n−1Cp,k‖u − v‖p

× d(t, z)−ωd(β(t, z))−(n−1)(κ+k−1)d(β(t, z))−k−p

+ B′‖u − v‖pd(t, z)−κ′

d(γ(t, z))−p

≤ [A′(Cκ,k−1h)nλλ1 + An(Cκ,k−1h)n−1Cp,kλλp+1−κ
2 + B′λ3]

× ‖u − v‖pd(t, z)−p−1,

hence ‖Fu − Fv‖p ≤ L‖u − v‖p and F is contractive on D with respect to
the norm ‖ · ‖p. The Banach contraction principle completes the proof.

Remark 2. Theorem 1 only gives a local existence (and uniqueness)
result. Assume that |α0(t, z)|, |β0(t, z)|, |γ0(t, z)| < |t| for 0 < |t| < T (α0,
β0, γ0 are the time-coordinates of α, β, γ respectively), and a, b are analytic
on Ω × K(0, T ) × C. Then we can extend any local solution of (2) to the
set Ω ×K(0, T ) by a step-by-step method. Assumption (3) of Theorem 1 is
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essential, and it is satisfied when there exists d0 > 0 such that d(β(t, z)) ≥ d0

for (t, z) ∈ Gη. Such a condition is assumed in [6], [7]. One may expect that
(3) cannot be satisfied when

inf{d(β(t, z)) : (t, z) ∈ Gη} = 0.

We demonstrate in the Example below that, taking any k, n, κ, ω, there ex-
ists a deviating argument β which is not separated from the lateral boundary
of the Haar pyramid, but (3) is satisfied. Moreover, the assumptions of Theo-
rem 1 require η to be small enough. The deviating argument in the Example
transforms Gη into itself for any η, t0 > 0 sufficiently small.

Example. Take r ≥ 2m/(m−1), m > 1. Define

Ω = {z ∈ C : |z| < r, |arg z| < π/2}.

Take further

a ∈ C, a 6= 0, 0 < η <
2m − 1

m2|a|
, 0 < t0 ≤

1

|a|b
, b = r(m−1)/m.

We have

d(z) = min{Re z, r − |z|}.

Define

β(t, z) = (at2, z1/m), |arg z1/m| <
π

2m
.

We prove that β(Gη) ⊂ Gη. Since r > 1, it is easily seen that β(0, z) ∈ Ω
if z ∈ Ω. Let

z1/m = x exp(iφ), x ∈ (0, r1/m), |φ| <
π

2m
.

We get r ≥ 2r1/m ≥ x(1 + cos φ), so r− |z1/m| = r−x ≥ x cos φ = Re z1/m,
hence

d(z1/m) = Re z1/m, z ∈ Ω,

and
d(z)

d(z1/m)m
≤

Re z

(Re z1/m)m
=

xm cos mφ

(x cos φ)m
=

cos mφ

cosm φ
≤ 1.

In particular,

d(z) ≤ sup
y∈Ω

(d(y1/m))m−1d(z1/m) ≤ bd(z1/m),

d(β(t, z)) = d(z1/m) −
|at2|

η
≥

1

b
d(z) −

1

b

|t|

η
=

d(t, z)

b
> 0,

if (t, z) ∈ Gη. This implies β(Gη) ⊂ Gη. Now we prove that

A(t, z) =
d(t, z)

d(β(t, z))m
≤ 1.
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We have

A(t, z) ≤
Re z − |t|/η

(Re z1/m − |at2|/η)m
.

The estimate η < (2m − 1)/(m2|a|) and the inequality cos mφ ≤ cos φ ≤ 1
imply that the right-hand side of the above inequality is decreasing in |t| ∈
[0, ηRe z), thus its maximum is reached at |t| = 0, hence

(5) A(t, z) ≤
Re z

(Re z1/m)m
≤ 1.

