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Abstract separation theorems of Rodé type and
their applications

by Kazimierz Nikodem (Bielsko-Bia la), Zsolt Páles (Debrecen) and
Szymon Wa̧sowicz (Bielsko-Bia la)

Abstract. Sufficient and necessary conditions are presented under which two given
functions can be separated by a function Π-affine in Rodé sense (resp. Π-convex, Π-
concave). As special cases several old and new separation theorems are obtained.

1. Introduction. The starting point of our investigations is one of the
most general versions of the Hahn–Banach theorem due to Rodé [13]. This
abstract theorem states that if a function f is Π-concave, g is Π-convex
and f ≤ g, then there exists a Π-affine function h such that f ≤ h ≤ g (cf.
the definitions below). A simpler proof of his result is given by König [7].
A geometric version of this separation theorem can be found in Páles [12].
The work [14] of Volkmann and Weigel offers an essential generalization
of this result by showing that the linear combinations (in the definitions
of the Π-convexity and concavity) can also be replaced by more abstract
operations.

The above assumptions on f and g are sufficient but not necessary for
f and g to admit a separation by a Π-affine function. In the present pa-
per, we give a full characterization of functions which can be separated by
Π-convex (resp. Π-concave, Π-affine) functions. As special cases of these
results, we obtain several new and old separation (or sandwich) theorems,
among them the theorems due to Kaufman, Kranz and Mazur–Orlicz.

2. Notations. The notations we use are similar to those of [7] (but our
definition of a saturated family Π is different from that of [7]).
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LetX be a non-empty set. For everym ∈ N, denote by Pm(X) the family
of all pairs (σ, s) such that σ : Xm → X is an arbitrary function and there
exist s0 ∈ R and s1, . . . , sm ∈ [0,∞) such that s = [s0, s1, . . . , sm] : Rm → R
is an affine function defined by the formula

s(y1, . . . , ym) := s0 + s1y1 + . . .+ smym.

(In the sequel the functions of the type σ : Xm → X are called operations).
Put P(X) =

⋃
m∈N Pm(X).

Let Π be a fixed subset of P(X) and Πm = Π∩Pm(X), m ∈ N. The set
Π is said to be commutative if for any m,n ∈ N, (σ, s) ∈ Πm, (τ, t) ∈ Πn,
the operations σ, τ and s, t commute, i.e.

σ(τ(x1
1, . . . , x

1
n), . . . , τ(xm

1 , . . . , x
m
n )) = τ(σ(x1

1, . . . , x
m
1 ), . . . , σ(x1

n, . . . , x
m
n ))

for all xi
j ∈ X (i = 1, . . . ,m, j = 1, . . . , n) and

s(t(y1
1 , . . . , y

1
n), . . . , t(ym

1 , . . . , y
m
n )) = t(s(y1

1 , . . . , y
m
1 ), . . . , s(y1

n, . . . , y
m
n ))

for all yi
j ∈ R (i = 1, . . . ,m, j = 1, . . . , n).

It is easy to verify that s and t commute if and only if

s0 + t0(s1 + . . .+ sm) = t0 + s0(t1 + . . .+ tn).

This condition holds automatically in two important cases: (1) if s0 = 0 for
all (σ, s) ∈ Π; (2) if s1 + . . .+ sm = 1 for all m ∈ N and (σ, s) ∈ Πm.

Given (σ, s) ∈ Πm and (τ1, t1) ∈ Πn1 , . . . , (τm, tm) ∈ Πnm , we define an
operation σ ◦ (τ1, . . . , τm) : Xn1+...+nm → X by

σ ◦ (τ1, . . . , τm)(x1
1, . . . , x

1
n1
, . . . , xm

1 , . . . , x
m
nm

)

= σ(τ1(x1
1, . . . , x

1
n1

), . . . , τm(xm
1 , . . . , x

m
nm

))

and set

s◦(t1, . . . , tm)=[s0+s1t10+. . .+smt
m
0 , s1t

1
1, . . . , s1t

1
n1
, . . . , smt

m
1 , . . . , smt

m
nm

].

We say that Π is saturated if (id, [0, 1]) ∈ Π1 and, for every (σ, s) ∈ Πm

and (τ1, t1) ∈ Πn1 , . . . , (τm, tm) ∈ Πnm , we have

(σ ◦ (τ1, . . . , τm), s ◦ (t1, . . . , tm)) ∈ Πn1+...+nm .

