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On some generalization of box splines

by ZYGMUNT WRONICZ (Krakéw)

Abstract. We give a generalization of box splines. We prove some of their properties
and we give applications to interpolation and approximation of functions.

1.Introduction. An extended complete Chebyshev system U, ={u;}I"
of functions of class C™ in the interval I = [a, b] is a generalization of the sys-
tem {t'}"_, of power functions. We can write such a system in the canonical
form (see [9, 12])

ug(t) = wo(t),

(1) t T Ti—1
ui(t) = wO(t)Swl(Tl) Swz(Tz)--- S w;(7;) dr; ... dry,
i=1,...,n, where w; € C"I(I), wj(t) >0fort €1, j=0,...,n.
For w;(t) = (t—a)?, j=0,...,n, we have wo = 1, w; =i, i=1,...,n.

To generalize box splines we shall use a similar method to that used
to obtain (1). Box splines are used in approximation theory, in interpola-
tion of functions, in the finite element variational method, in the theory of
wavelets and in other branches of mathematics (see [3, 5, 7, 8, 10]). Not
only algebraic splines but also Chebyshevian splines play an important role
in approximation theory. We give a generalization of box splines and a few
of their main properties; we call the new splines Chebyshevian box splines.
Then we define a fundamental function and give some applications of it to
interpolation and approximation of functions.

2. Chebyshevian box splines. We need some notation and definitions.
We say that an integer n x s matrix Vi = {v1,...,vs}, v; € Z™ \ {0},
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i=1,...,s,1is admissible if rankV,, = n (the first n columns of V; are linearly
independent), s > n. Below we assume that the matrix V; is admissible.
Define

<Vs>:{ztjvj;0§tj§1, j:1,...,s}.

j=1
We see that
(Vs) = Vs([0,1]%).
Let W = {wy,...,ws_n} be a sequence of continuous functions on R™
such that

(i) each wj is periodic, i.e. wj(z + o) = w;(x) for a € Z™,
(i) 0 < a; < wj(z) < b; < oo for z € R™, where a; and b; are some
constants.

DEFINITION 1. The box spline B(x | Vi, W) with respect to Vs and W is
defined as follows:
_ X(v,,) (2)
|det V.|’
where Xy, is the characteristic function of the set (V;,) and
2)  B(z|[Vig, W)
1
= ka(:n — topyk)B(x — toppg | Visk—1, W)dt, k=1,...,s—n.
0

(1) B(z | Vo, W)

For w; =1, j = 1,...,5s — n, we obtain algebraic box splines, denoted by
B(z| V) (see [1, 2, 4, 6]).

THEOREM 1. For any function f € C(R™) we have
| f@B@| Ve, W)dz = | [(Vou)du,

R™ [0,1]™

@) ) @BV, W)dz

R‘n
= S FVaw)ws—pn (Veu)ws—n—1 (V1) ... w1 (Vo u) du,
[0,1]¢
where ‘~/n+k = ‘Z,ka = [v1,. ., Untk—1,0,...,0] with s —n — k + 1 zeros,
u=[uy,...,us|, du =duy...dus.

Proof (by induction on s). For s = n we change variables in the integral

(see [6])

| f(@)B|V,, W)de = | f(g;)|(i<e<tv‘7>>|dx: | F(Vow) du
Rn (V) " [0,1]
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because V,, ([0, 1]™) = (V,,). Assume that (3) holds true for s = n + k. Then
S f(@)B(@ | Vasrs1, W) dz

R
1

= S S f@)wgs1(z — tvgypr1) B — topygsr | Vi, W) da dit
ORn

| @+ tonsrr)wisr (@) B(@ | Vi, W) d dt
Rn

I
O ey =

1
= S S f(Vigruttvn k1) Wi 1 (Vaprw)wg (Vigrw) .o wy (Vipqu) du dt
0 [071]n+k

= | V) wrn (Vaseny)wr (Vaswy) - w1 (Vagay) dy
[071]n+k+1

and we have proved (3) for s=n+k + 1.

Assume that 8[071}5 Ws—pn(Vs_pu) ... w1 (Vyp1u) du = 1. Putting f=1 we
obtain
| Bz |V, W)dz = 1.
Rn

LEMMA 1. Let v € R™\ {0} and the function G : R™ — R be continuous
on its convexr support D. Then the function
1
F(z) =\G(x - tv) dt
0
18 continuous on its support

supp F = {x : [z,z —v]N D # 0}.

