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Nonlocal problems for first order functional

partial differential equations

by Jan Turo (Gdańsk)

Abstract. Local existence of generalized solutions to nonlocal problems for nonlinear
functional partial differential equations of first order is investigated. The proof is based
on the bicharacteristics and successive approximations methods.

1. Introduction. Let B = [−b0, 0]×[−b, b], It = [0, t] × R
n and Et =

[−b0, t] × R
n, where t ∈ [0, a), a > 0, b = (b1, . . . , bn) ∈ R

n
+, R+ = [0,∞),

and b0 ∈ R+. For any function z : Ea →R with a > 0 and a fixed (x, y) =
(x, y1, . . . , yn) ∈ Ia we define the function z(x,y) : B → R by z(x,y)(t, s) =
z(x+ t, y + s), (t, s) ∈ B. We denote by C0(B,R) the set of all continuous
real functions on B.

We assume that f : Ia × C0(B,R) × R
n → R, and hl, ϕ : E0 = [−b0] ×

R
n → R, l = 1, . . . , r, are given functions.

We consider the nonlinear functional partial differential equation

(1) Dxz(x, y) = f(x, y, z(x,y),Dyz(x, y)),

with nonlocal condition

(2) z(x, y) +

r∑

l=1

hl(x, y)z(ak + x, y) = ϕ(x, y), (x, y) ∈ E0,

where Dyz = (Dy1
z, . . . ,Dyn

z), and al, i = 1, . . . , r, are numbers such that
0 < a1 < . . . < ar ≤ a.

The nonlocal condition (2) may also be written in the form

(3) z(0,y) +

r∑

l=1

(hl)(0,y)z(al,y) = ϕ, y ∈ R
n.

1991 Mathematics Subject Classification: 35L50, 35R10.
Key words and phrases: nonlocal problem, differential-functional equation, generalized

solution.

[99]



100 J. Turo

In this paper we extend the method of quasilinearization to problem
(1), (2), for which we construct two uniformly convergent sequences: the
first converges to a solution of the problem, the second to its derivative.
The technique essentially involves the method of bicharacteristics.

We consider generalized solutions of problem (1), (2). More precisely, a
function u : Ec → R, where 0 < c ≤ a, is a solution of (1), (2) provided

(i) u ∈ C(Ec,R) and Dyu(x, y) exists for (x, y) ∈ Ic;

(ii) the function u(·, y) : [0, c] → R is absolutely continuous on [0, c] for
each y ∈ R

n;

(iii) for each y ∈ R
n equation (1) is satisfied for almost all x ∈ [0, c], and

condition (2) holds.

For r = n, b0 = 0 and hlij = hijδli (δli is the Kronecker symbol) the
nonlocal boundary condition (2) reduces to the nonlocal condition “à la
Cesari” [1]–[4], [11], [12], [20], [26], [27]. If hlij = δliδij then (2) reduces to
the Nicoletti condition [21], [23]. Furthermore, if all al = 0, l = 1, . . . , r,
then we get the usual Cauchy condition.

Classical solutions to nonlocal problems were considered for parabolic
equations in [8], [9], [13], and for hyperbolic equations in [6], [7], [10], [15].

Generalized solutions to nonlinear first order partial differential equa-
tions have been investigated in a large number of papers by various au-
thors. Theorems on existence, uniqueness and continuous dependence upon
Cauchy or boundary data for quasilinear systems were given in [1]–[3], [11],
[12], [16], [17], [22]. Quasilinear differential-integral systems and systems
with a retarded argument were considered in [4], [19], [20]. Nonlinear differ-
ential equations were studied in [14]. Generalized solutions of quasilinear or
nonlinear equations with operators of the Volterra type were investigated
in [24]–[27]. Generalized solutions of (1) with the Cauchy condition were
considered in [5].

Equation (1) contains as particular cases the differential equations with a
retarded argument, differential-integral equations and differential-functional
equations with operators of the Volterra type (see Section 6).

2. Preliminaries and assumptions. For y ∈ R
n we write ‖y‖ =∑n

i=1 |yi|. Let ‖ · ‖0 denote the supremum norm in C0(B,R). We denote by
C0,L(B,R) the class of all functions w ∈ C0(B,R) such that

‖w‖L = sup{|w(t, s) − w(t, s)| · ‖s− s‖−1 : (t, s), (t, s) ∈ B} <∞.

