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Monodromy, differential equations
and the Jacobian conjecture

by SHMUEL FRIEDLAND (Chicago)

Abstract. We study certain problems on polynomial mappings related to the Jaco-
bian conjecture.

0. Introduction. Let F': C" — C™, n > 1, be a local polynomial dif-
feomorphism. The Jacobian conjecture claims that F' is a diffeomorphism.
See [B-C-W], [Dru] and [Ess] for the surveys on this problem. It seems that
the solution of the Jacobian conjecture is still out of reach. The Jacobian
conjecture is on Smale’s list of the problems for the next century [Sma].
The object of this paper is to study certain problems on polynomial map-
pings which seem to be closely related to the Jacobian conjecture and are
of independent interest.

We now summarize the main results of our paper. Our main object of
study is a primitive polynomial f € C[C?]. First we study the monodromy
action on the regular affine fiber V; := f~1(t) C C2. There are two main
invariants here: fix; (f), fix'(f), which are the dimensions of the subspaces
of fixed elements in homology and cohomology, H;(V;,C) and H'(V;,C)
respectively, under the action of monodromy. It turns out that ﬁxl( f) is
equal to the invariant introduced by Stein [Stel]: Let 6(f,¢) be the number
of irreducible components of f = ¢ minus one. Then

(0.1) 3(f) =D 8(f:1).

teC
Then fix'(f) = 6(f). We show that in general fix; (f) # fix' (f). This shows
that the monodromy action on the first homology (cohomology) of V; is not
semisimple. This contrasts with Deligne’s result that the monodromy action
on the first homology (cohomology) of Xy, the closure of the fiber V;, is
semisimple [Del2].

1991 Mathematics Subject Classification: Primary 14D05, 14E07, 14E09.
Key words and phrases: Gauss—Manin connection, Jacobian conjecture, monodromy.

[219]



220 S. Friedland

Let F := C(f) be the field of rational functions in a variable f and
F[C?] := C[C?] ® F C C(C?) be the ring of polynomials in z,y with co-
efficients in F. Let CVV(f) C C be the finite set of singular fibers V; and
B := C\ CVV(f) be the set of regular fibers. Then Z := f~1(B) — B
is a fiber bundle. Let £ — B be a holomorphic vector bundle with fiber
H(V;). Here H'(V;) is the Grothendieck-de Rham cohomology of all closed
rational 1-forms on X; which are holomorphic on V; modulo the exact
forms. We assume that F is equipped with the Gauss—Manin connection.
Let R(E) be the set of rational sections on E which are induced by ra-
tional 1-forms on C2. Then R(E) is a vector space over F of dimension
N :=dim H*(V;) = dim H'(V;, C).

Associate with f the differential operator

of & of &

Oy Ox +8_a:8y'

As L(f) = 0 it follows that L : F[C?] — F[C?] is an F-linear operator. We
show that L is Fredholm: dimker L = 1 and dimcoker L = N. There is a
natural isomorphism between U := F[C?]/L(F[C?]) and R(E).

A pair F = (f,g) : C? — C? is called a Jacobian pair if det J(F) = 1
everywhere and F' is not a diffeomorphism. If Jacobian pairs exist, con-
trary to the Jacobian conjecture, then they have very remarkable properties
that we list. We mention the following two properties: Assume that F is a
Jacobian pair and let

Then LM = ML and L(g) = M(f) = 1. It turns out that M acts on U as a
derivation on R(E) with respect to the Gauss—Manin connection. A minimal
resolution of F yields a proper map F : X — C? where X is an affine smooth
variety in C™. It is known [For2] that X embeds properly holomorphically
into C*. Furthermore, X embeds into C? iff X is parallelizable (as a complex
manifold) [Forl]. We show that X is not parallelizable.

We briefly summarize the contents of our paper. §1 deals with some basic
notions of the primitive polynomial f € C[C?], the properties of its fibers
V4, and the minimal resolution f: M — CP. We also discuss the minimal
resolution of a dominating polynomial map F = (f,g) : C> — C2. In §2
we discuss the monodromy on the first homology and cohomology of the
regular fiber V;. We prove the equality o(f) = ﬁxl( f) and discuss Deligne’s
example. In §3 we discuss 1-forms on V; and their extensions to 1-forms
on C2. §4 deals with the operator L. In §5 we discuss the Jacobian pairs.

This paper evolved through many years and various preprints. Some of
the results presented here were given in [Fri]. T would like to thank all my
colleagues who helped me to understand the various concepts discussed here.
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After this paper was submitted to Annales Polonici Mathematici 1
learned about the following results: Theorem (2.7) is a special case (n = 2)
of Theorem 2 of Artal-Bartolo, Cassou-Nogues and Dimca [A-C-D]. A differ-
ent treatment of the non-semisimplicity of monodromy (Proposition (2.9))
is given by Bailly-Maitre [Bai]. Theorem 1 of Dimca [Dim] gives a different
version of Theorem (4.4) for n = 2 and Corollary (4.5).

1. Preliminary results. Let Y be an oriented compact Riemannian
surface X of genus gen. The first homology group H; (X, Z) has an intersec-
tion product [«] - [f] for any two closed curves «, 5 C X. The product - :
H,(X,Z)x Hi(X,Z) — Z is a skew symmetric bilinear form. A set of closed
simple smooth curves vi,...,72gen C X is a canonical basis in Hy(X,7Z)
if the following conditions hold: ; intersects gen+; in one point and the
intersection is transversal. Moreover, [v;] - [Ygen i) = 1,4 = 1,...,gen. The
intersection of 7; and 7, for |i — j| # 0,gen is empty. Hence [v;] - [v;] = 0,
|li—j] # gen. Let J = ([vi]-[7;])7%=, be the skew symmetric matrix induced
by a canonical basis in Hy(X,Z). Then the transition matrix between two
canonical bases in Hy(X,7Z) is given by an integer-valued symplectic matrix
from

Sp(gen,Z) := {A € SL(2gen,Z) : ATJA = J}.
The cohomology group H!(X,Z), i.e. the integer-valued linear functionals
on Hy(X,Z), can be identified with H; (X, Z) using the intersection product.
Let
H\(X,F)=H\(X,Z)®F, HY(X,F)=H(X,Z)®F,
be the first homology and cohomology of X over the field F = Q,R or C.
Assume that X is endowed with a Riemannian metric ds?. A classi-

cal result claims that H'(X,R) is represented by 2gen harmonic 1-forms
Wi, ... ,W2gen such that

Swj =0;5, 4,j=1,...,2gen.

Vi
The metric ds? induces a complex structure on Y. There exist gen lin-
early independent holomorphic 1-forms vy, ..., Vgen Whose real and imagi-
nary parts are 2gen linearly independent harmonic 1-forms. One can nor-
malize vy, ..., Vgen by the conditions

(1.1) Vvj =6, ij=1,... gen.
Vi
Then the Riemann matrix R:= (§  v;)§jL, is a symmetric matrix with
gen +i ’

a positive definite imaginary part SR > 0 (see e.g. [F-K]). Let SH,, be
the Siegel upper half plane of all n x n complex symmetric matrices with a



222 S. Friedland

positive definite imaginary part. Then Sp(n, Z) acts properly discontinuously
on SH,,. Asthe Riemann matrix R is determined by the choice of a canonical
homology basis in X we denote by [R(X)] the unique point in SH,,/Sp(n,Z)
determined by all Riemann matrices corresponding to X' and the complex
structure (X, ds?). Conversely, [R(X)] determines the complex structure of
(X, ds?) (up to a biholomorphism). (See for example [Nag].)

Let X' be a compact Riemann surface and assume that (1,...,(x € X.
Let V=X\{(,...,(x} be the Riemann surface punctured at k>1 points.
Let v2gen+i C V' be a simple smooth curve bounding a simply connected
domain in X' which contains only the point (; out of the k points {(1, ...,k }
for i = 1,...,k. We shall assume that 72 g4en 44 is oriented positively with
respect to ;. Then [vy;], j=1,...,2gen+k—1, form a basis for H;(V,Z). Let
H1(V,F) and H'(V,F) denote the first homology and cohomology of V with
coefficients in F. Let O,(V) and £2} (V) be the sets of holomorphic functions
and holomorphic 1-forms (differentials) on V' whose singularities on X'\ V/
are (at most) poles. Let HY (V) := 2}(V)/dO,(V) be the Grothendieck—de
Rham cohomology of V. With each [w] € H;(V,Z) associate the following
linear functional:

W] 2/ (V) =C, W) =\e

The residue theorem [F-K, §2.5] yields

k
(1.2) > le=0 occ(v).
i=2gen+1;

Assume that [w](p) = 0 for all w € H1(V,Z). By integrating o from a fixed
point (o € V we obtain f € O,(V) such that o = df. Thus Hy(V,Z) is a
set of linear functionals on H! (V). Grothendieck’s theorem [Gro, Thm. 1]
yields
N :=dim(H'(V)) = 2gen +k — 1.