Proof. Since D is convex, the supports of the functions ¢; (t) = G(y—tv)
and ¢(t) = G(z — tv) are segments whose lengths depend continuously on y
and z from G. Hence by continuity of G we obtain lim, ., F'(y) = F(z).

COROLLARY. The function B(x|Vy, W) is continuous on its support
(Ve)-

THEOREM 2 (cf. [6]). Let C be a nonsingular integer n x n matriz. Then

1 —
4 B g = ——B(C 'z |V,, W),
(4) (z|CVs, W) et (C™ x| Ve, W)

where W = {wy,...,Ws—pn}, wj(r) =w;(Cx), j=1,...,5 —n.
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Proof. Let f € C(R™). Applying Theorem 1 we have

| f(x)B(z|CV,, W) da
RTL
= S f(CVsu)ws,n(ansu)ws,n,l((f?‘v/’s,lu) R TIN (ﬁ/nﬂu) du
[0,1]¢

= S f(C’VSu)wS_n(CWN/Su)wS_n_l (C’TN/S_lu) LWy (C’TN/nHu) du.
[0,1]¢

Putting g(x) = f(Cx) and applying Theorem 1 again we obtain
| f(@)B(|CVe, W) dz
RTL
= | g(Vaw)Bsn (Vi) Be—p—1 (Vemru) . .. @1 (Vg1 ) du
[0,1]*
B(C~ 12|V, W)

d.
et C| *

= | /(C2)B(z |V, W)de = | f(x)

R R

Since the function f was chosen arbitrarily and B(z | Vs, W) is continuous
(Corollary of Theorem 1) we have proved (4).

THEOREM 3. Let

Dy () = s T S [F o+ 10) — ()]

Ws—n(z) t—0+

Then
®)  Dow._,B@|Ve, W) = Bz | Vi1, W) = Bz — vs | Va1, W)
at every point of continuity of B(x|Vs_1,W).

Proof (cf. [6]). Let g(z) = ws_pn(z)B(x|Vs—1,W). Then

Ws—n(2) Do, o, _, B(x| Vs, W)
1

1
:t£%1+¥{xgx— (r—t) vs]dr—Sg(x—rvs)dr}

0 0
—t 1
= tl—.>0+ ; [ _S g(x —rvg) dr — (S)g(x — TVs) dr]
100 1
= tli%1+ 7 [_Stg(x —rug)dr — 1§tg(x — V) dr]
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t

t
= tli%1+ % [ég(az + rvg) dr — (S)g(a: + v — vs) dr]

= Ws—n(T)B(x [ Vsm1, W) — ws_pn(z — vs) B(w — vs | Vi1, W)
= Ws—p(2)[B(z|Vs—1, W) = B(z — vs [ Vsu1, W)]
and we have got (5).

3. A fundamental function. Let

GVS = U <'Ui1,...,'Uin_1> + { Z EjU; 1 &5 = 0, 1} forn>1

11<...<lp_1 JFU1, i1

Gy, = {ZS:EJ"U]‘ L Ej :0,1} for n = 1.
j=1

As in the algebraic case we can prove that in the set R™ \ Gy,
Dvn,len+17wl ttt DUsvwsan(x ’ ‘/37 W) = 0'
Now we may consider the space S(V;, W) spanned by the integer trans-
lates of the box spline B(z | V,, W):
S(Vg,W) =span{B(z — o | V5, W) : . € Z"}.
For n = 1 the space S(V;, W) is included in the space of cardinal Cheby-
shevian splines. In the algebraic case for n = 1 we have cardinal B-splines

Ni(z) = x10,1)(2),
1
Nin(2) = (N1 % N1)(@) = | Npp_y (z — 1) dt,  m > 2.
0
Now we need some definitions, lemmas and theorems.

DEFINITION 2. The family of columns of the matrix Vj is called unimodu-
lar if the first n columns are linearly independent and Vy v, gy —n|det Y| <1.