For w ∈ C0,L(B,R) we put ‖w‖0,L = ‖w‖0 + ‖w‖L.

Let C1(B,R) be the set of all continuous functions w : B → R such that
the derivatives Dsw = (Ds1

w, . . . ,Dsn
w) exist and Dsw ∈ C0(B,Rn). For

w ∈ C1(B,R) we put ‖w‖1 = ‖w‖0 + max{‖Dsw(t, s)‖ : (t, s) ∈ B}.
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We denote by C1,L(B,R) the set of all functions w ∈ C1(B,R) such
that Dsw ∈ C0,L(B,R). For w ∈ C1,L(B,R) we write ‖w‖1,L = ‖w‖1 +
‖Dsw‖L.

Let Θ be the class of all functions γ : [0, a]×R+ → R+ such that γ(·, t) ∈
L([0, a],R+) for every t ∈ R+, and γ(s, ·) : R+ → R+ is nondecreasing for
almost all s ∈ [0, a], where L([0, a],R+) is the class of all integrable functions
on [0, a].

We put Ω(i) = Ia × Ci(B,R) × R
n for i = 1, 2, and Ω(1,L) = Ia ×

C1,L(B,R) × R
n.

Given S = (S0, S1, S2) ∈ R
3
+, we denote by C1,L[S] the set of all func-

tions ϕ : E0 → R such that

(i) ϕ ∈ C(E0,R) and Dyϕ(x, y) exists for (x, y) ∈ E0;
(ii) |ϕ(x, y)| ≤ S0, ‖Dyϕ(x, y)‖ ≤ S1 on E0, and

‖Dyϕ(x, y) −Dyϕ(x, y)‖ ≤ S2‖y − y‖

for (x, y), (x, y) ∈ E0.

Given S = (S0, S1, S2) ∈ R
3
+, S0, S1 ∈ [0, 1/2), we denote by C1,L[S]

the set of all functions hl : E0 → R such that

(i) hl ∈ C(E0,R) and Dyhl(x, y) exists for (x, y) ∈ E0, l = 1, . . . , r;
(ii)

∑r

l=1 |hl(x, y)| ≤ S0,
∑r

l=1 ‖Dyhl(x, y)‖ ≤ S1 on E0, and
r∑

l=1

‖Dyhl(x, y) −Dyhl(x, y)‖ ≤ S2‖y − y‖

for (x, y), (x, y) ∈ E0.

Let ϕ ∈ C1,L[S], hl ∈ C1,L[S], l = 1, . . . , r, be given and let 0 < c ≤ a,
Q = (Q0, Q1, Q2), λ = (λ0, λ1), where Qi ∈ R+, i = 0, 1, 2, and λj ∈
L([0, a],R+), j = 0, 1. We denote by C1,L[c, ϕ, h,Q, λ] the set of all functions
z ∈ C(Ec,R) such that

(i) z satisfies condition (2) on E0;
(ii) Dyz(x, y) exists for (x, y) ∈ Ic;
(iii) |z(x, y)| ≤ Q0 and ‖Dyz(x, y)‖ ≤ Q1 for (x, y) ∈ Ic;
(iv) for (x, y), (x, y), (x, y) ∈ Ic we have

|z(x, y) − z(x, y)| ≤
∣∣∣

x\
x

λ0(t) dt
∣∣∣,

‖Dyz(x, y) −Dyz(x, y)‖ ≤
∣∣∣

x\
x

λ1(t) dt
∣∣∣ +Q2‖y − y‖.

We denote by C0,L[c,Q, λ1] the class of all functions v ∈ C(Ic,R
n) such

that
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(i) ‖v(x, y)‖ ≤ Q1 for (x, y) ∈ Ic;

(ii) ‖v(x, y) − v(x, y)‖ ≤ |
Tx
x
λ1(t) dt| +Q2‖y − y‖ for (x, y), (x, y) ∈ Ic.

Let CL(B,R) denote the set of all continuous linear operators defined
on C(B,R) and taking values in R. The norm in CL(B,R) is denoted by
‖ · ‖CL(B,R).