Hence H'(V,C) is isomorphic to H'(V). Thus [v], i = 1,..., N, give rise
to N linearly independent functionals on H!'(V'). Therefore there exist N
linearly independent holomorphic 1-forms g; on V satisfying the condition

(1.3) Voj =0, ij=1...,N.
Vi

Let V' C C™ be an irreducible smooth affine curve. Then V is a compact
Riemann surface X punctured at k points (q,...,(; € X for some k > 1.
Note that V' and hence X are equipped with the complex structure. As V
is smooth, it is well known that O,(V) = C[V].

Let f € C[C?] be a nonconstant polynomial. Consider the polynomial
map f : C> — C. Extend this map to the rational map f: CP? — CP.
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This map has a finite number of indeterminacy points. Blow up (AC]P’2 at the
indeterminacy points to obtain a complex surface M so that f lifts to a
holomorphic map f : M — CP, which we call a holomorphic resolution of f.
(See for example [G-H].) We now recall known facts about M. Let [, be the
line at infinity in CP? (I, := {(z : y : 2) : 2 = 0}). Then M is obtained
from CP? by blowing up starting at a finite number of points on [,. It is
convenient to describe the blow up procedure by the following undirected
graph (W, E), where W is the set of vertices and E is the set of undirected
edges. [, and all other CP! obtained by the blow up are viewed as the
vertices of W. For v € W we let [, denote the corresponding CP! (o € W).
The undirected edge (u,v) is in E iff [, N1, # 0. Then (W, E) is a tree.
We let o be its root. Then there exists a unique orientation £/ C W x W
of the undirected edges E such that there exists a unique dipath from o to
any vertex v € W. The terminal vertices W of the directed tree (W, E’) are
called the leaves of the tree (W, E). Note that L:=M\C? = J,cyy lv. View

CP! as CU{oo}. Set Lo, = f1(00). Then there exists a subset W (co) € W
so that Lo = U, ew (o0) lo- Clearly, o € W (o0).

(1.4) THEOREM. Let f : C?> — C be a nonconstant polynomial map. Let
f: M — CP!' be a holomorphic resolution of f. Then Lo, = f_l(oo) is a
connected divisor which induces a subtree (W (o0), E(o0)) C (W, E) rooted
at 0. Let vy be a leaf of (W(0), E(c0)) which is not a leaf of (W E)

Then there is e:wctly one connected component (W1, Ey) of the forest (W E)
(induced by W=w \ W(o0)) which is connected to vy at its root o1 € Wr.
Furthermore,
f(l,) =CP',  f(l,) =consteC, wveW;\o.
See [Ore|] and [L-W].

(1.5) COROLLARY. Let the assumptions of Theorem (1.4) hold. Then there
exrits a minimal holomorphic resolution f M — (C]P’1 with the following
property: Fach connected component of the forest (W E) consists of one
vertex. That is, M \ (C* U L) is the union J,cx Lo of k := |K| nonin-
tersecting affine lines, K := W \ W (o), such that each f i1y, - Cisa
nonconstant polynomial map ¢, : C — C. Moreover,

> dego, < deg f.

veK
Proof. Let My be any surface satisfying the assumption of Theo-
rem (1.4). We blow CP? along the rooted subtree (W (00), E(c0)) to ob-
tain the surface M (o0). Let fy : M(co) — CP! be the rational map induced
by f. Let v; be a leaf of the subtree (W (o0), E(c0)) as described in Theo-
rem (1.4). Blow up at the corresponding point of /,, to obtain [,,. Let M; be
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the resulting surface and f; : M; — CP! be the lifting of fy. We claim that
f1 is holomorphic in some neighborhood of I,,. According to Theorem (1.4),
f1 may not be holomorphic at a finite number of points of I,, at which we
need to blow up to obtain M. However, in the neighborhood of these points,
f and hence f; are bounded. By the Riemann extension theorem f; is holo-
morphic at these points. Hence f; is holomorphic in some neighborhood of
lo, in My. According to Theorem (1.4), f; : l,, — CP! is a nontrivial ratio-
nal map. Furthermore, Iy, N f; *(00)={p1}. Let Iy, :=1lo, \ {p1} ~ C. Then
fi |l~01 is given by a nonconstant polynomial map. Use the above arguments
for all leaves of (W (o0), E(o0)) (which are not the leaves of (V, E)) to ob-
tain the corollary for all v € K. Recall that the closure of the affine curve
f =t in CP? intersects the line at infinity in deg f points (counting with
multiplicities). Clearly the closure of a generic f =t in M has ) _, deg,
points. Hence ) _, deg¢p, < degf. m

Let f € C[C?] be a nonconstant polynomial. Let f: M — CP! be the
minimal holomorphic resolution of f as described in Corollary (1.5). Let

Vii={(z,y) €C*: f(z,y) =t}, X, =F'(t), teC.
Clearly,

Vicx, X=v,ulJ@nl).
veK

Let CVV(f) C C be the finite set such that, for each t € CVV(f), X
contains at least one critical (singular) point of f. Then any two surfaces

Yty Xy, t1,ta € C\ CVV(f), are homeomorphic. We call a fiber X, ¢ €
C\CVV(f), a regular (compact) fiber. f is called primitive if a regular fiber
is connected, i.e. each regular fiber is homeomorphic to a fixed compact
(orientable) Riemann surface X' of genus gen. If f is not primitive, then
there exists h € C[C] and a primitive polynomial ¢ € C[C?] so that f = h(q)
(see [Suz]). In what follows we assume that f is primitive unless otherwise
stated. N

For t € CVV(f) the desingularized X, is either a compact Riemann
surface whose genus is different from gen (hence smaller than gen), or a
finite union of compact Riemann surfaces (f —t is a reducible polynomial).
We call such a fiber X; a singular (compact) fiber. Let T be the union of all
critical values of the polynomials ¢,, v € K, given in Corollary (1.5). That

is, for each t € C\ T, X, intersects [, in a fixed number k(v) of points:
2 nTv :{(v,l(t)w--an,k(v)(t)}v tG(C\T'

Furthermore, for each t € T there exists v € K so that X ﬂflvv has less than

k(v) points. Let CVV(f) = CVV(f) UT. Then each V; with t ¢ CVV(f)
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is homeomorphic to ¥ punctured at x := ), k(v) points. We call such
a fiber V; a regular (affine) fiber. Furthermore, for each ¢t € CVV(f) the
singular (affine) fiber Vi is not homeomorphic to a regular fiber.

We view C x C (isomorphic to C?) as a subset of CP! x CP!. Let

L' :=CP! x CP'\ C x C = 0o x CP* UCP' x .

Let g€ C[C?] and assume that f, g are algebraically independent. Then the
map F = (f,g) : C?—CxC is dominating. Let F' = (f,§) : M — CP' xCP"
be a holomorphic resolution of I obtained as follows. We first blow up CP?
to obtain a minimal resolution f : M; — CP! as described in Corollary (1.5).
Let F = (f, g) : My — CP! x CP! be the lifting of F to M;. Then continue
to blow up M; until we resolve the singularities of § to obtain M and F.
Let (W, E) be the rooted tree corresponding to the blow ups performed to
obtain M. Let Lo, = F~'(L..) and denote by (W (o), E(c0)) the rooted
subtree corresponding to L.,. Theorem (1.4) and Corollary (1.5) yield:

(1.6) THEOREM. Let F = (f,g) : C2 — C x C be a polynomial dominating
map. Then there exists a minimal resolution F = (f, g) : M — CP! x
CP! with the following properties: Lo, = F71(L.,) is a connected divisor
on M. Let (/W,E) be the forest induced by W == W \ W(o0). Then each
connected component of the forest (W,E) consists of one vertex. That is,
M\ (C?2 U L) is the union UveKZNU of k := |K| nonintersecting affine
lines, K := W \ W(o0), such that each f,§ 1, > Cisa polynomial map
v,y : C — C and at least one of them is nonconstant (for each v € K).

(1.7) PROPOSITION. Let the assumptions of Theorem (1.6) hold. Let X :=
F7Y(CxC)= M\ Ly. Then X is a Stein manifold iff F is locally proper,
i.e. F~Y(z,y) is a finite (possibly empty) set for each (z,y) € C x C.

Proof. Assume that F' is not locally proper. Then there exists (a,b) €
C x C so that V, D F~1(a,b) D U,, where U, is an irreducible component
of V,. Let U, C M be the closure of U,. Then §(U,) = b. Hence U, C
F~(a,b) € X and X is not a Stein manifold.

