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Relative tangent cone of analytic curves

by Danuta Ciesielska (Kraków)

Abstract. The purpose of this paper is to give a characterization of the relative
tangent cone of two analytic curves in Cm with an isolated intersection.

1. Introduction. We consider analytic curves X and Y in a neighbour-
hood Ω of 0 in Cm (by an analytic curve we mean an analytic set of pure
dimension 1) such that X ∩ Y = {0} and study the relative tangent cone
to these curves at 0 (see Section 2 of [ATW]). We restrict our attention to
analytic curves with irreducible germs at 0. This involves no loss of gener-
ality as our considerations are local and the relative tangent cone and the
intersection multiplicity of analytic curves are additive.

The main result of this paper, that is, the equality C0(X,Y ) +C0(X) =
C0(X,Y ), is proved in Section 3 after preliminary results for analytic curves.
This theorem gives a strong geometric characterization of the relative tan-
gent cone of analytic curves.

This research was inspired by the paper [ChKT]. In the last section we
present a method which reduces the calculations of the intersection multi-
plicity to the calculations of the multiplicity of a holomorphic mapping at
a point. We use ideas from [ChKT] and our characterization of the relative
tangent cone. The method we apply can simplify the proof of the formula
for the intersection multiplicity of analytic curves presented in [ChKT].

2. Preliminary results. We start with the following lemma which will
be used in the proof of the main theorem of this paper.

Lemma 2.1. Let d be a positive integer. Suppose that {tn} is a sequence
of complex numbers convergent to 0 and such that {ntn} is convergent in Ĉ.
Then for each c ∈ C there exists a sequence {hn} such that :
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(1) hn → 0,
(2) nd((tn + hn)d − tdn)→ c,
(3) for any holomorphic function ϕ : Ω → C defined in an open neigh-

bourhood Ω of 0 ∈ C with ord0 ϕ > d we have nd(ϕ(tn+hn)−ϕ(tn))→ 0.

P r o o f. We have to consider three cases depending on the behaviour of
the sequence {ntn}. First, in each case we prove assertions (1) and (2).

(i) If ntn → 0, then by a simple calculation the sequence hn = c1/dn−1

satisfies the assertion of our lemma.
(ii) If ntn → a ∈ C\{0}, then take an α ∈ C such that (1+α)d−1 = ca−d

and define hn = αtn. We have hn → 0 and

nd((tn + hn)d − tdn) = (ntn)d((1 + α)d − 1) = (ntn)dca−d → c.

(iii) If ntn → ∞, then we take hn = c(nd)−1(ntn)1−d. We get hn → 0
and

nd((tn + hn)d − tdn) =
d∑
i=1

(
d

i

)
ndhint

d−i
n =

d∑
i=1

(
d

i

)
(c/d)i(ntn)d(1−i) → c.

Now, we can prove (3) starting from a common observation. For each hn,
there is a θn (0 ≤ θn ≤ 1) such that

|ϕ(tn + hn)− ϕ(tn)| ≤ |hn||ϕ′(tn + θnhn)|.
Since ord0 ϕ > d, by the property of the order of ϕ′ at 0 we have

|ϕ′(tn + θnhn)| ≤M |tn + θnhn|d

for some M > 0. The task is now to show that ndhn(tn + θnhn)d converges
to zero as n→∞. In the cases (i) and (ii) this is obvious. For the sequence
hn = (c/nd)(ntn)1−d from case (iii) we have

ndhn(tn + θnhn)d =
c

d
tn

(
1 + θn

c

d
(ntn)−d

)d
→ 0, n→∞,

due to ntn →∞ as n→∞. This finishes the proof.

3. Main result. Let Ω be a neighbourhood of 0 ∈ Cm (m ≥ 2) and let
X, Y be analytic curves in Ω with irreducible germs at the origin such that
X ∩ Y = {0}. The relative tangent cone C0(X,Y ) to the analytic sets X,Y
at the point 0 (see [ATW]) is the set of v ∈ Cm with the following property:
there exist sequences {xν} of points of X, {yν} of points of Y and {λν} of
complex numbers such that xν → 0, yν → 0 and λν(xν−yν)→ v as ν →∞.