A function f : X → [−∞,∞) is called Π-convex if

f(σ(x1, . . . , xm)) ≤ s0 + s1f(x1) + . . .+ smf(xm)

for all m ∈ N, (σ, s) ∈ Πm and x1, . . . , xm ∈ X; f is Π-concave if it satisfies
the reverse inequality, and f is Π-affine if it is Π-convex and Π-concave.
Here, as usual, we adopt the following conventions:

0 · (−∞) = 0, c · (−∞) = −∞ (∀c > 0), c+ (−∞) = −∞ (∀c ∈ R).

It is easy to check that if a function is Π-convex (resp. Π-concave, Π-
affine), then it is also Π-convex (resp. Π-concave, Π-affine), where Π is
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the smallest saturated subset of P(X) containing Π. If Π is commutative,
then it can also be proved that the smallest saturated subset Π of P(X) is
commutative as well. Therefore, we may restrict our attention to saturated
classes in the rest of the paper.

3. The main results

Theorem 1. Let Π ⊂ P(X) be saturated and f, g : X → [−∞,∞). The
following two conditions are equivalent :

(i) there exists a Π-convex function h : X → [−∞,∞) such that f ≤
h ≤ g;

(ii) f(τ(x1, . . . , xn)) ≤ t0 +
∑n

j=1 tjg(xj) for all n ∈ N, (τ, t) ∈ Πn and
x1, . . . , xn ∈ X.

P r o o f. Since the implication (i)⇒(ii) is obvious, it is enough to show its
converse. For all x, x1, . . . , xn ∈ X and (τ, t) ∈ Πn with x= τ(x1, . . . , xn),
we have

(1) f(x) ≤ t0 +
n∑

j=1

tjg(xj).

In particular, taking (id, (0, 1)) ∈ Π1 and x = x1, we get f(x) ≤ g(x).
Define

A(x) =
{
t0 +

n∑
j=1

tjg(xj) : n ∈ N, x1, . . . , xn ∈ X

and (τ, t) ∈ Πn with τ(x1, . . . , xn) = x
}

and put

(2) h(x) =
{

inf A(x) if A(x) is bounded below,
−∞ otherwise.

It follows from (1) that f(x) ≤ h(x). We also have h(x) ≤ g(x), because
1 · g(x) ∈ A(x).

To show that h is Π-convex, fix arbitrarily x1, . . . , xm ∈ X and (σ, s) ∈
Πm. If h(σ(x1, . . . , xm)) = −∞, then trivially

(3) h(σ(x1, . . . , xm)) ≤ s0 +
m∑

i=1

sih(xi).

So, assume that h(σ(x1, . . . , xm)) is finite and take arbitrary representations
xi = τi(yi

1, . . . , y
i
ni

), i = 1, . . . ,m, where (τi, ti) ∈ Πni . Since Π is saturated,
(σ ◦ (τ1, . . . , τm), s ◦ (t1, . . . , tm)) ∈ Π and

σ(x1, . . . , xm) = σ ◦ (τ1, . . . , τm)(y1
1 , . . . , y

1
n1
, . . . , ym

1 , . . . , y
m
nm

).
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Hence, by condition (ii) of the theorem,

(4) h(σ(x1, . . . , xm)) ≤ s0 +
m∑

i=1

si

(
ti0 +

ni∑
j=1

tijg(yi
j)
)
.

The sums ti0 +
∑ni

j=1 t
i
jg(yi

j) are arbitrary elements of the sets A(xi), i =
1, . . . ,m. Taking the infimum of A(xi), i = 1, . . . ,m, we get (3).

The next theorem gives a condition under which two functions f, g :
X → [−∞,∞) can be separated by a Π-concave function. In the case when
f, g : X → R, this result is an immediate consequence of the above theorem.
The general case requires a separate (although similar) proof.

Theorem 2. Let Π ⊂ P(X) be saturated and f, g : X → [−∞,∞). The
following conditions are equivalent :

(i) there exists a Π-concave function h : X → [−∞,∞) such that f ≤
h ≤ g;

(ii) g(τ(x1, . . . , xn)) ≥ t0 +
∑n

j=1 tjf(xj) for all n ∈ N, (τ, t) ∈ Πn and
x1, . . . , xn ∈ X.