Conversely, assume that X is not a Stein manifold. As F: X — C x C
is proper it follows that X is holomorphically convex. Hence X contains a
compact connected one-dimensional complex space U. Since M is a projec-
tive variety, U must be a projective curve. Since [,,, v € K, is Stein it follows
that UN, is a finite set, i.e. U NC? is an infinite set. Clearly, F(U)CCxC
must be a compact complex space. Since C x C is Stein it follows that
F(U) = (a,b) and F~'(a,b) is an infinite set. (See [G-R, p. 33].) m

2. Monodromy. Let f € C[C?] be a nonconstant primitive polynomial.
Let f : M — CP! be the minimal resolution of f as given in Corollary (1.4).
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Define X := f1(C) = M \ Lo. Corollary (1.5) yields that X is a two-
dimensional simply connected manifold. (M is holomorphically convex but
not Stein.) Let

CPV(f):= |J Wi cpvi(f)= |J &
(2.1) teCVV(f) teCVV(f)

B:=C\CVV(f), Y:=X\CPVy(f), Z:=C*\CPV(f).
Then Y, Z are fiber bundles on B given by the maps

f:Y—>B, f:Z—B
with fibers X3, Vi, t € B. Consider the Z-bundles A; — B, i = 0,1,
with fibers Hy o(t) := H1(X},Z) for i = 0 and H;(t) := H1(V;,Z) for
i = 1 respectively for t € B. Then A; is endowed with the unique lo-
cally trivial (Hurewicz) connection, which associates with any continuous
path 7 : [0,1] — B a Z-isomorphism D;(y) : Hi(1(0)) — Hyi(+(1),
i = 0,1. Assume that 4/ : [0,1] — B is another continuous path with
7(0) = ~'(0) = to and (1) = ~/(1). If the closed curve 7'~!v represents a
trivial element in (B, ) then D;(y) = D;(v'), ¢ = 0,1. The fundamental
group m (B, tp) has the monodromy representations
¢ : m1(B,to) — Aut(H1(Zyy,Z)), ¢y : m(B,to) — Aut(H1(Vy,, Z)).

Let Z), v € K, be an affine line on M and consider the nonconstant
polynomial map ¢, of degree k(v) given in Corollary (1.5). Then

K= Z k(v),

veK
(22) qb;l(t) = {Cv,l(t)’ s an,k(v) (t)}v v E Ka
{Cl(t)v"'ac.‘-c(t)}: U ¢;1(t), t e B.
veK

Let V; be a regular fiber. Choose a basis in H;(V;,Z) as described at the
beginning of §1. More precisely, v1(t), ..., V2gen(t) C V4 is a basis of the reg-
ular fiber X} of genus gen. For each v € K we have the simple Jordan curve
Yv,i(t) C Vi whose interior in X includes only (,,(t) for i = 1,...,k(v).
Then a basis of H;(V;,Z) consists of v,(t), j = 1,...,2gen, and the set
(User Ur<i<u)y{10.:(0)}) \ {10, (£)}, for any curve o5 (2).

Choose a base point tg € B. Let my = m1(B,tp) be the fundamental
group of the base space. It is a free group on [ generators, where CVV(f) =
{c1,...,¢}. Consider the following set of generators 71, ..., of m(B,to).
Each 7; is a closed Jordan curve passing through ¢y so that its interior
contains only the point ¢; € CVV(f) while all other points of CVV(f) are
outside 7;. Furthermore, any pair 7;, 7; intersects only at to. Each 7; induces
a monodromy diffeomorphism ¢; : Xy — Xy which fixes the set X \ V;,,
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ie. ¢;: Vi, — Vi,. Since m1(B, 1) is a free group generated by [11],...,[7]
we obtain the following homomorphisms:

¢o : (B, tg) — Diffeo(Xy,),
¢1 : m1(B, tg) — Diffeo(V;,),
¢2 : m1(B,to) — Perm({Ci(to), - .-, Cu(to)})-

Here, Perm(S) is the group of permutations on a finite set S. (The above
homomorphisms are determined uniquely modulo the group of diffeomor-
phisms isotopic to the identity.)

Then ¢o,¢; induce the monodromy representations ¢, ¢} discussed
above. Moreover, we have the following induced homomorphism:

¢IQ : 7"'1(-B7t0) — Utm Uto - Span(’y2gen+l(t0)7 e 7’)/2gen+i€(t0))'

Note that the dimension of Uy, is k — 1. Furthermore, ¢1(7), 7 € m1(B, tp),
acts as a transitive subgroup of permutations on the curves v, ;(to), i =
1,...,k(v), for each v € K. Let 79 € B be a circle of a big radius passing
through to so that CVV(f) lies inside this circle. Then ¢ (7;), i=0,...,l, are
called the local monodromies. (Each 7;,7 =1,...,l, encloses a finite singular
fiber, and 7y encloses the singular fiber at co.) Then all the eigenvalues of
¢o(m), i=0,...,1, are roots of unity and the Jordan blocks are of dimension
2 at most (see e.g. [Gri]). Clearly, ¢5(7), T€m1(B,to), is a semisimple matrix
whose eigenvalues are roots of unity. Observe next that ¢/ (7) can be viewed
as a 2 X 2 lower block triangular matrix:

P (1) = (aij(T))f\Z—l = (A ()21, A2 =0,
¢ (7) i (to)] Zaﬂ [v;(t)], i=1,...,N.

Here A11(7) and Ago(7) represent the actions of 7 on Hi(Xy,,Z) and Uy,
respectively. Hence all the eigenvalues of ¢ (7;), i = 0,...,l, are roots of
unity.

Consider the complex vector bundles E; — B, ¢ = 0,1, with fibers
HY(X;) and HY(V;), t € B, respectively. (H!(X;) denotes the subspace of
holomorphic 1-forms on X;.) The Gauss—Manin connection on E; is a holo-
morphic flat connection which is compatible with the Hurewicz connection
(by (1.3)). The Gauss—Manin connection on Fj is slightly more complicated.
Observe first that dim H!(%;) = gen. Then the Gauss—Manin connection is
compatible with the Hurewicz connection by (1.1).

The Gauss-Manin connection induces the dual (cohomology) mono-
dromies

¢1 1 m— Aut(H' (Vi)), 652 m — Aut(H' (Zy,)).
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A fundamental result due to Deligne [Del2] states that the representations
¢4 and ¢ are semisimple.

(2.3) PROPOSITION. Let f € C[C?] be a nonconstant primitive polynomial.
Then the eigenvalues of each ¢((T), T € m(B,to), are roots of unity iff
oo(m1(B, o)) is a finite group.

To prove this proposition we quote a theorem due to T. Laffey and the
author:

(2.4) THEOREM. Let G be a subgroup of GL(n,Z) and assume that the
eigenvalues of each element of G are roots of unity. Then G is virtually
unipotent. That is, there exists a subgroup Go of G of a finite index and
T € GL(n,Z) so that TGoT~! is a subgroup of integer upper triangular
matrices with 1 on the main diagonal.

Proof. Let A € G. Then det(A\] — A) is a monic polynomial with
integer coefficients. As all eigenvalues of A are roots of unity it follows
that det(A] — A) is a product of cyclotomic polynomials p1(A),...,pm(A)
where degp; < n, ¢ = 1,...,m. Hence the set of all possible polynomials
det(A\ — A), A € G, is a finite set. Let H be the Zariski closure of G in
GL(n,R) and denote by Hj the identity component. Note that Hy has a fi-
nite index i in H. Clearly, det(\[—B) = (A—1)", B € Hy. Then there exists
Ty € GL(n,R) so that ToHyT, 0_1 is a subgroup of upper triangular matrices
with 1 on the main diagonal [Kol, Prop. 40, p. 369]. Hence Gy := G N Hy
has index 7 in G. Since Gy € GL(n,Z) it is straightforward to show that T
can be replaced by T' € GL(n,Z). =

Proof of Proposition (2.8). Let G := Aut(H(X,,Z)) C Sp(gen,Z).
Suppose first that G is finite. Then the eigenvalues of each A € G are roots
of unity. Assume now that the eigenvalues of each A € G are roots of unity.
From Theorem (2.4) we deduce the existence of unipotent Gy < G of a finite
index. By Deligne’s theorem G is semisimple. Hence Gy is semisimple and
unipotent, which implies that it is trivial. Therefore G is finite. m

Let

Fix(¢)) :=={a € Hi(V4,,Z) : ¢1(7)(a) = a, T € m1 (B, o)},

Fix(¢7) = {w € H'(V4,) : $1(7)(w) = w, 7 € m1(B, t0)},
fix, (f) := dimFix(¢}), fix'(f) := dim Fix(¢}).

(2.5) THEOREM. Let f € C[C?] be a nonconstant primitive polynomial. Then
the monodromy action on the reqular affine fiber Vi has a nontrivial fixed
element in H'(V;) iff the polynomial f — c is reducible for some c € C.

Proof. Suppose first that f — ¢ = f1fo, where f1, fo are nonconstant
polynomials. Then w := df;/(2mv/—1f1) is a nonzero 1-form on Z. The
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restriction wy to a regular fiber V; gives an element w, € H 1(Vt,Z). (Sv Wi
is the change of the argument of f; along v C V;.) Hence the monodromy
acts on wy. As fi cannot be a constant function on V; it follows that w; is a
nontrivial element of H!(V;) which is fixed under the monodromy action.
Assume now that each fiber Vi, t € C, is irreducible. According to
Libgober [Libl], H1(Z,Z) is a free abelian group of rank {. Thus any
element o € H'(Z,7Z) is of the form
!