Let fdenote the Fourier transform of f, i.e.

fla)= | f@e = d.
R’VL
In the algebraic case we have the following
LEMMA 2 (see [4, 6]). The family V = V; is unimodular if and only if
(6) {2 € R" : Vaezn B(x — | V) = 0} = 0.
For Chebyshevian box splines the condition (6) may not hold for a family
which is not unimodular:
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EXAMPLE.
1 0 2 0
Va= [0 1 0 1}’ wi =1,
wo(T1,T2) = e~ I2m—1] for 0 <z <1,

wo(x1 + o, x9) = wa(xy,22) for a € Z.
Applying (3) we obtain
B(x| Vi, W)

_ S 672m‘[(u1+2u3)x1+(u2+u4)x2} ZUQ(U1 + 2us, u2) duy dus dus duy

(0,14
— (ﬂ)Qi “ e 2w 2u)1 o (0 0
2mixs =i ’ )
where
Dy ={(ug,u3) : 0<wu; <1/2, 0 <ug <1/4—uy/2},
DQ = {(ul,u;;) : 0 S Ul S 1/2, 1/4—u1/2 S us S 1/2 — U1/2},
D3 = {(u1,u3) : 1/2<wuy <1, 0 <uz <1/2 —wuy/2},
Dy = {(u1,u3) : 0 <uyg <1, 1/2 —uy /2 <ug < 3/4—uy /2},
Ds = {(u1,u3) : 0 <wu; <1, 3/4—u1/2 <wug <1—wuy/2},
D¢ = {(u1,u3): 0 <u; <1/2, 1 —uy/2 <us <1},
D7 ={(uj,u3) :1/2<wu; <1, 1 —uy/2 <wuz <5/4—uy/2},
Dg = {(u1,u3) : 1/2 <uy <1, 5/4 —uy /2 < ug < 1},
g1 = 6_1+2u1+4u3, go = g3 = 61—2u1 —4u3’ ga = 6_3+2u1+4u3,
g5 = 63—2ul—4u37 g6 = g7 = e—5+2u1+4U37 gs = 65_21“_4“3.
Hence .
~ 1— 672m‘x2 9(331)
Bl VW) = (o) st
where

g(xl) - (1 + 2e - e_ﬂil’l _ 56—27Fi901 + 4e - e—37rix1 _ 56—47ri1=1
+ 2e - 6*57”‘931 + 6767rim1)
+ 271'2(1 — 2. e T + e~ 2mizy _ p—dmizy
+ %2 - e—57rix1 _ e—67rix1 )331
+ 7'('2(—1 + 2e - e*ﬂifﬂl _ 36727rim1 1 e - 6737rim1 _ 3674771‘371
+ 2¢ - e I _ o= OmiTL) 02

2
= D (e et
k=0
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and the coefficients oy, depend only on e™®1. If g(Z;) = 0, then g(Z; +2j) =
Zi:o a(e™®1) (T + 27)* and since it is a polynomial of degree 2 with
respect to j, it is different from zero for some j except for the case when all
the coefficients of g are zero, and this happens for ; = 1/2 and z; = 3/2.
Hence the condition (6) is not satisfied.

Let X =V U-V ={vy,...,v5,—01,...,—Vs}. Then we define

Bla | X,W) = (B(-|V,W) « B(-| =V, W"))(x)
= | Bz —t|V,W)B(t| - V,W™)dt.
Rr
LEMMA 3. We have
B(—z|V,W) = B(z|-V,W~), B(z|X,W)=B(—z|X,W)
and
Bla|-V,W™) = Bx|V.W),

where W= ={f: f(—z) e W and -V ={z eV :—z eV}

The proof follows directly from the definition of box splines.

LEMMA 4. Let Dy, wf = Dy, w, -+ Do, w,_,, [ and let B(z|Vs) and
B(z| X) be the algebraic box splines with respect to Vs and X = ViU =V,

respectively; moreover, in the cases W =1 let all the functions w; be equal
to one. Then

D_y, w-Dy, wB(z|X,W) = D_y, 1Dy, 1 B(z| X).

Proof. Using the fact that convolution is commutative and Theorem 3
we obtain the equality

D_y, w-Dv, wB(z | X, W)
= | Dv,wB(z —t|Vo,W)D_y, w-B(t| -V, W) dt

RTL
= | Dy, 1B(z —t|V,)D_y, 1 B(t| - Vi) dt
RTL
=D_y,1Dv.1 | Bz —t|V,)B(t|-V,)dt = D_y, 1Dy, 1 B(z | X)
Rn

since B(x| V) * B(z|—Vs) = B(z,X) (see [4, 6]) and we have proved the
lemma.

COROLLARY. B(z|X,W) = B(x|V,W), where
‘7 = {Uh ceeyUny = V1500, =Uny, —Un41,--- 5 = VUsy, = Ung1y---, _Us}v

W= {1,...,L,wy(x),...,ws_pn(x),w(—x),..., ws_p(—x)}.
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LEMMA 5. Let f,fe C(R) and for some § > 0,
[f@) <O+ =)™, zeR",
[f@) <O+ =)™, zeR™
Then for every x € R™,
Y fa-a)= Y Flaper,
aEZ™ aEZ™
For the proof we refer to [11] (see also [6]).