Assumption H1. 1◦ The function f(·, y, w, q) : [0, a] → R is measurable
for every (y,w, q) ∈ R

n×C0(B,R)×R
n and f(x, ·) : R

n×C0(B,R)×R
n → R

is continuous for a.e. x ∈ [0, a];
2◦ there is β ∈ Θ such that |f(x, y,w, q)| ≤ β(x, ‖w‖0) on Ω(0);
3◦ for every (x, y,w, q) ∈ Ω(1), Dyf(x, y,w, q) ∈ R

n and Dwf(x, y,w, q)
∈ CL(B,R) exist;

4◦ there is α ∈ Θ such that

‖Dyf(x, y,w, q)‖ ≤ α(x, ‖w‖1), ‖Dwf(x, y,w, q)‖CL(B,R) ≤ α(x, ‖w‖1),

on Ω(1);
5◦ there is γ ∈ Θ such that

(4) ‖Dyf(x, y,w, q) −Dyf(x, y,w + h, q)‖

≤ γ(x, ‖w‖1,L)[‖y − y‖ + ‖h‖1 + ‖q − q‖],

and

‖Dwf(x, y,w, q) −Dwf(x, y,w + h, q)‖CL(B,R)

≤ γ(x, ‖w‖1,L)[‖y − y‖ + ‖h‖1 + ‖q − q‖],

for (x, y,w, q) ∈ Ω(1,L), y, q ∈ R
n, h ∈ C1(B,R).

Assumption H2. 1◦ Dqf exists for every (x, y,w, q) ∈ Ω(1) and
Dqf(·, y, w, q) ∈ L([0, a],Rn) for (y,w, q) ∈ R

n × C1(B,R) × R
n;

2◦ for (x, y,w, q) ∈ Ω(1) we have the estimate

‖Dqf(x, y,w, q)‖ ≤ α(x, ‖w‖1),

3◦ for (x, y,w, q) ∈ Ω(1,L), y, q ∈ R
n and h ∈ C1(B,R) we have the

estimate

‖Dqf(x, y,w, q) −Dqf(x, y,w + h, q)‖

≤ γ(x, ‖w‖1,L)[‖y − y‖ + ‖h‖1 + ‖q − q‖],

Remark 1. We prove the theorem on the existence of solutions and we
give an estimate of the domain of solutions. For simplicity of the estimates
of the constant c we have assumed the same estimate for the derivatives
Dyf, Dwf, Dqf , and we have also assumed the Lipschitz condition for these
derivatives with the same constant.

Remark 2. It is important in our considerations that the Lipschitz condi-
tions for the given functions are local with respect to the functional variable.
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Consider the function Dyf only and the simplest assumptions on it.
Suppose that there is a constant γ̃ such that

(5) ‖Dyf(x, y,w, q) −Dyf(x, y,w + h, q)‖ ≤ γ̃[‖y − y‖ + ‖h‖1 + ‖q − q‖].

Of course, our results are true if we assume (5) instead of (4).
Now we show that there is a class of nonlinear equations satisfying (4)

and not satisfying (5).
Consider the equation with a deviated argument

(6) Dxz(x, y) = f̃(x, y, z(λ(x), ψ(x, y)),Dyz(x, y)),

where f̃ : Ia × R × R
n → R, λ ∈ C([0, a],R), ψ ∈ C(Ia,R

n), −b0 ≤
λ(x) − x ≤ 0, −b ≤ ψ(x, y) − y ≤ b, (x, y) ∈ Ia, and the derivative Dyψ
exists on Ia. We get equation (6) by putting in (1)

f(x, y,w, q) = f̃(x, y,w(λ(x) − x, ψ(x, y) − y), q).

Suppose that there are constants α1, γ1, δ0, δ1 ∈ R+ such that

‖Dy f̃(x, y,w, q) −Dy f̃(x, y,w, q)‖ ≤ γ1[‖y − y‖ + |w − w| + ‖q − q‖],

‖Dw f̃(x, y,w, q) −Dw f̃(x, y,w, q)‖ ≤ γ1[‖y − y‖ + |w − w| + ‖q − q‖],

‖Dw f̃(x, y,w, q)‖ ≤ α1, ‖Dyψ(x, y)‖ ≤ δ0,

‖Dyψ(x, y) −Dyψ(x, y)‖ ≤ δ1‖y − y‖.