1 m;df; .
2.6 0= , my€Z,i=1,...,1
(2:6) 2my/—1 ; fi
Let By C B be the union of [ closed Jordan curves 74, ..., 7; which were

described at the beginning of this section. (By is a bouquet of [ circles.)
Hence, 71(B,tg) = 71 (Bo,tg). Moreover, By is a deformation retract of B.
Let Zy C Z be the fiber bundle Zy = f~1(By). Then Z; is a deformation
retract of Z. (Deform each point on V; along the gradient flow (f., fy).
See [Mil] for details.) In particular, Hy(Zy,Z) is a free abelian group on
[ generators. (Note that there is a 2-complex Z; which is a deformation
retract of Zy and which can be constructed explicitly from Z; according to
[Lib2].) Then each element ¢ € H1(Zy,Z) is still given by (2.6). Note that
for each closed curve v C V4, t € B, we have o(y) = 0. Consider the injection
v: Hi(V4,,Z) — H1(Zy,Z). The equality o(y) = 0 yields that ¢ is trivial.

Assume to the contrary that we have a nontrivial fixed element w €
H'(V;,). Since monodromy is generated by [ integer-valued matrices it fol-
lows that we can assume that w € H'(V,,,Z). In particular, any element
B in the kernel of w is mapped to another element of the kernel under the
action of monodromy. As ¢ is trivial it follows that for any [y] € Hy(V4,,Z)
the subspace spanned by o([7])([7]), [7] € m1(Bo,t0), is H1(Vi,,Z). This
contradicts the existence of w. m

A. Libgober pointed out that Theorem (2.5) can be generalized as fol-
lows:

(2.7) THEOREM. Let f € C[C?] be a nonconstant primitive polynomial. Then
fix! () = O(f) (see (0.1)).

Proof. Assume that V, reduces to n irreducible curves. That is, f—c =

g1 ... gy, where g1,...,¢, are nontrivial coprime factors of f —¢. Then
% Vigs---s dg% |Vi, € Fix(¢7). Note that these n 1-forms satisfy exactly one
relation:

- dgi
3o
i1 Gi
Hence fix'(f) > 6(f). According to [Libl], dim H'(Z,C) = 4+ 6(f). A basis
of HY(Z,C) is given by df; /fi,i = 1,...,1+6(f), where Z(f1),..., Z(fi+s(5))

V,, =0.
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are the irreducible components of CPV(f). As observed above, only §(f) of
those give rise to linearly independent forms in Fix(¢7). m

(2.8) LEMMA. Let f € C[C?] be a nonconstant primitive polynomial. Then
fixi(f) > |K|—1>m—1, where K is given in Corollary (1.5) and m is the
number of points at which the closure of any Vi in CP? intersects the line
at infinity.

Proof. From the definition of K it follows that |K| > m. Let v1,v2 € K,
v1 # v2. Then the element

k(v1) k(vz)
()] = k(v2) D [roi(®)] = k(01) Y ewi(®)]
i=1 i=1

is a nonzero element which is fixed under the action of the monodromy.
Hence fix;(f) > |K|—1. =

We now present the following example of Deligne which shows that the
monodromy action on an affine fiber V; does not have to be semisimple.

(2.9) PROPOSITION. Let f = xy* + 2% +y. Then each fiber f =t is irre-
ducible, and the regular fiber Vi is an elliptic curve (of genus one) punctured
at two points which are fixed under the monodromy action. The monodromy
action on Hy(V;,C) (and on H*(V;,C)) is not semisimple.

Proof. Consider the fiber ;. Let (x,y) — « be the projection ¢ : Xy —
CP!. Then X} is a double (branched) cover of CP'. Consider f(x,y) = t.
Then

-1+ /1 —4x(z? —t)
N 2z
The branching points over C are given by 4z(z? —t) = 1. For 3 # 27/64
we have exactly 3 branching points over C, each one of multiplicity 2. In
particular, for all the above values V; is irreducible. For t3=27/64 we have
exactly one branching point of multiplicity 2. Hence the three singular fibers
are also irreducible. The point at infinity (1 : 0 : 0) is also a branching point
of multiplicity 1. The point at infinity (0 : 1 :0) is a regular point. Use the
Riemann-Hurwitz formula to deduce that the regular fibers X; are elliptic
curves, while the three exceptional fibers are CPP. Since each V; is irreducible

we deduce that
Hl((CQ— U vt,z) _ 73,
#3=27/64
Theorem (2.5) yields that fix'(f) = 0. Lemma (2.8) implies that fix; (f) >
2 —1 = 1. Since fix;(f) # fix' (f) it follows that ¢} (71 (B, %)) is not semi-

simple. =
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(2.10) COROLLARY. Let f € C[C?] be a primitive polynomial so that a reqular
fiber Vi is a Riemann sphere (X; = CP') punctured at two points at least.
Suppose furthermore that the monodromy does not act transitively on Xy \ V4
(|[K| > 1). Then f — c is reducible for some c € C.

Proof. The monodromy acts as a subgroup of permutations on
Hy(Vi,Z). Hence the action of the monodromy is semisimple. Therefore
fix' (f) = fix;(f) > |K| —1 > 0. Theorem (2.5) yields that f — ¢ is reducible

for some c. m
f = xy is an example satisfying the conditions of Corollary (2.10).

(2.11) THEOREM. Let f € C[C?] be a primitive polynomial so that a regular
fiber V; is either a punctured Riemann sphere or a punctured elliptic curve
(torus). Suppose that there exists g € C[C?] and a finite set T C C such
that g : Vi — C is not injective and has no critical (ramification) points for
t € C\T. Then f — c is reducible for some c € C.

Proof. Let g, : X; — CP! be the extension of ¢g : V; — C. Without
loss of generality we may assume that T D CVV(f). Suppose first that
Y; = CP!. Since g : V; — C is not an injection the degree of g; is two at
least. Hence g; has to have at least two critical points. Moreover, at least
one of the critical points is not in g; ' (c0). (Recall that an unramified cover
of C is a homeomorphism.) Clearly, g; *(co) is invariant under the action of
monodromy. According to Corollary (2.10), f — ¢ is reducible.

Assume now that the genus of a regular fiber Y is equal to 1. Since
g: has degree two at least and has no ramification points on V;, the
1-form dg; has zeros and poles on X} \ V;. Let w; be the holomorphic 1-form
on Y. Recall that w; is unique up to a nonzero factor. Normalize w; by as-

suming that S%( Wt = 1. Then wy is locally continuous in the parameter ¢.

(However, the monodromy will act on w;.) Let hy := w;/dg; : Xy — CPL.
Then h; is a nonconstant function such that all poles and zeros of h; lie on
X\ V;. Consider the nontrivial 1-form 6; := dh;/(2mv/—1h;) € HY(V;). As
in the proof of Theorem (2.5) we deduce that 6, € H'(V;,Z) is a nontrivial
invariant 1-form under the monodromy action. Theorem (2.5) implies that
f — c is reducible for some c. m

The pair f = 2y, g = 22 satisfies the assumptions of Theorem (2.11).
We do not know if Theorem (2.11) generalizes to a primitive f such that
the regular fiber X; has genus two at least. We prove a weaker version for
the higher genus case:

(2.12) PROPOSITION. Let f € C[C?] be a primitive polynomial so that a
reqular fiber V; is a punctured Riemann surface of genus two at least. Suppose
that there exists g € C[C?] and a finite set T C C such that g : V; — C is
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not injective and has no critical (ramification) points fort € C\T. Assume
furthermore that f,dg/dy is not a constant function on V; fort € C\ T.
Then f — c is reducible for some c € C.

Proof. Observe that df = f,dx + f,dy. Hence on a regular fiber V;,
wy = dy/f, = —dz/f, € H'(V;). Let h; be defined as in the proof of
Theorem (2.11). Our assumptions yield that h; is a nonconstant function
whose poles and zeros lie on X \ V;. Then the arguments of the proof of
Theorem (2.11) yield the proposition. m

3. 1-forms. Let Y be a smooth projective variety and X C Y be a
quasi-projective variety. Denote by O,(X) and £2P(X) all rational functions
and rational p-forms respectively on Y which are holomorphic on X. Denote
by HP(X), p > 1, the space of all closed forms in £27(X) modulo df2P~!(X)
(29(X) := O0,(X)). Let w € 2}(C?). Then

(3.1) w = p(a,y)dz + q(x,y)dy,

where p, ¢ € C[C?]. Let f € C[C?] ‘and assume that V, is a smooth irreducible
component of V;. Then w; € 21(V;) is the restriction of w to the fiber V;.

(3.2) LEMMA. Let f € C[C?] be a nonconstant primitive polynomial. Let

Vi be a smooth irreducible component of the fiber Vi and assume that o €
Q2L(V;). Then there exists a 1-form w € 2(C?) such that o = w;.

Proof. Assume that V, = Z (u) for some irreducible u. As V; is smooth

it follows that
~ d
V=2

V, € 2L (V).
Uy

Furthermore, 6; does not have zeros on ‘Z We first prove the lemma
for §;. Denote by C all the critical values of the map u : C> — C. Let
h =]].cc(T—u). Hence h vanishes at every critical point of u. The Hilbert
Nullstellensatz yields

A = —hluy + hotuy, hi,hs € (C[(Cz],

for some integer m>1. Then h™|V,=a := [T,cc ™ #0. Let o = 1 (hydx+
hody) € 21 (C2). Hence o, =6,. Let a€ 21(V,). Then a/6; € O.(V;). Since
V, is smooth, a/6; = r|V;, r € C[C?]. Then w := rp satisfies the conditions
of the lemma. m

(3.3) COROLLARY. Let f € C[C?] be a nonconstant primitive polynomial.
Assume furthermore that f does not have singular points. Then there exists

w € NL(C?) so that the restriction of w to any irreducible component of V;
is the 1-form 0, := dy/f. = —dxz/f, € H'(V}).