LEMMA 6. Let functions ¢ and 1 be integrable, bounded and with compact
support. Then for every x € R™,

D @ —a)p(r—a)= Y (prv)(—a)emr.
aEZn aczn
For the proof we refer to [6].
THEOREM 4. Let the family V' be admissible and satisfy (6). Then for
every x € R,

Pxw(z)= Y Bla|X,W)e™" £0.

aEZ™

Proof (cf. [6]). We apply Lemma 6 to the functions ¢(z) = B(z |V, W)
and ¢ (x) = B(x | —V,W ™). Hence

Y BCIVW) @~ a)B(|-V.W)]"(@ - a)

aEZ™

= D (BCIV.W)* B(-| =V, W7))(—a)e?mee

aEcZm
= Z E(—a]X, W)e2ries — Z E(a]X, W)emiae,
aczr aEZn

Using Lemma 3 we obtain

[B(-|V, W) @)[B(-| =V, W) @) = |[B(-| V,W)]" ().
Hence
Z I[B(-|V, W)z — a)]* = Z Bla| X, W)e2mioe
A A
and by (6) we obtain the theorem.
Since the trigonometric polynomial Px y is different from zero for every

x € R™, the function 1/Px w is periodic and of class C*°. Hence we may
expand it in a Fourier serieS'
Z bX W 27rio¢~1‘7

7
( ) PX W aEcZm™
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where

1 ,
bxw(o) = S e 2T
0,1]n Pxw(x)

LEMMA 7. Let the family V' be admissible and satisfy (6). Then the se-
quence bx w = {bx,w(a)} of coefficients of the expansion of 1/Px w is
exponentially decaying, i.e. there exist constants C >0 and 0 < g < 1 such
that

(8) bxw() < Cqll,  aczn
where o = |ai| + ... + |ag|.

The proof is the same as in the algebraic case (see [6]).
Let V satisfy the condition (6).

DEFINITION 3. The fundamental function associated with the family X =
V U —V and the family W is the function

Dy w(z)= > bxw(®)Bx—a|X,W).
a€Zn

LEMMA 8. For every a € Z",
9) Dxw(a) = dp.q-

Proof (see [6]). Taking the Cauchy product of the Fourier series for
Px w and 1/Px w we obtain (7).

As in the algebraic case we obtain (see [6])

LEMMA 9. There exist constants C' > 0 and 0 < q¢ < 1 such that

|Px w(z)] < Cq”‘””, z € R™.

Now we may define interpolating operators I and I}, as follows: for every
function ¢ defined on Z"™ we put

Ig(x) = Z 9(@)Px w(z — ),

agZ™
Lig(x) = Y g(@)@x w(z/h—a).

aEZ™

The problem of the convergence of the operators I, will be considered
in another paper.
Let
Byw(x) =Y bxw(a)Bz—a|V,W), zecR™
acZm

We have the following (see [6])
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LEMMA 10. For every 8 € Z™,
(Byw, B(- =BV, W))rr = do,p-
Moreover, there exist constants C' > 0 and 0 < q¢ < 1 such that
]B{}W(a;)] <Ccgl*ll 2 eRr™
Proof. Applying Lemma 3 and changing variables we obtain
(Bx.w,B(- =BV, W))gn
= > bxw(e) | B@—a|V,W)B(@—3|V,W)dx

aEZ™ R™

= D bxw(a) | Bz~ (a=F)|V.W)B(x|V,W)dx
aEZ™ Rn

= > bxwla) | B@|-V,W)B((B-a)—z|V,W)dx
aEZ™ R

= > bxw(@B(B—a|X, W) =dxw(B) =dos.
aEZ™

The inequality is proved as in the algebraic case.

Because of this lemma we call the function By, the biorthogonal func-
tion.

Using the Jensen inequality and Lemma 9 we may prove (see [6]) the
following

THEOREM 5. Let the family V be admissible and satisfy the condition
(6). Then for every 1 < p < oo there exist constants Cy > 0 and Cy > 0
such that for every sequence a = {ay} C IP,

Cillallr <[ Y aaB@—alv.w)| <c
agZm

COROLLARY. Let the family V' be admissible and satisfy the condition (6).
Then the system of box splines { B(-—a |V, W)}qezn is linearly independent.

\aHp.

The results of this paper were announced by the author in [13] and [14].

PROBLEM. Prove that if V is unimodular then V; satisfies (6).
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