Observe that in Ω(1) we have

Dyi
f(x, y,w, q) = Dyi

f̃(x, y,w(λ(x) − x, ψ(x, y) − y), q)

+Dwf̃(x, y,w(λ(x) − x, ψ(x, y) − y), q)

·
[ n∑

j=1

Dyj
w(λ(x) − x, ψ(x, y) − y)(Dyi

ψj(x, y) − 1)
]
.

Then it is easy to see that

‖Dyf(x, y,w, q) −Dyf(x, y,w + h, q)‖

≤ {γ1[1 + (1 + δ0)‖w‖1]
2 + α1[(1 + δ0)

2‖w‖1,L + δ1‖w‖1]}

× [‖y − y‖ + ‖h‖1 + ‖q − q‖].

Thus condition (4) is satisfied. We see at once that the function Dyf does
not satisfy the global Lipschitz condition (5). Similar considerations apply
to Dwf, Dqf .

3. Bicharacteristics. Suppose that hl ∈ C1,L[S], l = 1, . . . , r, ϕ ∈
C1,L[S], z ∈ C1,L[c, ϕ, h,Q, λ] and u ∈ C0,L[c,Q, λ1]. We consider the
Cauchy problem

(7) η′(t) = −Dqf(t, η(t), z(t,η(t)) , u(t, η(t))), η(x) = y,

and denote by g[z, u](·, x, y) its solution.
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By using the Gronwall inequality, we can prove, similarly to [5], [28], the
following.

Lemma 1. Let ϕ,ϕ ∈ C1,L[S], hl, hl ∈ C1,L[S], z ∈ C1,L[c, ϕ, h,Q, λ],
z ∈ C1,L[c, ϕ, h,Q, λ], u, u ∈ C0,L[c,Q, λ1] be given, and let Assumption H2

be satisfied. Then the solutions g[z, u](·;x, y) and g[z, u](·, x, y) of (7) exist

on [0, c], they are unique and we have the estimates

‖g[z, u](t;x, y) − g[z, u](t;x, y)‖ ≤ G(x)
[∣∣∣

x\
x

α(s,Q′) ds
∣∣∣ + ‖y − y‖

]

and

‖g[z, u](t;x, y) − g[z, u](t;x, y)‖

≤ G(x)
∣∣∣

t\
x

γ(s,Q∗) ds [‖z − z‖C(Es ,R)

+ ‖Dyz −Dyz‖C(Es ,Rn) + ‖u− u‖C(Is,Rn)]
∣∣∣,

where

G(x) = exp
[
Q

x\
0

γ(s,Q∗) ds
]
,

and Q′ = Q0 +Q1, Q = 1 +Q1 + 2Q2, Q
∗ = Q0 +Q1 +Q2.

For given ϕ ∈ C1,L[S], hl ∈ C1,L[S], z ∈ C1,L[c, ϕ, h,Q, λ] and u ∈
C0,L[c,Q, λ1], we define

F [z, u](x, y) = ϕ(0, g(0;x, y)) −

r∑

l=1

hl(0, g(0;x, y))z(al , g(0;x, y))

+

x\
0

[
f(P [z, u](s;x, y))

−

n∑

k=1

Dqk
f(P [z, u](s;x, y))uk(s, g(s;x, y))

]
ds,

and

Ti[z, u](x, y) = Dyi
ϕ(0, g(0;x, y)) −

r∑

l=1

Dyi
hl(0, g(0;x, y))z(al , g(0;x, y))

−

r∑

l=1

hl(0, g(0;x, y))u(al , g(0;x, y))

+

x\
0

[Dyi
f(P [z, u](s;x, y))

+Dwf(P [z, u](s;x, y))(ui)(s,g(s;x,y))] ds,
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where

P [z, u](τ ;x, y) = (τ, g[z, u](τ ;x, y), z(τ,g[z,u](τ ;x,y)) , u(τ, g[z, u](τ ;x, y))),

and i = 1, . . . , n.

4. Successive approximations. Now we consider the system of inte-
gral-functional equations which are generated by (1), (2):

(8)

z(x, y) = F [z, u](x, y), u(x, y) = T [z, u](x, y), (x, y) ∈ Ia,

z(x, y) +

r∑

l=1

hl(x, y)z(ak + x, y) = ϕ(x, y), (x, y) ∈ E0,

g(t;x, y) = y +

x\
t

Dqf(P [z, u](s;x, y)) ds,

where T = (T1, . . . , Tn).