Proof. In the proof of Lemma (3.2) choose h = 1. m
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Let f € C[C?] be a nonconstant primitive polynomial. Consider the
complex vector bundle E; — B with fiber H!(V}), as defined in §2. Clearly,
any w € 2!(C?) induces a holomorphic section by viewing w; € 2} (V;) as
an element in H!(V;). Usually, the set of all holomorphic sections obtained
from the restriction of £2!}(C?) is too small. We now introduce the “right”
classes of holomorphic and rational sections O,(F1), R(E1) as follows. Let
w be a rational 1-form on C? of the form (3.1) where p,q € C(C?). We say
that w defines a rational section on FE; if there exists a finite set T C C so
that wy, € 21(V;) for all t € C\ (T UCVV(f)). Then the restriction of w to
all but a finite number of V; gives the element w; € H!(V;). We will abuse
the notation by denoting this section by w and its value on H(V;) by w;.
(For a rational 1-form w; which defines a rational section in E; we denote
by w; ¢ its restriction to H!(V;) when this restriction exists.) We denote the
set of these sections by R(E7). Denote by O;(E;1) C R(E:) all the rational
sections which are holomorphic at each t € B. Let F C C(C?) be the field
of all rational functions in the variable f:

F:={a:a=0b(f), be C(C)}.

Clearly, if w € R(E;) then aw € R(E;) for any a € F. Hence R(E;) is
a vector space over F. Two rational 1-forms w, 6 define the same rational

section if there exists a finite set T C C such that w; and 6; represent the
same element in H!(V;) for all t € C\ (T'U CVV(f)). Let

F[C? :={a € C(C? :a=1b/c(f), be C[C?, ce C[C]}.

(3.4) THEOREM. Let f,g € C[C?] be such that f is primitive and F = (f,g) :
C? — C? is a dominating map. Then any rational 1-form

dg
3.5 =r—— € F[c?
( ) Q Tdet J(F) Y r [ ]7
defines a rational section in R(Ey). Moreover, any rational section in R(E)
is given by some o of the above form. Furthermore, the dimension of R(E})
as a vector space over F is N := dimH!(V;) = 2gen+k — 1, t € B.

Proof. Recall that 8, := %‘Vt = —?—Z‘W € NL(V}), t € B, is a nonvan-
ishing 1-form. Let 7' C C be a finite set such that g; := g|V; is a nonconstant
map. A straightforward calculation shows that ﬁfw)‘ , =0, t€B \T.
Hence any p of the form (3.5) induces a rational section in E;. Suppose that
w is a rational 1-form on C? of the form (3.1) such that w; € £21(V;) for all
but a finite number of ¢. Let r = —pf, + qf, and assume that ¢ is defined
by (3.5). Then w; = g;. Hence r|V; € O,(V;) for all but a finite number of
t,ie. r e F[C?].

We now show that the dimension of R(E;) is N. For t; € B fix a basis
of N elements in Hy(V;,,Z) and N 1-forms in 2}(V;,) which satisfy (1.3)
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(as described in §1). Use Lemma (3.2) and the above arguments to deduce
that there exist p1,...,pny € C[C?] such that the restrictions of the 1-forms
0j = pjdg/det J(F'), j = 1,...,N, to V,, satisfy (1.3). Hence o;|V;, j =
1,..., N, form a basis for H!(V;) for all but a finite number of ¢. This shows
that dimz R(E7) > N. Let g be of the form (3.5). Then for all but a finite
number of ¢t we have unique a;(t),...,a,(t) so that o — vazl a;(t)o;|Vy is
an exact 1-form on V;. Hence a4 (t),...,an(t) are holomorphic functions on
C\ T for a finite set T C C.

We claim that each a;(t) is meromorphic at 7' and at oco. For ¢; €
T\ CVV(f) the argument is quite straightforward. Consider N 1-forms
01,---- 0N € 2L(C?) whose restriction to V;, gives a basis in H!(V;,). Then
0:=p0— vazl a;(t)0;|V; are exact 1-forms on V; where [t —¢;| < e for some
e > 0. Here ay(t),...,an(t) are holomorphic in |t —t;| < e. Change the ba-
sis from 91,...,0N t0 01,...,0n (in R(E1)) to deduce that a;(t),...,an(t)
are meromorphic at ¢;. For t; € CVV(f) U oo we have to use the growth

estimates (see e.g. [Mal]) to deduce that a;(t),...,an(t) are meromorphic
at t1. Hence ay(t),...,an(t) are rational functions. Thus g|; is a trivial (0)
section for all but a finite number of ¢t. Therefore g1, ..., on form a basis of

rational sections in R(E4) over F. m

Let 01,...,0n be a basis of rational sections in R. Then p1,...,o0on
is called a basis of O.(Ey) if 01,...,0n € O:(F1) and for each t € B,
01.ty---, 0N is a basis for HY(V}).

(3.6) LEMMA. Let the assumptions of Theorem (3.4) hold. Then O,(E1) has
a basis of holomorphic sections 01,...,0N, given by the restrictions of the
rational 1-forms

dg .
% =PigeEy; P € FIC?, j=1,...,N.
Let
N
(37) 51 = Zaij(t)gj, i=1,..., N, A(t) = (aij(t))i\,]jzl'
j=1

Then p1,...,0N is a holomorphic basis in O,(En) iff a;;(t), i,7=1,...,N,
are rational functions which are holomorphic on B and det A(t) does not
vanish on B.

Proof. Use Lemma (3.2) to deduce the existence of wy, ... ,wy € 2 (C?)
so that wi 4, - - ., wn 4, form a basis in H'(V,, ), to € B. As pointed out in the
proof of Theorem (3.4) we may assume that g = y, i.e. dg/det J(F) = dy/ f..
Fix t € B and a basis [;(t)], i =1,...,N, in H(V;,Z) as in §1. Let
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b(t)z(det( S wj)N )2.

1,j=1
vi(t

Note that b(t) does not depend on the choice of the basis. Moreover, b(t) is
holomorphic on B. Because of the growth conditions on CVV(f)U{oc} (see
e.g. [Mal]), it follows that b(¢) is meromorphic on CVV(f)U{oo}. Hence b(t)
is a rational function which is holomorphic on B. Let T' C B be the zero set
of bin B. f T = () then w;,7 =1,..., N, form a basis in O,(E;) as claimed.
Assume now that b(t;) = 0 for some ¢; € B. That is, w;¢,,i =1,..., N, are
linearly dependent elements of H!(V;,). Let

N
f:)i:ZCijwj’ i=1,...,N, (Cij)gjil € SL(N, C),
=1

be such that W |V}, is a zero element in H!(V;,). Hence @y := w1 /(f — t1)
induces a holomorphic section in F;. Let Z(t) be defined as above for the
holomorphic sections &y, ws,...,wy. Then b(t) = (t — t1)2g(t) and g(t) is
a rational function which is holomorphic in B. Continuing in this manner
we obtain N holomorphic sections g1,...,on € O;(E}) such that the corre-
sponding rational function b(t) is a holomorphic nonvanishing function on B.
Hence g1, ..., on form a basis in O,(E;). The specific form of o1, ..., on fol-
lows from Theorem (3.4).

Let 01,...,0n be another basis in O,(F;). Then (3.7) holds, with each
a;;(t) a rational function which is holomorphic on B. Since A(t)™! has simi-
lar properties, det A(t) is a rational function which is holomorphic on B and
does not vanish there.

Assume that g1,...,0n are given by (3.7), where A(t) has rational en-
tries which are holomorphic in B. Then pg; € O,(E}). The assumption that
det A(t) does not vanish on B yields that g1,...,on is a holomorphic basis
in Or(El) ]

(3.8) PROBLEM. Does there exist a basis g1,...,0n of O(F) so that

dg

. S 4 21 j=1,...,N.
J p] detJ(F)’ p] € (C[(C ]7 J ) )

0

Let 0 € O,(E1). As we chose the Gauss-Manin connection, we deduce

that do;/dt is a holomorphic section on E;. The growth estimates (see e.g.

[Mal]) yield that do;/dt € O,. Let p1,...,0n be a holomorphic basis in
O.(F1). Then we obtain a Picard—Fuchs system:

dx

(39) =Bz, @)= (o1 one)", Bl) = (b))

The entries of B(t) are rational functions which are holomorphic on B.
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(3.10) PROPOSITION. Let f € C[C?] be a nonconstant primitive polynomial.
Let N = dim H,(V},Z), t € B. Let to € B and choose a basis [y1], ..., [YN]
in Hi(Vy,,Z) as in §1. Assume that o1,...,0n is a holomorphic basis in
O, (F1) such that

| oj=0y, dj=1...,N
7vi(to)
Consider the system

Y
(fi_t = -BW)TY, Y(ty)=1, tecB,

where B(t) is the matriz induced by the Gauss—Manin connection given by
(3.9). Then the analytic continuation of Y (to) along T € m(B,to) gives the
monodromy element ¢5(T).

