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Semilinear evolution equations of the parabolic type

by Jan Bochenek (Kraków)

Abstract. This paper is devoted to the investigation of the abstract semilinear initial
value problem du/dt+ A(t)u = f(t, u), u(0) = u0, in the “parabolic” case.

1. Introduction. Let X be a Banach space and for each t ∈ [0, T ]
let A(t) : X → X be a closed densely defined linear operator. Let u be an
unknown function from R into X, f be a nonlinear mapping from R × X
into X and u0 ∈ X.

As in [2], we consider the semilinear initial value problem

(1)

{
du/dt + A(t)u = f(t, u), t ∈ (0, T ],
u(0) = u0.

Our purpose is to study the existence and uniqueness of solution of (1).
Our approach and results look like those in [2], where we discuss the problem
in the “hyperbolic” case. The results of this paper generalize some earlier
results (cf. for example [3], [4], [6], [7]).

2. Preliminaries. Let {A(t)}, t ∈ [0, T ], be a family of operators as in
Section 1. We make the following assumptions (cf. [6]).

(Z1) The domain D(A(t)) = D of A(t), 0 ≤ t ≤ T, is dense in X and
independent of t.

(Z2) For t ∈ [0, T ], the resolvent R(λ : A(t)) := (λ−A(t))−1 of A(t) exists
for all λ with Re λ ≤ 0 and there is a constant M such that

(2) ‖R(λ : A(t))‖ ≤
M

1 + |λ|
for Re λ ≤ 0, t ∈ [0, T ].

(Z3) There exist constants K > 0 and 0 < α ≤ 1 such that

(3) ‖(A(t) − A(s))A−1(τ)‖ ≤ K|t − s|α for s, t, τ ∈ [0, T ].
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Remark 1. We note that the assumption (Z2) and the fact that D is
dense in X imply that for every t ∈ [0, T ], A(t) is the infinitesimal generator
of an analytic semigroup St(s), s ≥ 0, satisfying

‖St(s)‖ ≤ C for s ≥ 0,(4)

‖A(t)St(s)‖ ≤ C/s for s > 0;(5)

here, and in the sequel, we denote by C a generic constant.

Theorem 1 ([6; Theorem 5.6.1). Under the assumptions (Z1)–(Z3) there

is a unique fundamental solution (evolution system) of (1), U(t, s), on 0 ≤
s ≤ t ≤ T, satisfying :

(i) ‖U(t, s)‖ ≤ C for 0 ≤ s ≤ t ≤ T.

(ii) For 0 ≤ s ≤ t ≤ T , U(t, s) : X → D and t 7→ U(t, s) is strongly

differentiable in X. The derivative (∂/∂t)U(t, s) ∈ B(X) and it is strongly

continuous on 0 ≤ s < t ≤ T. Moreover

U(t, t) = I, U(t, s) = U(t, r)U(r, s) for 0 ≤ s ≤ r ≤ t ≤ T,(6)

∂

∂t
U(t, s) = −A(t)U(t, s) for 0 ≤ s < t ≤ T,(7)

∥∥∥∥
∂

∂t
U(t, s)

∥∥∥∥ = ‖A(t)U(t, s)‖ ≤
C

t − s
,(8)

and

(9) ‖A(t)U(t, s)A−1(s)‖ ≤ C for 0 ≤ s ≤ t ≤ T.

(iii) For every v ∈ D and t ∈ (0, T ], U(t, s)v is differentiable with respect

to s on 0 ≤ s ≤ t ≤ T and

(10)
∂

∂s
U(t, s)v = U(t, s)A(s)v.

Lemma 1. Under assumptions (Z1)–(Z3) for all x∈X and 0≤s<t≤ T ,Tt
t0

U(t, s)xds ∈ D and there is a constant M such that

(11)
∥∥∥A(t)

t\
t0

U(t, s)x ds
∥∥∥ ≤ M(t − t0)

α‖x‖ + ‖[I − St(t − t0)]x‖,

where α ∈ (0, 1] is from (3).

P r o o f. For every x ∈ X and each t ∈ (0, T ] by (ii) and closedness of the
operator A(t), t ∈ [0, T ], for each ε ∈ (0, t − t0) we get

(12)

t−ε\
t0

U(t, s)x ds ∈ D
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and

(13) A(t)

t−ε\
t0

U(t, s)x ds =

t−ε\
t0

A(t)U(t, s)x ds =

t−ε\
t0

−
∂U

∂t
(t, s)x ds.