Remark 3. The functional integral system (8) is obtained in the follow-
ing way. By introducing an additional unknown function u = Dyz in (1) we
consider the linearization of this equation with respect to u, i.e.

(9) Dxz(x, y) = f(V ) +
n∑

j=1

Dqj
f(V )(Dyj

z(x, y) − uj(x, y)),

where V = (x, y, z(x,y), u(x, y)). From (1) we get the following differential
system for the unknown function u:

(10) Dxui(x, y) = Dyi
f(V ) +Dwf(V )(Dyi

z)(x,y) +
n∑

j=1

Dqj
f(V )ui(x, y),

i = 1, . . . , n. Finally, we put Dyz = u in (10).

Considering (9), (10) along the bicharacteristic g[z, u](·;x, y), we obtain

d

dt
z(t, g[z, u](t;x, y)) = f(P [z, u](t;x, y))

−

n∑

j=1

Dqj
f(P [z, u](t;x, y))uj (t, g[z, u](t;x, y)),

d

dt
ui(t, g[z, u](t;x, y)) = Dyi

f(P [z, u](t;x, y))

+Dwf(P [z, u](t;x, y))(ui)(t,g[z,u](t;x,y)).

Now we construct successive approximations. Suppose that ϕ ∈ C1,L[S],
hl ∈ C1,L[S], l = 1, . . . , r, and that Assumptions H1–H2 are satisfied. We
define the sequences {z(m)} and {u(m)} in the following way:

(11)
z(0) is an arbitrary element of C1,L[c, ϕ, h,Q, λ],

u(0) = Dyz
(0) on Ic.
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Evidently, u(0) ∈ C0,L[c,Q, λ1]. Now, if (z(m), u(m)) ∈ C1,L[c, ϕ, h,Q, λ] ×
C0,L[c,Q, λ1] are known functions, then u(m+1) is a solution of the equation

(12) u = T (m)[u],

and

(13) z(m+1) = F (m)[z(m), u(m+1)],

where T (m) = (T
(m)
1 , . . . , T

(m)
n ) is defined by

T
(m)
i [z, u](x, y) = Dyi

ϕ(0, g(0;x, y))

−

r∑

l=1

Dyi
hl(0, g(0;x, y))z

(m)(al, g(0;x, y))

−
r∑

l=1

hl(0, g(0;x, y))u
(m)(al, g(0;x, y))

+

x\
0

[Dyi
f(P [z(m), u](s;x, y))

+Dwf(P [z(m), u](s;x, y))(u
(m)
i )(s,g(s;x,y))] ds,

i = 1, . . . , n. We denote by g the solution of

(14) g(t;x, y) = y +

x\
t

Dqf(P [z(m), u](τ ;x, y)) dτ,

and for simplicity we ignore the dependence of g on z(m) and u.
Note that the equations u = T (m)[z(m), u] and (12) are not identical.

Lemma 2. If Assumptions H1–H2 are satisfied and if hl ∈ C1,L[S], ϕ ∈
C1,L[S], Qi > Si, i = 0, 1, 2, then there is c ∈ (0, a] such that for any m ≥ 0
we have

(am) z(m) ∈ C1,L[c, ϕ, h,Q, λ], u(m) ∈ C0,L[c,Q, λ1];
(bm) Dyz

(m)(x, y) = u(m)(x, y) in Ic.

P r o o f. We first suppose that c ∈ (0, a] is a small constant such that

G(c)
[
S0 +

c\
0

α(s,Q′) ds
]
< 1,

[
1 − S0 −

c\
0

α(s,Q′) ds
]
−1[

S1 + S1Q0 +

c\
0

α(s,Q′) ds
]
≤ Q1,

{
1 −G(c)

[
S0 +

c\
0

α(s,Q′) ds
]}

−1

P (c) ≤ Q2, M(c) < 1,

(1 − S0)
−1

{
S0 +

c\
0

[β(s,Q0) +Q1α(s,Q′)] ds
}
≤ Q0,

where
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P (x) = G(x)
{
S2 + S1Q1 + S2Q0 + S1Q1 +Q(1 +Q1)

x\
0

γ(s,Q∗) ds
}
,

M(x) =
{
G(c)Q2

[
S0 +

x\
0

α(s,Q′) ds
]

+ P (x)
}

exp
[ x\

0

γ(s,Q∗) ds
]

+ S0 + (1 +Q1)

x\
0

γ(s,Q∗) ds.