Proof. Let Y(t) = (yij(t))f\fj:l and set

N
Wit 1= Zyji(t)gj,t, i=1,...,N.
j=1

Then w; describes a multivalued locally holomorphic section of F;. Use
(3.9) and the definition of Y to deduce that dw;./dt = 0, i = 1,...,N.
Thus wy,...,wn are locally constant holomorphic sections with respect to
the Gauss-Manin connection. Note that the initial value wq 4,...,wn ¢, is
the dual basis to the basis [y1],...,[yn]. Hence the analytic continuation of
w1, ... ,wy along 7 will yield the dual basis to ¢} (7)([71]),-.., 01 (7)([yn])- =

Let w be a rational 1-form on C? which induces a rational section in Fj.
Assume that w; is holomorphic in some open set U C C. Fix t € U and a
basis in Hy(V;,Z) as in §2. Let

C(wvly](t)) = S Wt, ] = 17 s a2gen7

5 ()
ct(w,t) = (c(w,m (b)), -, c(w, 12 gen(?)),
(311) C(w77v,i(t)) = S W, t=1,..., k‘(U), v e K,
Yo,i(t)

c(w,v,t) := (e(w, Y0,i(E))1<i<k(v);
Cz(w7t) = (C(wyvat))v€V7 C(wvt) = (Cl(wvt)vcz(wvt))‘
Recall the equality (1.2) to deduce

k(v)

SN e(uyou(t) = 0.

veK i=1
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Observe
c(p(flw,t) =pt)c(w,t), pe C(C),

(3.12) dg ,

The following proposition is straightforward.

(3.13) PROPOSITION. Let f € C[C?] be a nonconstant primitive polynomial.
Assume that w is a rational 1-form on C? which induces a holomorphic
section on E1. Then w;,t € B is a nontrivial fized element under the action
of the monodromy iff

d
gc(u),t) =0, teB, clwt)#0.

Problem (3.8) is closely related to the following problem. Let w € 2} (C?).
When is ¢(w,t) = 0?7 Clearly, this holds if w is of the form

(3.14)  w=dh+rdf = (hy +rf.)dz + (hy +1f,)dy, h,r € C[C?.
That is, if w is given by (3.1), when we can solve the system

ha =71fz —p, hy=r1fy—q.
The above system has a solution iff the following PDE is solvable:
(3.15) —fyre + faTy = —du + py

for some r € C[C?]. This equation will be studied in the next section.

4. A differential operator. Let F' = (Fy,...,F,) : C" — C™ be a
polynomial map. Let J(F) = (9F;/0z;);';_; be the Jacobian matrix of F.
Assume that F'is dominating, i.e. det J(F') # 0. Let

SPV(F) :={z € C" : det J(F')(z) = 0}.

Let 0; = 0/0z;, i = 1,...,n, be the n standard commuting vector fields
on C™. We can pull back these abelian vector fields at all points F(C™) \
F(SPV(F)) to a set of n rational commuting vector fields D; = F~1(5;),
i =1,...,n. More specifically, the chain rule yields the following formula
for D;:

DT = (J(F)il)Tajt D = (Dy,...,Dy), 0= (01,...,0n).

For n = 2 we have

b L (0 0RO
T et J(F) \ 029 021 0z 022 )’
1 OF, 0 OF, 9

D2 = 37 (‘ 2 01 | a—a—>
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Let
L =det J(F)D,.
Note that L is a linear differential operator of first order with polynomial

coefficients which depend only on Fi,..., F,_1. For n = 2 the operator —L
is the standard Hamiltonian vector field associated with F7:

oFy 0 oF, 0

822 821 + 821 822‘
Note that the left-hand side of (3.15) is L(r) where F} = f. L is a nontrivial
operator iff Fy,..., F,_; are algebraically independent. In what follows we
shall assume that Fi,..., F,_1 are algebraically independent. By picking
a polynomial F;, such that F' is a dominating map and using the above
interpretation of L we obtain

L(vu) =vLu, u€ C(z,...,2,), vE€C(F,...,F_1).

Let F = C(Fy,...,F,_1) be the field of rational functions in the n — 1
variables Fi(z),..., F,_1(z). Denote by F[C"] C C(C") the ring of poly-
nomials in zi,...,z, with coefficients in F. Then u € F[C"] iff u = pv
where p = p(z1,...,2,) is a polynomial and v € F. Note that F[C"]
is an infinite-dimensional vector space over the field F and the operator
L : F[C"] — F|C"] is a linear operator over F. Let L(F[C"]) be the range
of L. In this section we show that L is Fredholm.

Consider the map @ = (Fy,...,F,_1) : C* — C"!. Recall that z is
called a singular point for @ if rank J(®) < n — 1. £ € C" ! is called a
singular value if £ = ®(z) for some singular point z. Clearly, the set of
all singular points is a closed variety of codimension at least one. Sard’s
theorem (see e.g. [Mil]) yields that the set of all singular values is a closed
subvariety of codimension at least one. Moreover, as in the case n = 2,
there exists a closed proper subvariety CVV(®) C C"~! with the following
property: For any ¢ € C"~'\CVV(®), the fiber @~1(¢) is a union of d smooth
irreducible curves, each homeomorphic to a fixed compact Riemann surface
X punctured at k points. We call these fibers regular. If d = 1, @ is called
primitive. If d > 1, one can show that there exists a dominating polynomial
map H : C"! — C"~ ! with deg(H) = d and a primitive polynomial map
W :C" — C" ! sothat ® = H oW. (We are not going to use this fact.) In
what follows we assume that @ is primitive. Let a € C" be a regular point
of . Set £ = ®(a). Then there exists a unique fiber V; = &~1(£) which
passes through a. Furthermore, a is a smooth point of V¢. Define a local
1-form on V¢ in the neighborhood of a as follows. Consider the n—1 1-forms
dFy,...,dF,_1.They are linearly independent in the neighborhood of a. Let
6 =" | 0;dz; be an analytic 1-form in the neighborhood of a so that

dFl/\.../\an_l/\szzl/\.../\dzn.
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Define o to be the restriction of 6 to V¢ in the neighborhood of a. It is
straightforward to show that « is defined uniquely, independently of the

choice of 6. In particular, if F;, is algebraically independent of F, ..., F, 1
and a € SPV(F), then

(4.1) o =det J(F) 'dF,|Ve
in the neighborhood of a.

(4.2) THEOREM. Let & = (Fy,...,F, 1) : C* — C"! be a primitive
dominating polynomial map. For a Zariski open set T C C"~! of regu-
lar fibers Ve = ®71(¢), € € C"!, let a be a 1-form defined by (4.1) for
some F, € C[C"] such that F = (F}y,...,F,) is dominating. Assume that
f € F[C™. Then f € L(F[C"]) iff

(4.3) | fa=0

¥
for any closed path v C Ve, £ € T.

Proof. Assume first that Lu = f for some u € F[C"]. By multiplying u
and f by an appropriate polynomial p(Fy, ..., F,_1) it is enough to assume
that u, f are polynomials. We claim that the restriction of du to any regular
fiber V¢ is fa. Indeed, let a € V¢ with det J(F)(a) # 0. Let w = F(z).

Then
"L du
The restriction of du to w; = &;,1=1,...,n — 1, yields
ou dF,,
du = —dw, = Lu—— = fa.
“ owy, v " det J(F) fo

Hence the condition of the theorem is necessary.

We now prove the sufficiency. Pick a linear function A on C™ such that
the hyperplane A = ¢, intersects a Zariski open set of regular fibers V; at d
distinct points (1 (§),...,¢q(§). Assume that V¢ is a regular fiber such that
f|Ve is holomorphic, the condition (4.3) holds and A = ¢ intersects V; at
d distinct points. Hence there exists u € O,(Vg) so that du = fa. Fix u
uniquely by the condition

u(Gi(€)) =0.
i=1
Then w is analytic on C™ \ S, where S is the zero set of some polynomial
p(Fi,...,F,_1). Clearly, Lu= f on C"\S. By construction, the singularities
of u are rational, i.e. u € F[C"]. =
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(4.4) THEOREM. Let & = (Fy,...,F,_1):C" — C"! be a primitive dom-
inating polynomial map. Then L : F[C"] — F[C"] is Fredholm. More pre-
cisely,

dimker(L) =1, dim F[C"]/L(F[C"]) = dim H*(V),
where V is any regular fiber @~1(€).

Proof. Assume that L(u) = 0 and u € F[C"]. Multiply v by an
appropriate polynomial in Fi,..., F,,_; to obtain a polynomial v so that
L(v) = 0. Choose F,, so that (F1,..., F,) is dominating. Then v is algebraic
in Fy,...,F,—1. As v is a polynomial, it follows that v = q(Fy,..., F,_1).
Thus u € F and ker(L) is the one-dimensional space over F spanned by the
function 1.