By construction of the fundamental solution U(t, s) we have

(14) U(t, s) = Ss(t − s) + W (t, s),

where St(s) is the analytic semigroup generated by A(t) and W (t, s) is
strongly continuously differentiable in t for 0 ≤ s < t ≤ T and

(15)

∥∥∥∥
∂W

∂t
(t, s)

∥∥∥∥ ≤ C(t − s)α−1.

Therefore

lim
ε→0

t0−ε\
t0

∂W

∂t
(t, s)x ds =

t\
t0

∂W

∂t
(t, s)x ds, x ∈ X

(cf. [6; Sec. 5.6 and 5.7]). Next

t−ε\
t0

∂

∂t
Ss(t, s)x ds =

t−ε\
t0

−A(s)Ss(t − s)x ds

=

t−ε\
t0

−A(t)Ss(t − s)x ds

+

t−ε\
t0

[A(t)St(t − s) − A(s)Ss(t − s)]x ds

Since by [6; p. 169],

(16) ‖A(t)St(t − s) − A(s)Ss(t − s)‖ ≤ C(t − s)α−1

and

(17)

t−ε\
t0

A(t)St(t − s)x ds =

t−ε\
t0

∂

∂s
St(t − s)x ds = [St(ε) − St(t − t0)]x,

we get

lim
ε→0

t−ε\
t0

∂U

∂t
(t, s)x ds =

t\
t0

[A(t)St(t − s) − A(s)Ss(t − s)]x ds(18)

+

t\
t0

∂W

∂t
(t, s)x ds + [I − St(t − t0)]x, x ∈ X.
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Returning to (13) we can now conclude that

A(t)

t−ε\
t0

U(t − s)x ds

converges as ε → 0 and since
t−ε\
t0

U(t − s)x ds →

t\
t0

U(t − s)x ds

as ε → 0, it follows from the closedness of A(t) that

t\
t0

U(t − s)x ds ∈ D

and

A(t)

t\
t0

U(t − s)x ds =

t\
t0

[A(t)St(t − s) − A(s)Ss(t − s)]x ds(19)

−

t\
t0

∂W

∂t
(t, s)x ds − [I − St(t − t0)]x.

Now (19) together with (15) and (16) yields (11) with M = 2C/α and the
proof is complete.

Lemma 2 ([5; Lemma 3]). Let h : ∆T = {(t, s) ∈R
2 : 0≤ s≤ t≤ T} → X

and suppose that :

(i) for almost all s ∈ [0, t] the function [0, T ] ∋ t 7→ h(t, s) is continuous,
(ii) for each t ∈ [0, T ], h(t, ·) is summable over [0, t],
(iii) there exists N > 0 such that ‖h(t, s)‖ ≤ N for (t, s) ∈ ∆T .

Then the function G : [0, T ] → X defined as

(20) G(t) =

t\
t0

h(t, s) ds, t0 ≥ 0,

is continuous.

Lemma 3. Suppose that :

(i) assumptions (Z1)–(Z3) hold ,
(ii) a function g : [0, T ] → X satisfies the Hölder condition with L > 0

and 0 < θ ≤ 1.

Then for every fixed t0 ∈ [0, T ) the formula

(21) v(t) =

t\
t0

U(t, s)g(s) ds, t ∈ [t0, T ],



Semilinear evolution equations 201

defines a function from [t0, T ] into D, the function w : [t0, T ] → X given by

(22) w(t) = A(t)

t\
t0

U(t − s)g(s) ds = A(t)v(t)

is continuous and

(23)
∥∥∥A(t)

t\
t0

U(t, s)g(s) ds
∥∥∥ ≤

(
M +

C

θ
L

)
(t− t0)

β +‖[I−St(t− t0)]g(t)‖,

where M > 0 does not depend on t, and β = min(α, θ).

P r o o f. Let ε ∈ (0, t − t0) be arbitrary. Setting

(24) vε(t) =

t−ε\
t0

U(t, s)g(s) ds,

we obtain

(25) vε(t) =

t−ε\
t0

U(t, s)[g(s) − g(t)] ds +

t−ε\
t0

U(t, s)g(t) ds.

The Hölder continuity of g and the estimate ‖A(t)U(t, s)‖ ≤ C(t − s)−1

imply that the function A(t)U(t, s)[g(s) − g(t)] is integrable in s over [t0, t]
and therefore

lim
ε→0

t−ε\
t0

A(t)U(t, s)[g(s) − g(t)] ds =

t\
t0

A(t)U(t, s)[g(s) − g(t)] ds.

It follows by closedness of A(t) that

(26)

t\
t0

U(t, s)[g(s) − g(t)] ds ∈ D

and

(27)
∥∥∥A(t)

t\
t0

U(t, s)[g(s) − g(t)] ds
∥∥∥ ≤ CL

t\
t0

(t − s)θ−1 ds =
C

θ
L(t − t0)

θ.