P r o o f. The necessity is clear. To prove (ii)⇒(i), fix an x ∈ X, define

B(x) =
{
t0 +

n∑
j=1

tjf(xj) : n ∈ N, x1, . . . , xn ∈ X

and (τ, t) ∈ Πn with τ(x1, . . . , xn) = x
}

and put

(5) h(x) =
{

supB(x) if B(x) 6= {−∞},
−∞ otherwise.

Since (id, 1) ∈ Π1, we have B(x) 6= ∅ and f(x) ≤ h(x). By (ii) and the
definition of B(x), we also get h(x) ≤ g(x). As in the proof of Theorem 1,
it can be shown that h is Π-concave.

Theorem 3. Let Π ⊂ P(X) be saturated and commutative, and f, g :
X → [−∞,∞). The following conditions are equivalent :

(i) there exists a Π-affine function h : X → [−∞,∞) such that f ≤
h ≤ g;

(ii) s0 +
∑m

i=1 sif(xi) ≤ t0 +
∑n

j=1 tjg(yj) for all m,n ∈ N, (σ, s) ∈ Πm,
(τ, t) ∈ Πn and x1, . . . , xm, y1, . . . , yn ∈ X such that σ(x1, . . . , xm) =
τ(y1, . . . , yn).

P r o o f. The implication (i)⇒(ii) is clear. We prove its converse. Using
(ii) and the fact that (id, (0, 1)) ∈ Π1, we obtain the inequalities appearing
in Theorems 1 and 2. Hence we get a Π-convex function h : X → [−∞,∞)
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and a Π-concave function h : X → [−∞,∞) defined by (2) and (5) which
separate f and g. Using (ii) once more, we infer that h ≤ h. By the Theorem
of Rodé (cf. [13]) and also by its extension due to Volkmann and Weigel [14],
there exists a Π-affine function h : X → [−∞,∞) separating h and h (and
also f and g).

We say that a function h : X → [−∞,∞) supports g : X → [−∞,∞)
at a point x0 ∈ X if h(x0) = g(x0) and h(x) ≤ g(x) for all x ∈ X. As an
immediate consequence of Theorem 3, we get the following

Proposition 1. Let Π ⊂ P(X) be saturated and commutative such
that , for all (σ, s) ∈ Πm, we have si > 0 for i = 1, . . . ,m. Assume that
g : X → [−∞,∞) is Π-convex , x0 ∈ X and for all m ∈ N and (σ, s) ∈ Πm,

(6) g(σ(x0, . . . , x0)) = s0 +
m∑

i=1

sig(x0).

Then there exists a Π-affine function h : X → [−∞,∞) supporting g at x0.

P r o o f. Take the function f : X → [−∞,∞) defined by

f(x) =
{
g(x0) if x = x0,
−∞ if x 6= x0.

We show that f and g satisfy the condition (ii) of Theorem 3. Let (σ, s)∈Πm,
(τ, t) ∈ Πn, x1, . . . , xm, y1, . . . , yn∈X and σ(x1, . . . , xm) = τ(y1, . . . , yn). If
xi 6= x0 for some i ∈ {1, . . . , n} then f(xi) = −∞ and (ii) holds. If xi = x0

for all i ∈ {1, . . . , n}, then by (6) and by the Π-convexity of g, we get

s0 +
m∑

i=1

sif(xi) = s0 +
m∑

i=1

sig(x0) = g(σ(x0, . . . , x0)) = g(τ(y1, . . . , yn))

≤ t0 +
n∑

j=1

tjg(yj).

Then, by Theorem 3, there is a Π-affine function h : X → [−∞,∞) sepa-
rating f and g. Since h(x0) = g(x0), this h supports g at x0.

Remark 1. If a function h : X → [−∞,∞) is Π-affine and h(x0) 6= −∞
for some x0 ∈ X such that for every x ∈ X,

x0 ∈ {σ(x, x2, . . . , xm) : (σ, s) ∈ Πm, s1 6= 0, x2, . . . , xm ∈ X, m ∈ N},
then h has finite values only. Indeed, fix an x ∈ X and take (σ, s) ∈ Πm

with s1 6= 0 and x2, . . . , xm ∈ X such that x0 = σ(x, x2, . . . , xm). Then

h(x0) = h(σ(x, x2, . . . , xm)) = s0 + s1h(x) +
m∑

i=2

sih(xi),

which implies that h(x) 6= −∞.
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4. Applications. Many known as well as new results can be obtained
as corollaries of Theorems 1–3 by an appropriate specification of X and Π.
In this section we present several such results (for Π-convex and Π-affine
case; the Π-concave versions are similar).