Put

λ1(x) =
{
G(c)Q2

[
S0 +

c\
0

α(s,Q′) ds
]

+ P (c) + 1 +Q1

}
α(x,Q′),

λ0(x) = β(x,Q0) +
{
Q1 +G(c)

[
S1 + S1Q0 + S0Q1

+Q

c\
0

[α(s,Q′) +Q1γ(s,Q
∗)] ds

]}
α(x,Q′).

We prove (am) and (bm) by induction. It follows from the definitions of
z(0) and u(0) that (a0) and (b0) are satisfied. Suppose now that (am) and
(bm) hold. First we prove that

(15) T (m) : C0,L[c,Q, λ1] → C0,L[c,Q, λ1].

Indeed, it follows from Assumptions H1–H2 and Lemma 1 that for u ∈
C0,L[c,Q, λ1] and (x, y), (x, y) ∈ Ic, we have

(16) ‖T (m)[u](x, y)‖ ≤ S1+S1Q0+S0Q1+(1+Q1)

x\
0

α(s,Q′) ds ≤ Q1,

and

‖T (m)[u](x, y) − T (m)[u](x, y)‖

≤ ‖Dyϕ(0, g(0;x, y)) −Dyϕ(0, g(0;x, y))‖

+

r∑

l=1

‖Dyhl(0, g(0;x, y))‖ · |z(m)(al, g(0;x, y)) − z(m)(al, g(0;x, y))|

+

r∑

l=1

‖Dyhl(0, g(0;x, y)) −Dyhl(0, g(0;x, y))‖ · |z
(m)(al, g(0;x, y))|

+

r∑

l=1

n∑

k=1

|hl(0, g(0;x, y))| · |u
(m)
k (al, g(0;x, y)) − u

(m)
k (al, g(0;x, y))|

+
r∑

l=1

n∑

k=1

|hl(0, g(0;x, y)) − hl(0, g(0;x, y))| · |u
(m)
k (al, g(0;x, y))|

+

x\
0

‖Dyf(P [z(m), u](s;x, y)) −Dyf(P [z(m), u](s;x, y))‖ ds
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+
∣∣∣

x\
0

‖Dyf(P [z(m), u](s;x, y))‖ ds
∣∣∣

+
∣∣∣

x\
x

n∑

k=1

Dwf(P [z(m), u](s;x, y))(u
(m)
k )(s,g(s;x,y)) ds

∣∣∣

+

x\
0

n∑

k=1

|Dwf(P [z(m), u](s;x, y))(u
(m)
k )(s,g(s;x,y))

−Dwf(P [z(m), u](s;x, y))(u
(m)
k )(s,g(s;x,y))| ds

≤
∣∣∣

x\
x

λ1(t) dt
∣∣∣ +Q2‖y − y‖.

By the above inequality and by (16) we get (15).
From Assumptions H1–H2, applying Lemma 1, we obtain

‖T (m)[u](x, y) − T (m)[u](x, y)‖

≤ ‖Dyϕ(0, g(0;x, y)) −Dyϕ(0, g(0;x, y))‖

+
r∑

l=1

‖Dyhl(0, g(0;x, y))‖ · |z(m)(al, g(0;x, y)) − z(m)(al, g(0;x, y))|

+
r∑

l=1

‖Dyhl(0, g(0;x, y)) −Dyhl(0, g(0;x, y))‖ · |z
(m)(al, g(0;x, y))|

+
r∑

l=1

n∑

k=1

|hl(0, g(0;x, y))| · |u
(m)
k (al, g(0;x, y)) − u

(m)
k (al, g(0;x, y))|

+
r∑

l=1

n∑

k=1

|hl(0, g(0;x, y))| · |u
(m)
k (al, g(0;x, y)) − u

(m)
k (al, g(0;x, y))|

+
r∑

l=1

n∑

k=1

|hl(0, g(0;x, y)) − hl(0, g(0;x, y))| · |u
(m)
k (al, g(0;x, y))|

+

x\
0

‖Dyf(P [z(m), u](s;x, y)) −Dyf(P [z(m), u](s;x, y))‖ ds

+

x\
0

n∑

k=1

|Dwf(P [z(m), u](s;x, y))

−Dwf(P [z(m), u](s;x, y))(u
(m)
k )(s,g(s;x,y))| ds

≤M(c)‖u− u‖C(Ic ,Rn),

where g is the solution of equation (14) with u instead of u on the right-hand
side.
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Hence, using the Banach fixed point theorem we conclude that there is
exactly one u(m+1) ∈ C0,L[c,Q, λ1] satisfying (12).