We now prove the second part of the theorem. Pick a regular fiber V.
Let N = dimH! (V). Choose a basis wi,...,wy € H}(V). Then w;/a =
p; € C[C"],i=1,...,N. Hence the forms p;a, i = 1,..., N, span H*(V¢),
for a Zariski open set of regular fibers V. Theorem (4.2) yields that

N
L(U):Zailh‘, a; € F,i=1,...,N,
=1

is not solvable in F[C"] unless a; = ... = ay = 0. Hence dim coker(L) > N.
We now show that dimcoker(L) < N. Let f € F[C"]. Assume that V is
a regular fiber so that f is analytic on V¢ and pia,...,pya span H' (V).
Then there exist unique aq(§),...,a,(§) € C so that

(£+ i ai(©)pi)a € dO (V).

Since f € F[C"] and pi,...,py are polynomials, we deduce that a;(&),
i=1,...,N, are rational functions in n — 1 variables. Then

N
g:f—i_zai(Fla"anfl)pi

i=1
satisfies the condition of Theorem (4.2). Thus there exists u € F[C"] so that
Lu = g. Hence dimcoker(L) = N. m

Consider the example f=x2y. Then for t#0 the fiber f=t is a complex
plane punctured at the origin with coordinate x. Hence Hy(V;,Z) = Z. As
f =0 is reducible it follows that CVV(f) = {0}. Clearly

Ox

Let g = . Then o = —dz /2% As za has a nontrivial residue on C \ {0},
Theorem (4.2) yields that @ ¢ L(F[C?]). Theorem (4.4) implies that U :=

L= —ng + 2xy2.
Ay
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F[C?]/L(F|C?)) is one-dimensional. We now show explicitly that z is a basis
in U. Let p(z,y) € F[C?]. Set
q(.ﬁl’,t) = p(a:,txﬂ) = Z ai(t)xi7 o5 € (C((C)7 i = -m,...,n,

i=—m

alwt)= Y el aly)=al?y).
—m<i<n,i#l
As 2% = (2y/f)*, k > 1, it follows that ¢z(z,y) € F[C?]. The equalities
L(f) = 0 and L(z) = —2? yield p(z,y) — a1(f)xr = L(g2(x,y)). Hence x
spans U.
Compare Theorems (3.4) and (4.4) to deduce:

(4.5) COROLLARY. Let Fy = f € C[C?] be a nonconstant primitive polyno-
mial. Then R(E4) is isomorphic to

U = F[C?|/L(F[C?)).

More precisely, two rational forms pdg/det J(F),qdg/det J(F'), p,q €
F[C?], induce the same section in R(E;) iff p— q € L(F[C?]).

Let f € C[C?] be a nonconstant polynomial with no critical points, i.e.
every affine fiber V; is smooth. For example,

(4.6) f=z4+2™y", m,n>1
Let L be the operator associated with f and consider the equation
(4.7) L(u) = h, heC[C?.

Note that (3.15) is of the above form. For a given point ¢ € C? it is possible
to find a linear function g = ax + by so that det J(F)({) # 0 and F = (f, g).
Pushing (4.7) to the image plane (u,v) = (f,g) we deduce that (4.7) is
locally solvable at any point ¢. Assume that u; € O;, i = 1,2, are two local
solutions in two open sets O, 02 with nontrivial intersection. (Here O; is
the ring of holomorphic functions in O;.) Then L(u; —u2) = 0 in O1 N Os.
It is straightforward to deduce that u; — us = ¢(f) in O; N Oy for some
holomorphic function ¢ on f(O; N Oz) C C. Let O be the pull back of
the sheaf of holomorphic functions on C by the map f : C> — C. Then the
obstruction to patching together the local solutions of (4.7) is H'(C?, Oy)
(see [G-H]). Our results show that

rank H'(C?,Oy) > dim H'(V}),

for a regular fiber V;. (We do not know if the above inequality is sharp.)
For the example (4.6) it follows that dimH'(V;) > 1, as Vi, t # 0, is a
compact Riemann surface punctured at two points at least. Hence for some
h € C[C?], (4.7) does not have a global holomorphic solution.
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5. The plane Jacobian conjecture. Let F' = (Fy,...,F,): C" - C"
be a polynomial map. Assume that F' is a local diffeomorphism. Then
det J(F') = const # 0. The Jacobian conjecture claims that F' is a diffeomor-
phism. Then the form « defined in (4.1) is given globally by dF,, /det J(F').
In this case the operators Dy,..., D, were studied in [N-S]. In what fol-
lows we study the plane Jacobian conjecture (n = 2). We assume that
F = (f,g) : C?> — C? is a local polynomial diffeomorphism. Furthermore,
we assume the normalization J(F)(0) = I. In particular, det J(F) = 1. Let
L = Dy, M = D be the first order differential operators defined in §4. Note

L(g)=M(f)=1, L(f)=M(g)=0.

The following theorem is due to T. Krasinski and S. Spodzieja [K-S,
Thm. 4.1]. (Theorem 4.1 of [K-S] holds for any n > 2.) An earlier ana-
lytic version of this theorem for n=2 is proved in [Ste2]. We recall its proof
for n = 2 for convenience:

(5.1) THEOREM. Let F : C2 — C2 be a local polynomial diffeomorphism.
Then F' is a diffeomorphism iff coker L is trivial.

Proof. Clearly, if F' is a diffeomorphism then coker L is trivial. Assume
that F' is a local diffeomorphism and coker L = 0. As f does not have
critical points, f is primitive. According to Theorem (4.4), H1(V;) = 0 for
a regular fiber V; = f~1(¢). Hence V ~ C. As the map g: V — C is a local
diffeomorphism it follows that it is a diffecomorphism. Hence deg(F) = 1
and F is a diffeomorphism. m

We call F' a Jacobian pair if F is a local diffeomorphism which is not a
diffeomorphism. Theorems (2.5) and (2.11) yield:

(5.2) COROLLARY. Let F' = (f,g) be a Jacobian pair. Assume that each fiber
V; is irreducible. Then the monodromy action on the cohomology H*(V;) does
not have a nontrivial fized element. In particular, the genus of the closure
Xy of the reqular fiber V; is at least two.

The inequality part of Corollary (5.2) was proved by Razar [Raz]
(gen>1), Heitmann [Hei] and Lé and Weber [L-W] (gen > 0). Assume that
F is a Jacobian pair. Then Kaliman [Kal] showed that there exists a plane
polynomial diffeomorphism G so that for G o F' := (f1,¢1) all the fibers
fiL(t) are irreducible.

In what follows we assume that F' is a Jacobian pair unless otherwise
stated. Let u € C[C?]. Then a necessary condition for the existence of a
solution L(v) = u, v € C[C?], is given by Theorem (4.2). In view of The-
orem (5.1) there exist u for which L(v) = u is not solvable. However, the
following result holds.
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(5.3) PROPOSITION. Let F' = (f,g) be a Jacobian pair. Then for any u €
C[C?] there exist v,w € C[C?] so that L(v) + M (w) = u.

Proof. Let s(z,y)= Sg u(t,y)dt. Then udz A dy=d(sdy). Observe that

for any h € C(C?) we have dh = L(h)dg + M (h)df. Hence
dy = L(y)dg + M(y)df = fodg — godf,
d(sdy) = d(sfedg — sg.df) = (M (sfz) + L(sg.))df N dg
= (M(sfy) + L(sgz))dz A dy,
u=M(sfy) + L(sg;). m

(5.4) LEMMA. Let F = (f,g) be a Jacobian pair. Let u € F[C?| and assume
that w is analytic on each Vi, where t varies in D(tg,e) (disk of radius

centered at to). Let v(tg) C Vi, be a closed smooth curve which extends
continuously to a family of smooth closed curves in Vi, t € D(tg,e). Then

d
pr S udg = S M (u)dg.
v(t) v(t)
In particular
(5.5) %C(udg,t) — o(M(u)dg,t), ue FICY

(see (3.11)).

Proof. The closed smooth curve F(y(ty)) C C?is of the form (o, §(to)),
where §(tg) is the projection of F(y(tg)) on the second coordinate. Let
u(t) == (t,0(tg)) € C? be the closed curve whose projection on the first
coordinate is ¢ and on the second coordinate is the closed curve 6(tg). Since
F is a local diffeomorphism it follows that there exists ¢/, 0 < &' < ¢, such
that for each t € D(tg,€’) there exists a smooth closed path ¢’ (¢), depending
continuously on ¢, which satisfies

o'(t) C Vi, F(3'(t) = p), & (to) = (to).
Clearly, [0'(t)] = [v(t)] € H1(V4,Z), t € D(tg,€’). Hence
S udg = S udg = S u(t, s)ds.
v(t) &' (t) s€H(to)

Here % is a multivalued algebraic function on C? obtained by pushing forward
u using F'. Since the branches of u appearing in the above integral do not
have singular points in the neighborhood of p(ty), we deduce
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% S u(t,s)ds = S %ﬂ(t,s)ds: S M (u) dg
s€8(to) s€8(to) 5 (t)
= | M(u)dyg.