4.1. Separation by subadditive and additive functions. Let S be an abelian
semigroup and Π = {(σm, [0, 1, . . . , 1]) : m ∈ N}, where σm : Sm→ S are
defined by σm(x1, . . . , xm) = x1 + . . .+ xm. Clearly, Π is commutative and
saturated, and a function f : S → [−∞,∞) is Π-convex (resp. Π-affine) iff
it is subadditive (resp. additive). Therefore, as a consequence of Theorems
1 and 3, we obtain the following corollaries. A direct proof of the first of
them (for f, g : S → R) can be found in [10].

Corollary 1. Let f, g : S → [−∞,∞). There exists a subadditive
function h : S → [−∞,∞) such that f ≤ h ≤ g iff

f
( m∑

i=1

xi

)
≤

m∑
i=1

g(xi)

for all x1, . . . , xm ∈ S, m ∈ N.

Corollary 2. Let f, g : S → [−∞,∞). There exists an additive func-
tion h : S → [−∞,∞) such that f ≤ h ≤ g iff

(7)
m∑

i=1

f(xi) ≤
n∑

j=1

g(yj)

for all m,n ∈ N and x1, . . . , xm, y1, . . . , yn ∈ S such that
∑m

i=1 xi =
∑n

j=1 yj.

Condition (7) is satisfied if, in particular, g is subadditive, f is superad-
ditive and f ≤ g, or if g is subadditive and

(8)
m∑

i=1

f(xi) ≤ g
( m∑

i=1

xi

)
for all x1, . . . , xm ∈ S and m ∈ N. Therefore Corollary 2 generalizes the
following two results.

Corollary 3 (Kranz [8]). If f : S→ [−∞,∞) is superadditive, g : S→
[−∞,∞) is subadditive and f ≤ g, then there exists an additive function
h : S → [−∞,∞) separating f and g.

Corollary 4 (Kaufman [6]). If f, g : S → [−∞,∞) satisfy (8) and
g is subadditive, then there exists an additive function h : S → [−∞,∞)
separating f and g.

4.2. Separation by midconvex and Jensen functions. Let D be a convex
subset of a real vector space. A function f : D → [−∞,∞) is said to be
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midconvex if

(9) f

(
x+ y

2

)
≤ f(x) + f(y)

2
, x, y ∈ D;

it is called a Jensen function if (9) holds with equality.
Let

Π =
{

(σk1,...,km , [0, 2
−k1 , . . . , 2−km ]) : m ∈ N,

k1, . . . , km ∈ N ∪ {0},
m∑

i=1

2−ki = 1
}
,

where σk1,...,km :Dm→D are defined by σk1,...,km(x1, . . . , xm)=
∑m

i=1 2−kixi.
It is easy to check that Π is commutative and saturated. Moreover, f is Π-
convex (resp. Π-affine) iff it is a midconvex (resp. Jensen) function. Hence,
using Theorems 1 and 3, we get the following results.

Corollary 5. Let f, g : D → [−∞,∞). There exists a midconvex func-
tion h : D → [−∞,∞) such that f ≤ h ≤ g iff

(10) f

(
1
2n

2n∑
i=1

xi

)
≤ 1

2n

2n∑
i=1

g(xi)

for all n ∈ N and x1, . . . , x2n ∈ D.

P r o o f. The necessity is obvious. To prove the sufficiency, we show that
(10) yields

(11) f
( m∑

i=1

2−kixi

)
≤

m∑
i=1

2−kig(xi)

for all m∈N and x1, . . . , xm∈D and k1, . . . , km∈N∪{0} with
∑m

i=1 2−ki =1.
Indeed, take x1, . . . , xm ∈ D and k1, . . . , km as above and define

(x1, . . . , x2n) = (x1, . . . , x1︸ ︷︷ ︸
2n−k1 times

, . . . , xm, . . . , xm︸ ︷︷ ︸
2n−km times

),

where n is defined to be the maximum of the integers k1, . . . , km. If we apply
(10) to the elements x1, . . . , x2n , the resulting inequality reduces to (11).
Now, applying Theorem 1, we get the existence of a separating midconvex
function.

The proof of the following result is completely analogous to that of the
previous corollary.