The main goal of this paper is to prove the following theorem.

Theorem 3.1. If X ∩ Y = {0} then C0(X,Y ) + C0(X) = C0(X,Y ).

P r o o f. We consider two cases.



Relative tangent cone of analytic curves 193

First, if C0(X)∩C0(Y ) = {0} then by Property 2.9 in [ATW] we obtain
the equality C0(X,Y ) = C0(X) +C0(Y ), which completes the proof in this
case.

Second, if X and Y have common tangent cone C0(X) = C0(Y ) then
after a suitable biholomorphic change of coordinates we may assume that
this cone is the line C1 := {x ∈ Cm : x2 = . . . = xm = 0}.

By the second version of the Puiseux Theorem ([ L], II.6.2) we can para-
metrize X, Y (shrinking Ω if necessary) in the following way:

U 3 t 7→ (tp, ϕ(t)) ∈ X, ord0 ϕ > p,

U 3 τ 7→ (τ q, ψ(τ)) ∈ Y, ord0 ψ > q,

where ord0 ϕ denotes the smallest number among the orders ord0 ϕi =: ki
at 0 (i = 2, . . . ,m). Put d := p · q and consider new parametrizations

Ũ 3 t 7→ (td, ϕ̃(t)) ∈ X, ord0 ϕ̃ > d,

Ũ 3 τ 7→ (τd, ψ̃(τ)) ∈ Y, ord0 ψ̃ > d,

where ϕ̃(t) = ϕ(tq) and ψ̃(τ) = ψ(τp).
Define ϕ̃(t) = (ϕ̃2(t), . . . , ϕ̃m(t)) and ψ̃(τ) = (ψ̃2(τ), . . . , ψ̃m(τ)). Fix

v = (v1, . . . , vm) ∈ C0(X,Y ) and (c, 0) ∈ C1. By the definition of C0(X,Y )
and Theorem 3.11 from [W] we have sequences {tn} and {τn} of complex
numbers converging to zero and such that

nd(tdn − τdn , ϕ̃2(tn)− ψ̃2(τn), . . . , ϕ̃m(tn)− ψ̃m(τn))→ v.

Applying Lemma 2.1 to the sequence {tn} yields a sequence {hn} which
has properties (1)–(3). By substituting tn + hn for tn, we move the points
on the curve X a little and for the first coordinate we obtain the following
limit (as n→∞):

nd((tn + hn)d − τdn) = nd((tn + hn)d − tdn) + nd(tdn − τdn)→ c+ v1

while the equality

nd(ϕ̃i(tn + hn)− ψ̃i(τn)) = nd(ϕ̃i(tn + hn)− ϕ̃i(tn)) + nd(ϕ̃i(tn)− ψ̃i(τn))

shows that for i ≥ 2 each coordinate converges to the respective vi. Con-
sequently, v + (c, 0) ∈ C0(X,Y ). Since C0(X) = C1 we conclude that
C0(X,Y ) + C0(X) = C0(X,Y ) and the theorem follows.

Corollary 3.2. The relative tangent cone to analytic curves X and Y
is a finite union of planes, all of which contain both C0(X) and C0(Y ).

P r o o f. According to Property 2.9 in [ATW], the relative tangent cone to
X and Y is an algebraic cone of pure dimension 2. If C0(X)∩C0(Y ) = {0},
then by Property 2.10 in [ATW] we have C0(Y ) + C0(X) = C0(X,Y ) and
our corollary follows. If C0(X) = C0(Y ) and a hypersurface H intersects
tangent lines isolatedly, then we have C0(X,Y ) = C0(X,Y ) ∩H + C0(X).
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This implies that the cone C0(X,Y )∩H has pure dimension 1, therefore it
is a finite system of lines in H. This ends the proof.