Now we prove that the function z(m+1) given by (13) satisfies (bm+1).
Put

∆(x, y, y) = z(m+1)(x, y) − z(m+1)(x, y) −
n∑

k=1

u
(m+1)
k (x, y)(yk − yk).

Similarly to [5], [18] we can prove the estimate

|∆(x, y, y)| ≤ (S2 + S2Q0 + S0Q2)‖g(0;x, y) − g(0;x, y)‖2

+

x\
0

‖g(s;x, y) − g(s;x, y)‖2[Q(1 +Q1 +Q2)γ(s,Q
∗)

+Q2α1(s,Q
′)] ds.

It follows from Lemma 1 that

‖g(s;x, y) − g(s;x, y)‖ ≤ G(c)‖y − y‖.

Therefore there is C∗ > 0 such that

|∆(x, y, y)| ≤ C∗‖y − y‖2, (x, y), (x, y) ∈ Ic.

Consequently,

Dyz
(m+1)(x, y) = u(m+1)(x, y), (x, y) ∈ Ic.

It is easily shown that z(m+1) ∈ C1,L[c, ϕ, h,Q, λ]. The proof of Lemma 2
is complete.

5. Uniform convergence. We can now formulate the result on the
convergence of the sequence of successive approximations.

Lemma 3. If Assumptions H1–H2 are satisfied and if hl ∈ C1,L[S], ϕ ∈
C1,L[S], Qi > Si, i = 0, 1, 2, then there is c ∈ (0, a] such that the sequences

{z(m)} and {u(m)} are uniformly convergent on Ic.

P r o o f. Suppose that c ∈ (0, a] is a small constant such that

[
S1 + S0 +

c\
0

H1(s) ds
]
exp

{ c\
0

H0(s) ds
}

+

c\
0

H̃1(s) ds < 1,

where

H0(x) =
{
1 +Q1 +G(c)Q2

[
S0 +

c\
0

α(s,Q′) ds
]

+ P (x)
}
γ(x,Q∗),

H1(x) = H0(x) + α(x,Q′),

H̃i(x) = K0(x) + α(x,Q′) +K1(c)Hi(x), i = 1, 2,
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K0(x) = γ(x,Q∗)
{
Q2 +G(c)

(
S1 + S0Q1 + S2Q0

+Q

c\
0

[α(s,Q′) +Q1γ(s,Q
∗)] ds

)}
,

K1(x) = exp
[ x\

0

H0(s) ds
] x\

0

[K0(s) + 2α(s,Q′)] ds.

For t ∈ [0, c] and m ≥ 1 we put

Z(m)(t) = sup{|z(m)(x, y) − z(m−1)(x, y)| : (x, y) ∈ It},

U (m)(t) = sup{‖u(m)(x, y) − u(m−1)(x, y)‖ : (x, y) ∈ It}.

According to (12) and Assumptions H1, H2, on Ic we have

|u
(m+1)
i (x, y) − u

(m)
i (x, y)| ≤

x\
0

H0(s)U
(m+1)(s) ds

+

x\
0

[H0(s)Z
(m)(s) +H1(s)U

(m)] ds

+ S1Z
(m)(x) + S0U

(m)(x).

Then we obtain the following integral inequality on [0, c]:

U (m+1)(x) ≤

x\
0

H0(s)U
(m+1)(s) ds +

x\
0

[H0(s)Z
(m)(s) +H1(s)U

(m)] ds

+ S1Z
(m)(x) + S0U

(m)(x).

The above estimate and the Gronwall lemma imply

U (m+1)(x) ≤
{ x\

0

[H0(s)Z
(m)(s) +H1(s)U

(m)] ds(17)

+ S1Z
(m)(x) + S0U

(m)(x)
}

exp
{ x\

0

H0(s) ds
}
.