Corollary 6. Let f, g : D → [−∞,∞). There exists a Jensen function
h : D → [−∞,∞) such that f ≤ h ≤ g iff
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(12)
2n∑
i=1

f(xi) ≤
2n∑
i=1

g(yi)

for all n ∈ N and x1, . . . , x2n , y1 . . . , y2n ∈ D such that
∑2n

i=1 xi =
∑2n

i=1 yi.

P r o o f. It suffices to prove that (12) is equivalent to the following con-
dition:

m∑
i=1

2−kif(xi) ≤
n∑

j=1

2−ljg(yj)

for all m,n ∈ N, k1, . . . , km, l1, . . . , ln ∈ N ∪ {0} and x1, . . . , xm, y1, . . . , yn

∈ D such that
∑m

i=1 2−ki =
∑n

j=1 2−lj = 1 and
∑m

i=1 2−kixi =
∑n

j=1 2−ljyj .
Then, by Theorem 3, the result follows.

4.3. Separation by convex and affine functions. Let D be a convex subset
of a real vector space and

Π =
{

(σs1,...,sm
, [0, s1, . . . , sm]) : m ∈ N, s1, . . . , sm ≥ 0,

m∑
i=1

si = 1
}
,

where σs1,...,sm
: Dm → D, σs1,...,sm

(x1, . . . , xm) =
∑m

i=1 sixi. Then Π is
commutative and saturated and a function f : D → [−∞,∞) is Π-convex
(resp.Π-affine) iff it is convex (resp. affine) in the usual sense. By Theorem 1,
we get the following result due to Baron, Matkowski and Nikodem (in the
case f, g : D → R) [1, Theorem 1b].

Corollary 7. Let f, g : D → [−∞,∞). There exists a convex function
h : D → [−∞,∞) such that f ≤ h ≤ g iff

(13) f
( m∑

i=1

sixi

)
≤

m∑
i=1

sig(xi)

for all m ∈ N, x1, . . . , xm ∈ D and s1, . . . , sm ≥ 0 summing up to 1.

Remark 2. It is proved in [1] that if D is a convex subset of Rk, then
it is enough to take in (13) the convex combinations of k + 1 points. In
particular, two real functions f, g defined on an interval I ⊂ R can be
separated by a convex function iff

f(sx+ (1− s)y) ≤ sg(x) + (1− s)g(y), x, y ∈ I, s ∈ [0, 1].

The next result is a direct consequence of Theorem 3. It can also be
found in [4, p. 35].

Corollary 8. Let f, g : D → [−∞,∞). There exists an affine function
h : D → [−∞,∞) such that f ≤ h ≤ g iff

(14)
m∑

i=1

sif(xi) ≤
n∑

j=1

tjg(yj)
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for all m,n ∈ N, s1, . . . , sm, t1, . . . , tn ≥ 0 and x1, . . . , xm, y1, . . . , yn ∈ D
such that

∑m
i=1 si =

∑n
j=1 tj = 1 and

∑m
i=1 sixi =

∑n
j=1 tjyj.

Remark 3. A similar result for real functions defined on a convex subset
of Rk is obtained in [2]. In that case, it is enough to take in (14) m,n ∈ N
such that m + n = k + 2. For k = 1, we get the result obtained earlier by
Nikodem and Wa̧sowicz [11] stating that two real functions f, g defined on
an interval I ⊂ R can be separated by an affine function iff{

f(sx+ (1− s)y) ≤ sg(x) + (1− s)g(y),
g(sx+ (1− s)y) ≥ sf(x) + (1− s)f(y)

for all x, y ∈ I and s ∈ [0, 1].

4.4. Separation by sublinear and linear functions. Let E be a real vector
space and

Π = {(σs1,...,sm
, [0, s1, . . . , sm]) : m ∈ N, s1, . . . , sm ≥ 0},

where σs1,...,sm
: Em → E is given by σs1,...,sm

(x1, . . . , xm) =
∑m

i=1 sixi. Ob-
viously, Π is commutative and saturated, and a function f : E → [−∞,∞)
is Π-convex (resp. Π-affine) iff it is sublinear (resp. linear). In this case,
Theorem 1 reduces to the following result (for the real case cf. [10]).