By Lemma 1 we have

lim
ε→0

t−ε\
t0

A(t)U(t, s)g(t) ds =

t\
t0

A(t)U(t, s)g(t) ds.

This implies

(28)

t\
t0

U(t, s)g(t) ds ∈ D
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and by (11),

(29)
∥∥∥A(t)

t\
t0

U(t, s)g(t) ds
∥∥∥ ≤ M(t − t0)

α + ‖[I − St(t − t0)]g(t)‖.

Now (27) and (29) imply (23) with β = min(α, θ).

To prove the continuity of the function w : [0, T ] → X, we define the
family {wε}ε>0 of functions such that

wε(t) :=

{
A(t)vε(t) for ε ≤ t ≤ T,
0 for 0 ≤ t < ε,

where vε is defined by (24) with t0 = 0.

Since for fixed ε > 0 we have

‖A(t)U(t, s)g(s) ds‖ ≤ C/ε for 0 ≤ s ≤ t − ε < t ≤ T,

it is easy to see that, by Lemma 2, the function wε is continuous in [0, T ].

Now observe that

‖w(t) − wε(t)‖ =
∥∥∥A(t)

t\
t−ε

U(t, s)g(s) ds
∥∥∥ ≤ M̃εβ + ‖[I − St(ε)]g(t)‖.

This implies that wε tends to w as ε ց 0, uniformly with respect to t ∈ [0, T ],
and so w is continuous in [0, T ]. Lemma 3 is proved.

Definition 1. A function u : [0, T ]→X is said to be a classical solution

of (1) if u is continuous on [0, T ], continuously differentiable on (0, T ], u(t) ∈
D(A(t)) for 0 < t ≤ T and (1) is satisfied.

Using Lemma 3 and Theorem 1 of [2], as a corollary we get

Theorem 2 ([6; Theorem 5.7.1]). Let {A(t)}t∈[0,T ] satisfy assumptions

(Z1)–(Z3) and let U(t, s) be a fundamental solution of (1). If g is Hölder

continuous on [s, T ], s ∈ [0, T ), then the initial value problem

(30)

{
du/dt + A(t)u = g(t) for 0 ≤ s < t ≤ T,
u(s) = x,

has, for every x ∈ X, a unique classical solution u given by

(31) u(t) = U(t, s)x +

t\
s

U(t, τ)g(τ) dτ.

3. The main theorem. In this section we consider the nonlinear prob-
lem (1) mentioned in the introduction. Suppose that the family {A(t)}t∈[0,T ]

satisfies assumptions (Z1)–(Z3) and let f : [0, T ] × X → X be continuous.

Similarly to the linear case we have



Semilinear evolution equations 203

Theorem 3. If f : [0, T ] × X → X is continuous and u is a solution of

the problem (1), then u satisfies the integral equation

(32) u(t) = U(t, 0)u0 +

t\
0

U(t, s)f(s, u(s)) ds,

where U(t, s) is the fundamental solution of (1).

Theorem 4. Let assumptions (Z1)–(Z3) hold and let f : [0, T ]×X → X
be continuous. Suppose that there exists N > 0 such that

‖f(t, x) − f(t, y)‖ ≤ N‖x − y‖ for t ∈ [0, T ], x, y ∈ X.

Then for every u0 ∈ X there exists a unique continuous function u : [0, T ] →
X that solves the integral equation (32).

The proof of this theorem is the same as the proof of Theorem 3 in [2]
and is omitted.

Definition 2. A continuous solution of the integral equation (32) is said
to be a mild solution of the problem (1) (cf. [6; Def. 6.1.1, p. 184]).

Theorem 5. Assume (Z1)–(Z3) and let u0 ∈ D. Let f : [0, T ] × X → X
satisfy the condition

(33) ‖f(t, x)−f(r, y)‖ ≤ N(|t−r|θ +‖x−y‖) for t, r ∈ [0, T ], x, y ∈ X,

where N > 0, θ ∈ (0, 1]. Then the problem (1) has a unique classical solution

which is a solution of the integral equation (32).

The proof of this theorem is based on the following lemmas (cf. [2, Lem-
mas 4 and 5]).

Lemma 4. Suppose that :

(i) f : [0, T ] × X → X is continuous,

(ii) there exists N > 0 such that ‖f(t, x) − f(t, y)‖ ≤ N‖x − y‖ for

t ∈ [0, T ], x, y ∈ X,

(iii) un : [0, T ] → X is continuous for each n ∈ N,

(iv) {un} is uniformly convergent in [0, T ].