Using (13) and Assumptions H1, H2 we can prove that

Z(m+1)(x) ≤ S0Z
(m)(x)(18)

+

x\
0

[H̃0(s)Z
(m)(s) + H̃1(s)U

(m)(s)] ds, x ∈ [0, c].

From (17), (18) we conclude that there exists δ ∈ (0, 1) such that

(19) U (m+1)(x)+Z(m+1)(x) ≤ δ[U (m)(x)+Z(m)(x)], x ∈ [0, c], m ≥ 0.
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From (11) and from Assumptions H1, H2 we have

Z(1)(x) ≤

x\
0

[β(s,Q0) + Q̃1α(s,Q′)] ds,

U (1)(x) ≤ (1 + Q̃1)

x\
0

α(s,Q′) ds.

Finally, the assertion of Lemma 3 follows from (19).

6.Theorem and particular cases. We are now able to state the main
result of the paper.

Theorem. Let Assumptions H1–H2 hold , and let Qi > Si, i = 0, 1, 2.
Then there is c ∈ (0, a] such that for any numbers al, 0 ≤ al ≤ c, l =
1, . . . , r, and functions ϕ ∈ C1,L[S], hl ∈ C1,L[S], there exists a solution

z : Ec → R of problem (1), (2).

P r o o f. By Lemma 3 there exist z ∈ C1,L[c, ϕ, h,Q, λ] and u ∈
C0,L[c,Q, λ1] such that {z(m)} converges to z and {u(m)} converges to u
uniformly on Ic. Furthermore, Dyz exists on Ic and Dyz = u. Thus we
obtain

z(x, y) = ϕ(0, g(0;x, y)) −

r∑

l=1

hl(0, g(0;x, y))z(al, g(0;x, y))(20)

+

x\
0

[
f(P [z,Dyz](s;x, y))

−

n∑

k=1

Dqk
f(P [z,Dyz](s;x, y))Dyk

z(s;x, y)
]
ds,

where

g(t;x, y) = y +

x\
t

Dqf(P [z,Dyz](τ ;x, y)) dτ.

Now we prove that z is a solution of (1). By taking y = g(x; 0, η) in (20),
we get

(21) z(x, g(x; 0, η))

= ϕ(0, η) −

r∑

l=1

hl(0, η)z(al, η)

+

x\
0

[
f(τ, g(x; 0, η), z(τ,g(x;0,η)),Dyz(τ, g(x; 0, η)))

−

n∑

k=1

Dqk
f(τ, g(x; 0, η), z(τ,g(x;0,η)),Dyz(τ, g(x; 0, η)))Dyk

z(τ, g(x; 0, η))
]
dτ,
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since the function g satisfies the group property. By differentiation of (21)
with respect to x, and by putting again y = g(x; 0, η), we find that z satisfies
(1). It follows immediately that z satisfies (2). The proof of the Theorem
is complete.

Now we list examples of equations which can be derived from (1).

1) Suppose that f : Ia × R × R
n → R, λ : [0, a] → R, ψ : Ia → R

n, are
given. Assume that

−b0 ≤ λ(x) − x ≤ 0, −b ≤ ψ(x, y) − y ≤ b, (x, y) ∈ Ia.

We consider the operator f defined by

f(x, y,w, q) = f(x, y,w[λ(x) − x, ψ(x, y) − y], q), (x, y,w, q) ∈ Ω(0).

In this case equation (1) reduces to the following differential equation with
a retarded argument:

Dxz(x, y) = f(x, y, z(λ(x), ψ(x, y)),Dyz(x, y)),

z(x, y) = ϕ(x, y), (x, y) ∈ E0.

2) Suppose that f : Ia × R × R
n → R is given function. Let

f(x, y,w, q) = f
(
x, y,

\
B

w(t, s) dt ds, q
)
.

Then equation (1) reduces to the differential-integral equation

Dxz(x, y) = f
(
x, y,

0\
−b0

b\
−b

z(x+ t, y + s) dt ds,Dyz(x, y)
)
,

z(x, y) = ϕ(x, y), (x, y) ∈ E0.

3) If we take

f(x, y,w, q) = f(x, y, (V (I(x,y)w))(x, y)),

where (I(x,y)w)(t, s) = w(t − x, s − y), then equation (1) reduces to the
differential-functional equation [25]

Dxz(x, y) = f(x, y, (V z)(x, y),Dyz(x, y)).
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