Corollary 9. Let f, g : E → [−∞,∞). There exists a sublinear func-
tion h : E → [−∞,∞) such that f ≤ h ≤ g iff

f
( m∑

i=1

sixi

)
≤

m∑
i=1

sig(xi)

for all m ∈ N, x1, . . . , xm ∈ E and s1, . . . , sm ≥ 0.

The next result is a consequence of Theorem 3.

Corollary 10. Let f, g : E → [−∞,∞). There exists a linear function
h : E → [−∞,∞) such that f ≤ h ≤ g iff

(15)
m∑

i=1

sif(xi) ≤
n∑

j=1

tjg(yj)

for all m,n ∈ N, s1, . . . , sm, t1, . . . , tn ≥ 0 and x1, . . . , xm, y1, . . . , yn ∈ E
such that

∑m
i=1 sixi =

∑n
j=1 tjyj.

Condition (15) is satisfied if, in particular, g is sublinear and

(16)
m∑

i=1

sif(xi) ≤ g
( m∑

i=1

sixi

)
for all m ∈ N, x1, . . . , xm ∈ E and s1, . . . , sm ≥ 0. Hence we get a result
which is an analogue of Kaufman’s theorem (cf. Corollary 4 above). It is
also a special version of the well known Mazur–Orlicz Theorem [9].
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Corollary 11. If f, g : E → [−∞,∞) satisfy (16) and g is sublinear ,
then there exists a linear function h : E → [−∞,∞) separating f and g.

By the above result (using a method similar to [6]), we can also obtain
the full version of the Mazur–Orlicz Theorem.

Corollary 12 ([9, Theorem 2.41]; cf. also [3, Theorem 37]). Let T be
a non-empty set and ϕ : T → E, α : T → R. Assume that g : E → R is a
sublinear function. Then the following conditions are equivalent :

(i) there exists a linear function h : E → R such that h ≤ g on E and
α(u) ≤ h(ϕ(u)), u ∈ T ;

(ii)
∑m

i=1 siα(ui) ≤ g(
∑m

i=1 siϕ(ui)) for all m ∈ N, s1, . . . , sm ≥ 0 and
u1, . . . , um ∈ T .

P r o o f. The implication (i)⇒(ii) is obvious. To prove the converse take

f(x) =
{

sup{α(u) : u ∈ T such that ϕ(u) = x} if x ∈ ϕ(T ),
−∞ if x 6∈ ϕ(T ).

By (ii), f : E → [−∞,∞) is well defined and f ≤ g. We show that f and g
satisfy (16). Fix s1, . . . , sm ≥ 0 and x1, . . . , xm ∈ E. If xi 6∈ ϕ(T ) for some
i ∈ {1, . . . ,m}, then (16) is obvious. If xi∈ϕ(T ) for all i ∈ {1, . . . ,m}, then
for arbitrary ui ∈ T such that ϕ(ui) = xi, i = 1, . . . ,m, we have

m∑
i=1

siα(ui) ≤ g
( m∑

i=1

sixi

)
.

Taking the suprema over all ui we obtain (16). By Corollary 11, there exists
a linear function h : E → [−∞,∞) separating f and g. Notice that h is
finite. Indeed, fix an x0 ∈ ϕ(T ) and take any x ∈ E. Then −∞ < h(x0) =
h(x0−x) +h(x), whence h(x) > −∞. It is easy to see that h satisfies (i).

Note that the condition (16) is satisfied if, in particular, f is concave
and g is sublinear. Therefore, the following theorem of Hirano, Komiya and
Takahashi is a consequence of Corollary 11.

Corollary 13 ([5, Theorem 1]). Let g : E → R be sublinear , C ⊂ E be
a non–empty convex set and let f : C → R be a concave function such that
f(x) ≤ g(x) for all x ∈ C. Then there exists a linear function h : E → R
such that f(x) ≤ h(x), x ∈ C, and h ≤ g on E.

P r o o f. Let E0 be the subspace of E generated by C. Put

f(x) =
{
f(x) if x ∈ C,
−∞ if x ∈ E0 \ C.

It is easy to check that f : E0 → [−∞,∞) is a concave function such that
f ≤ g on E0. Moreover, f and g satisfy (16) on E0. By Corollary 11 there
exists a linear function h : E0 → [−∞,∞) such that f ≤ h ≤ g on E0. Since
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f is finite on C, also h must be finite on E0. Now, by the Hahn–Banach
Theorem we get a linear extension h : E → R of h such that h ≤ g on E.
Clearly, f ≤ h on C.
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