¥(t)
In particular, (5.5) holds. m
(5.6) COROLLARY. Let F' = (f,g) be a Jacobian pair. Let
N = {c(w,t) :w € 2HC?), t € B}
Then N is a C[t]-module which satisfies the equality %N =N.

Proof. (3.11)=(3.12) show that N is a C[t]-module. Let w = pdz +
qdy, p,q € C[C?. As detJ(F) = 1 we deduce w = udg + uidf, u,u; €
C[C?]. Clearly, c(w,t) = c(udg,t). Use Proposition (5.3), Theorem (4.2)
and Lemma (5.4) to deduce

c(w,t) = c(udg,t) = c(L(v)dg + M (w)dg,t)
= ¢(M(w)dg,t) = %c(wdg,t). n

(5.7) PROPOSITION. Let F' = (f,g) be a Jacobian pair. Consider the isomor-
phism v : R(E1) — U given in Corollary (4.5). Then the following diagram
commutes:

R(Ey) - R(Ex)
U LZ\/L{
That is,
(5.8) i(udg)t = (M(u)dg);, wue€F[C%, teB.

dt
Proof. As ML = LM it follows that M : U4 — U is a linear differential
operator on U:

(5.9)  M(a(f)u+b(f)v) = a(f)M(u) + b(f)M(v) + d'(f)u +V'(f)o,
a(t),b(t) € C(t), u,v €U.

Let p1,...,pn € C[C?] be a basis in U. Choose ty € B and let ay,...,ay
be holomorphic functions in an open set U C B with tg € U. Let u :=
Zf\il a;(f)pi. Then u is holomorphic on U’ :={J,; V;. Suppose that (udg):,
t € U, gives a constant section in O(E;)(U), i.e. 4(udg); = 0. From the
definition of the Gauss—Manin connection it follows that c¢(udg,t) is a con-
stant vector on U. Use the arguments of Lemma (5.4) to deduce the validity
of (5.5) in this case, i.e. ¢(M(u)dg,t) = 0. Vice versa, if u € O(U’) and
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¢(M(u)dg,t) = 0 then (udg); is a holomorphic constant section of O(E1)(U).
Combine (3.12) and (5.9) to deduce (5.8). =

View V' := C[C?] N L(F[z,y]) as a module over the ring K := C[f]. Let
V be the quotient module C[z,y|/V’. Clearly, F is the field generated by K
and U =V ® F. Moreover, M : V — V is a differential operator over K.
Corollary (5.6) is equivalent to

(5.10) M(V) = V.

(5.11) THEOREM. Let F = (f,g) be a Jacobian pair. Then the monodromy
action on the cohomology H(V;) of the reqular fiber V; has a nontrivial fived
element iff the operator M : U — U is not injective.

Proof. Assume first that M(u) = 0 for some 0 # u € U. Suppose
that u is represented by v € F[C?]\ L(F[C?]). Proposition (5.7) shows that
vdg induces a nonzero constant section of O,(E7). This section represents a
nontrivial fixed element under the action of monodromy.

Assume now that ¢ € H(V;,), to € B, is a nontrivial invariant element
under the monodromy action. Let ¢; € H'(V}), t € B, be the continuation
of ¢ using the monodromy action. Pick a basis g1,...,0nx in O;(E;). Then

N
¢t:Zei(t)Qi,t7 €1,...,EN EO(B)

i=1

We claim that ey, ..., ey are meromorphic on CVV(f)U{oco}. Use the argu-
ments of the proof of Proposition (3.10) to deduce that e := (eq,...,en)T
satisfies the differential equation de/dt = —B(t)Te. Recall that a local
change of basis around ¢t; € CVV(f) U {oo} will replace the system (3.9)
by a matrix B(t) which has at most a pole at ¢; ([Dell]). In this new ba-
sis the equation de/dt = —E(t)TE has a regular singular point. Hence e
and e are meromorphic at ¢t;. Thus e;(¢),...,en(t) are rational functions.
The 1-form v := vazl e;(f)o; induces the constant section ¢, = 1. Use
Proposition (5.7) to deduce the existence of 0 # u € U so that M(u) =0. =

Let p1,...,pn € F[C?] be a basis in U. Then

N
(5.12) M(pi)dg =3 big(f)psdg € L(FIC?)),

bij(t) S (C((C), i,7=1,...,N.

Suppose furthermore that 01 := pidg,...,on := pydg induces a basis in
O:(E1). Then the matrix B(t) = (by;(t));;—, is given in (3.9). For a sim-
ply connected open set U C B choose a basis in H;(V;,Z) which depends
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continuously on ¢ as in §2. Set

(5.13)  wyt)= | pidg, i.j=1,....N, teU X =(zy;(t)_,
75 (t)
Lemma (5.4) yields that

d
(5.14) EX = B(t)X(t)
for t € U. In fact, (5.14) is dual to the system given in Proposition (3.10).
(Y ()T X(t) is a constant matrix.) Let 7 € 7 (B, to). Continue the solution

of (5.14) using the path 7 to obtain X, (ty). Then
A(7) = (aij (1)1 = ¢ (7),

N
$1(7) (5 (t0)) n=1 Y (to)
Hence

(515) XT(to) = X(tO)A(T), T E 7T1(B,t0).

Recall that the system (5.14) at any singular point ¢; can be reduced locally
to a system with a regular singular point at ¢; ([Dell]).

Let R(gen,0) be the moduli space of all compact orientable closed Rie-
mann surfaces of genus gen. Consider the holomorphic map 6 : B— R(gen, 0)
given by t — [R(X})] (see §1). According to [Gri, §13], # has at most a log-
arithmic singularity at each singular point of (5.14).

Let F' = (f,g) be a Jacobian pair. Let F be the minimal resolution given
in Theorem (1.6). According to Proposition (1.7), X := F~'(C x C) is a
Stein manifold. Hence X can be (properly) embedded as an affine smooth
algebraic variety X; C C™ for some n > 2. It is known that X can be
properly embedded as a Stein manifold Y C C* (see [For2]). See also [B-N,
§3]. Furthermore, X embeds in C? iff X is parallelizable (as a complex
manifold) [Forl].

(5.16) THEOREM. Let F'=(f,g) be a Jacobian pair. Assume that each affine
fiber f =1t is irreducible. Let F' be the minimal resolution of F' given by The-
orem (1.6). Then the Stein manifold X = F~1(C x C) is not parallelizable.

Proof. Assume to the contrary that X is parallelizable. Then there
exists a proper embedding ¢ : X — C3. ((X) is a two-dimensional connected
Stein manifold in C3. As H?(C3,0*) =0 for ¢ > 0, there exists h € O(C?)
such that «(X) = Y is the zero set of h. Since ¢t : X — Y is a proper
embedding, h does not have critical points on Y. Let V; := f~(t) C X,
t € B. Let B’ C B be all the regular values of f : X — C. Clearly, B\ B’
is a finite set. Note that V; € V; and §; : V; — C is a proper map of a



Jacobian conjecture 247

fixed degree d > 1 for t € B’. In fact, V; can be viewed as follows. Let
f: M — CP! be the minimal resolution described in Corollary (1.5). Let
g : M — CP? be the lifting of g : C*> — C. For each Z), v € K, we have three
possibilities. The first one is that § is holomorphic on I, and g(z) = oo for
all z € I,. Then for each ¢ € C the points Co,1(t), -+, Co k(v (t) are not in X.
The second possibility is that g is holomorphic on I, \ T}, and §(z) = oo for
all z € I, \ T,. Here T, is a finite set. Then Co1(t), -+ Cou (), t € C\ Ty,
are not in X, for some finite set 7} D T,. The third possibility is that g is
holomorphic on 1, and E 1, — C. (Note that am is given by the polynomial
map 1), which may be constant. See Theorem (1.6).) Let K’ C K be the set
of v which correspond to the third case. Then

‘7t =V;uU U {Cv,l(t)7---><v,k(v)(t)}:.f_l(t)y te B

veK'

Let f:= fo:t ' :Y — C. We now show how to obtain a holomorphic
1-form w on V; which does not vanish on V;, t € B’. Take a point ¢ €
V;. Extend f to a local function e in the neighborhood of i(¢{) € C? so
that e —t = h = 0 in the neighborhood of i({) which is the image of the
neighborhood of ¢ € V; under i. Since v and h intersect transversally at
i(C), one can define a 1-form on uw — ¢ = h = 0 in the neighborhood of i({)
as follows:

dz1/p1 = dzp [p2 = dz3/p3 = wy.

Here 21, 29, 23 are the coordinates of C?, p; is the 2 x 2 determinant of partial
derivatives of u, h which are not with respect to z; (up to sign). Note that w;
does not vanish. Let w be the pullback of wy to V;. Consider now the 1-form
0; which is the restriction of dg to V. The assumption that F'is a Jacobian
pair yields that 6; does not vanish on V; but does vanish on V;. Hence the
function ¢y = 6; /w gives a holomorphic function on V; which does not vanish
on V; but vanishes at least at one point of V;. Consider the 1-form de, /bt
It is holomorphic on V;, and it has a nontrivial residue at some point of V.
Hence dg; /¢, gives a nontrivial element in H'(V;). This element is invariant
under the monodromy action. Contradiction to Corollary (5.2). m
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