Then there exists a constant C > 0 such that

‖f(t, un(t))‖ ≤ C for t ∈ [0, T ] and n ∈ N.

Remark 2. Lemma 4 is true without the assumption (ii).

Lemma 5. Under the assumptions of Theorem 5 the solution u of the

equation (32) satisfies the Lipschitz condition on [0, T ].
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The proof of Lemma 5, using the inequality (23), is almost the same as
the proof of Lemma 5 in [2].

Remark 3. The assumption “u0 ∈ D” is necessary in Lemma 5 because
for x ∈ X, the function u = U(t, 0)x, t ∈ [0, T ], may not be Lipschitz
continuous.

Proof of Theorem 5. The assumption u0 ∈ D and Lemma 5 imply that
the solution u of the integral equation (32) satisfies the Lipschitz condition.
From this by (33) we deduce that the mapping [0, T ] ∋ t 7→ f(t, u(t)) satisfies
the Hölder condition.

Then, by Theorem 2, u is a solution of the equation

dz/dt + A(t)z = f(t, u(t)), t ∈ (0, T ],

with the initial condition z(0) = u0. This means that u is a solution of the
problem (1), if u0 ∈ D.

The uniqueness for the problem (1) follows immediately from the unique-
ness of the solution of (32).

Example ([7; p. 129]). Let Ω be a bounded region in R
n with boundary

∂Ω of class Cm. Consider the following mixed problem:

(34)





∂u

∂t
(t, x) + A(t, x,D)u(t, x) = f(t, x, u(t, x)), x ∈ Ω, 0 < t ≤ T,

u(0, x) = u0(x), x ∈ Ω,

∂αu

∂xα
(t, x) = 0, |α| ≤ m/2 − 1, x ∈ ∂Ω, 0 < t ≤ T,

where

A(t, x,D) :=
∑

|α|≤m

aα(t, x)Dα

is a strongly elliptic differential operator, uniformly in t ∈ [0, T ]. We assume
that for each t ∈ [0, T ] the coefficients aα for |α| = m are continuous in Ω
and the other coefficients are bounded and measurable in Ω. We also assume
the coefficients to satisfy Hölder’s condition in t with exponent h ∈ (0, 1)
uniformly, i.e.

max
|α|≤m

sup
x∈Ω

|aα(t, x) − aα(s, x)| ≤ L|t − s|h.

Set X = Lp(Ω),D(A(t)) = W m
p (Ω) ∩ W̊

m/2
p (Ω) with 1 < p < ∞ and

A(t) : D(A(t)) → X, where (A(t)u)(x) := A(t, x,D)u(x) for t ∈ [0, T ],
x ∈ Ω. Then the mixed problem (34) may be considered as an abstract
semilinear parabolic problem of the form (1) in the Banach space X =
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Lp(Ω), where u0 = u0(x), x ∈ Ω, and f : [0, T ] × X → X is defined by

f(t, u)(x) := f(t, x, u(x)), t ∈ [0, T ], x ∈ Ω.

We assume that:

(i) u0(·) ∈ W m
p (Ω) ∩ W̊

m/2
p (Ω) = D(A(t)).

(ii) f satisfies the Hölder condition with exponent 0 < θ ≤ 1:

sup
x∈Ω

|f(t, x, u(x)) − f(s, x, u(x))| ≤ M |t − s|θ, u ∈ Lp(Ω).

(iii) f satisfies the Lipschitz condition in X = Lp(Ω) with respect u ∈
Lp(Ω), i.e.

‖f(t, u) − f(t.v)‖Lp(Ω) ≤ L‖u − v‖Lp(Ω) for t ∈ [0, T ].

Theorem 5 shows that under the above assumptions the problem (34) has
a unique solution u = u(t, x), (t, x) ∈ [0, T ] × Ω, with u(·, x) ∈ C1(0, T ) ∩

C0[0, T ] for each x ∈ Ω and u(t, ·) ∈ W m
p (Ω) ∩ W̊

m/2
p (Ω) = D(A(t)) for

each t ∈ [0, T ].

Remark 4. The results of this paper apply to semilinear parabolic
differential equations or systems of equations of arbitrary order. They were
obtained basing on the theory of semigroups of bounded linear operators in
Banach space.

Of course, in the mathematical literature there are many results on
existence and uniqueness of solutions of more general nonlinear parabolic
equations and systems. Investigation of those problems requires different
techniques. For example in [1] some results are proved on local existence of
continuously differentiable solutions of quasilinear parabolic systems under
general nonlinear boundary conditions.

These results are different from ours and difficult to compare with them.
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