4.Multiplicity of the intersection of analytic curves. Theorem 3.1
can be applied to counting the multiplicity of intersection of analytic curves
in a simpler way. We begin with a theorem which reduces the calculations of
the intersection multiplicity i(X ·Y ; 0) to the calculations of the multiplicity
of a special holomorphic mapping.

Let curves X and Y have parametrizations

U 3 t 7→ Φ(t) := (tp, ϕ(t)) ∈ X, ord0 ϕ > p,

U 3 τ 7→ Ψ(τ) := (τ q, ψ(τ)) ∈ Y, ord0 ψ > q,

as in the second version of the Puiseux Theorem ([ L], II.6.2). By Corol-
lary 3.2 there exists a finite system of vector lines S ⊂ Cm−1 such that

C0(X,Y ) = C× S = C1 + ({0} × S) ⊂ C× Cm−1 = Cm.
For a linear form l : Cm−1 → C we define

fl : Cm × Cm 3 (x, y) = ((x1, x
′), (y1, y′)) 7→ (x1 − y1, l(x′ − y′)) ∈ C2.

If the mapping fl ◦ (Φ × Ψ) has an isolated zero at 0 ∈ C2 then we denote
by µ0(fl ◦ (Φ× Ψ)) the multiplicity of the mapping at 0. We use the above
notation in the following theorem.

Theorem 4.1. If Ker l ∩ S = {0} then i(X · Y ; 0) = µ0(fl ◦ (Φ× Ψ)).

P r o o f. Let T := X × Y , π : Cm × Cm 3 (x, y) 7→ x − y ∈ Cm and
∆ := Kerπ. Using the theory developed in [ATW] to finding the multiplicity
of the isolated intersection of X and Y we calculate ([ATW], Def. 5.1) the
multiplicity of the isolated intersection of T with the subspace ∆ at the
point 0 ∈ Cm × Cm.

Denote by L the set Kerfl; L is a linear subspace of Cm × Cm of codi-
mension 2. Moreover, we have (see [ATW], Lemma 2.4)

C0(T,∆) = π−1(C× S) = {(x, y) ∈ Cm × Cm : x′ − y′ ∈ S}.
Since L = {(x, y) ∈ Cm × Cm : x1 = y1, x′ − y′ ∈ Ker l} our assumption
implies L ∩ C0(T,∆) = ∆. From Theorem 4.4 in [ATW] we get

i(X · Y ; 0) = i(T · L; 0).

According to Definition 4.1 in [TW], the mapping Φ×Ψ : U2 → T = X×Y
is a 1-parametrization of T and L = Zfl

is a cycle of zeros of the mapping
fl. By Theorem 4.2 in [TW],

deg(T · Zfl
) = deg(Zfl◦(Φ×Ψ)).

We have deg(T · Zfl
) = deg(T · L) = i(X · Y ; 0) and deg(Zfl◦(Φ×Ψ)) =

µ0(fl ◦ (Φ× Ψ)), which completes the proof.
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Example 4.2. Take the algebraic curves

X = {(t2, t3, 0) ∈ C3 : t ∈ C}, Y = {(τ2, 0, τ3) ∈ C3 : τ ∈ C}.
We have X ∩ Y = {0} and C0(X) = C0(Y ) = C1. A simple calculation
shows that C0(X,Y ) = {(x, y, z) ∈ C3 : y2 = z2} is a union of two planes.
By Theorem 4.1, i(X · Y ; 0) is equal to the multiplicity at 0 ∈ C2 of the
mapping

F : C2 3 (t, τ) 7→ (t2 − τ2, t3) ∈ C2

produced (as above) by the linear form l : C2 3 (y, z) 7→ y ∈ C. Since
µ0(F ) = 6 we conclude that the intersection multiplicity of X and Y at 0 is
equal to 6.
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