Estimate (5) is optimal. Indeed, A(0, z) = 1 if Im z = 0 and Re z < 1. It
follows from (5) that, if m(κ − ω) ≥ n(κ + k − 1), then

d(t, z)κ−ω ≤ d(β(t, z))m(κ−ω) ≤ d̂m(κ−ω)−n(κ+k−1)d(β(t, z))n(κ+k−1),

therefore (3) is satisfied.

We generalize Theorem 1 to the equation

Dtu(t, z) =
N∑

n=1

∑

|kn|≤K

akn
(t, z, u(αkn

(t, z)))
n∏

i=1

Dkni
z u(βkn,i(t, z))

+ b(t, z, u(γ(t, z))),

where kn = (kn1, . . . , knn) is such that kni ≥ 1 and |kn| = kn1 + . . . + knn.
If all coefficients akn

vanish but one (kn0
= (k, . . . , k)) and βkn,i = β, i =

1, . . . , n , then the above equation becomes equation (2).

Theorem 2. Suppose that there are r, h > 0, κ ∈ (0, 1), and ωkn
∈

[0, κ), η, λkn
> 0, Akn

, B ≥ 0 such that akn
, b are analytic functions on

Gη × K(0, r), and the functions αkn
, βkn,i, γ map Gη into itself. Assume

that , for (t, z) ∈ Gη, |u| ≤ r, we have

‖akn
(·, u)‖ωkn

≤ Akn
, ‖b(·, u)‖κ ≤ B,

d(t, z)κ−ωkn ≤ λkn

n∏

i=1

d(βkn,i(t, z))κ+kni−1,

η

1 − κ
d̂1−κ

[
B +

N∑

n=1

∑

|kn|≤K

Akn
hn

n∏

i=1

Cκ,kni−1

]
≤ r,

η

κ

[
CκB +

N∑

n=1

∑

|kn|≤K

Akn
hnλkn

(Cωkn
+ Cκ−ωkn

)

n∏

i=1

Cκ,kni−1

]
≤ h.

Then there exists an analytic solution to the homogeneous Cauchy problem

for equation (6) in the set D. Moreover , if there exist constants p, λ
(1)
kn

, λ(3)

> 0, A′
kn

, B′, ω′
kn

, κ′ ≥ 0 such that

|akn
(t, z, u) − akn

(t, z, v)| ≤ A′
kn

d(t, z)−ω′

kn |u − v|,
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|b(t, z, u) − b(t, z, v)| ≤ B′d(t, z)−κ′

|u − v|,

d(t, z)p+1−κ+ωkn−ω′

kn ≤ λ
(1)
kn

d(αkn
(t, z))p, d(t, z)p+1−κ′

≤ λ(3)d(γ(t, z))p,

η

p

{ N∑

n=1

∑

|kn|≤K

λkn

[
A′

kn
hn

( n∏

i=1

Cκ,kni−1

)
λ

(1)
kn

+Akn
hn−1

n∑

j=1

( n∏

i=1,i 6=j

Cκ,kni−1

)
Cp,knj

λ
(2)
kn,j

]
+ B′λ(3)

}
< 1,

for (t, z) ∈ Gη, |u|, |v| ≤ r, where

λ
(2)
kn,j = sup

(t,z)∈Gη

(
d(t, z)

d(βkn,j(t, z))

)p+1−κ

,

then the solution is unique in D.

We omit the proof, because its idea is similar to that of the proof of
Theorem 1.

The results of this paper can be easily generalized for a multidimensional
variable z and a strongly coupled system of equations. Moreover, the results
hold true in the real case, i.e. for functions u of variables (t, z) ∈ Gη ⊂
R × C of class C1 in t and analytic in z. It suffices to assume that the
first coordinates of the deviating arguments of the unknown function are
independent of z.

References

[1] A. Augustynowicz, Existence and uniqueness of solutions for partial differential-
functional equations of the first order with deviating arguments of the derivative of

unknown function, Serdica Math. J. 23 (1997), 203–210.
[2] —, Analytic solutions to the first order partial differential equations with time delays

at the derivatives, Funct. Differ. Equations 6 (1999), 19–29.
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Wita Stwosza 57
80-952 Gdańsk, Poland
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