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On some generalization of box splines

by Zygmunt Wronicz (Kraków)

Abstract. We give a generalization of box splines. We prove some of their properties
and we give applications to interpolation and approximation of functions.

1. Introduction. An extended complete Chebyshev system Un={ui}
n
i=0

of functions of class Cn in the interval I = [a, b] is a generalization of the sys-
tem {ti}n

i=0 of power functions. We can write such a system in the canonical
form (see [9, 12])

(1)

u0(t) = w0(t),

ui(t) = w0(t)

t\
a

w1(τ1)

τ1\
a

w2(τ2) . . .

τi−1\
a

wi(τi) dτi . . . dτ1,

i = 1, . . . , n, where wj ∈ Cn−j(I), wj(t) > 0 for t ∈ I, j = 0, . . . , n.

For uj(t) = (t− a)j , j = 0, . . . , n, we have w0 = 1, wi = i, i = 1, . . . , n.

To generalize box splines we shall use a similar method to that used
to obtain (1). Box splines are used in approximation theory, in interpola-
tion of functions, in the finite element variational method, in the theory of
wavelets and in other branches of mathematics (see [3, 5, 7, 8, 10]). Not
only algebraic splines but also Chebyshevian splines play an important role
in approximation theory. We give a generalization of box splines and a few
of their main properties; we call the new splines Chebyshevian box splines.
Then we define a fundamental function and give some applications of it to
interpolation and approximation of functions.

2.Chebyshevian box splines. We need some notation and definitions.
We say that an integer n × s matrix Vs = {v1, . . . , vs}, vi ∈ Z

n \ {0},
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i = 1, . . . , s, is admissible if rankVn = n (the first n columns of Vs are linearly
independent), s ≥ n. Below we assume that the matrix Vs is admissible.

Define

〈Vs〉 =
{ s∑

j=1

tjvj : 0 ≤ tj ≤ 1, j = 1, . . . , s
}
.

We see that

〈Vs〉 = Vs([0, 1]
s).

Let W = {w1, . . . , ws−n} be a sequence of continuous functions on R
n

such that

(i) each wj is periodic, i.e. wj(x+ α) = wj(x) for α ∈ Z
n,

(ii) 0 < aj ≤ wj(x) ≤ bj < ∞ for x ∈ R
n, where aj and bj are some

constants.

Definition 1. The box spline B(x |Vs,W ) with respect to Vs and W is
defined as follows:

(1) B(x |Vn,W ) =
χ〈Vn〉(x)

|detVn|
,

where χ〈Vn〉 is the characteristic function of the set 〈Vn〉 and

(2) B(x |Vn+k,W )

=

1\
0

wk(x− tvn+k)B(x− tvn+k |Vn+k−1,W ) dt, k = 1, . . . , s− n.

For wj = 1, j = 1, . . . , s − n, we obtain algebraic box splines, denoted by
B(x |Vs) (see [1, 2, 4, 6]).

Theorem 1. For any function f ∈ C(Rn) we have

(3)

\
Rn

f(x)B(x |Vn,W ) dx =
\

[0,1]n

f(Vnu) du,\
Rn

f(x)B(x |Vs,W ) dx

=
\

[0,1]s

f(Vsu)ws−n(Ṽsu)ws−n−1(Ṽs−1u) . . . w1(Ṽn+1u) du,

where Ṽn+k = Ṽs,n+k = [v1, . . . , vn+k−1, 0, . . . , 0] with s − n − k + 1 zeros,
u = [u1, . . . , us], du = du1 . . . dus.

P r o o f (by induction on s). For s = n we change variables in the integral
(see [6])\

Rn

f(x)B(x |Vn,W ) dx =
\

〈Vn〉

f(x)
χ〈Vn〉

|detVn|
dx =

\
[0,1]n

f(Vnu) du
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because Vn([0, 1]n) = 〈Vn〉. Assume that (3) holds true for s = n+ k. Then\
Rn

f(x)B(x |Vn+k+1,W ) dx

=

1\
0

\
Rn

f(x)wk+1(x− tvn+k+1)B(x− tvn+k+1 |Vn+k,W ) dx dt

=

1\
0

\
Rn

f(x+ tvn+k+1)wk+1(x)B(x |Vn+k,W ) dx dt

=

1\
0

\
[0,1]n+k

f(Vn+ku+tvn+k+1)wk+1(Vn+ku)wk(Ṽn+ku) . . . w1(Ṽn+1u) du dt

=
\

[0,1]n+k+1

f(Vn+k+1y)wk+1(Ṽn+k+1y)wk(Ṽn+ky) . . . w1(Ṽn+1y) dy

and we have proved (3) for s = n+ k + 1.

Assume that
T
[0,1]s

ws−n(Ṽs−nu) . . . w1(Ṽn+1u) du = 1. Putting f=1 we

obtain \
Rn

B(x |Vs,W ) dx = 1.

Lemma 1. Let v ∈ R
n \ {0} and the function G : R

n → R be continuous

on its convex support D. Then the function

F (x) =

1\
0

G(x− tv) dt

is continuous on its support

suppF = {x : [x, x− v] ∩D 6= ∅}.

P r o o f. SinceD is convex, the supports of the functions g1(t) = G(y−tv)
and g(t) = G(x− tv) are segments whose lengths depend continuously on y
and x from G. Hence by continuity of G we obtain limy→x F (y) = F (x).

Corollary. The function B(x |Vs,W ) is continuous on its support

〈Vs〉.

Theorem 2 (cf. [6]). Let C be a nonsingular integer n×n matrix. Then

(4) B(x |CVs,W ) =
1

|detC|
B(C−1x |Vs, W̃ ),

where W̃ = {w̃1, . . . , w̃s−n}, w̃j(x) = wj(Cx), j = 1, . . . , s− n.
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P r o o f. Let f ∈ C(Rn). Applying Theorem 1 we have\
Rn

f(x)B(x |CVs,W ) dx

=
\

[0,1]s

f(CVsu)ws−n(C̃Vsu)ws−n−1(C̃Vs−1u) . . . w1(C̃Vn+1u) du

=
\

[0,1]s

f(CVsu)ws−n(CṼsu)ws−n−1(CṼs−1u) . . . w1(CṼn+1u) du.

Putting g(x) = f(Cx) and applying Theorem 1 again we obtain\
Rn

f(x)B(x |CVs,W ) dx

=
\

[0,1]s

g(Vsu)w̃s−n(Ṽsu)w̃s−n−1(Ṽs−1u) . . . w̃1(Ṽn+1u) du

=
\

Rn

f(Cx)B(x |Vs, W̃ ) dx =
\

Rn

f(x)
B(C−1x |Vs, W̃ )

|detC|
dx.

Since the function f was chosen arbitrarily and B(x |Vs,W ) is continuous
(Corollary of Theorem 1) we have proved (4).

Theorem 3. Let

Dvs,ws−n
f(x) =

1

ws−n(x)
lim

t→0+

1

t
[f(x+ tvs) − f(x)].

Then

(5) Dvs,ws−n
B(x |Vs,W ) = B(x |Vs−1,W ) −B(x− vs |Vs−1,W )

at every point of continuity of B(x |Vs−1,W ).

P r o o f (cf. [6]). Let g(x) = ws−n(x)B(x |Vs−1,W ). Then

ws−n(x)Dvs.ws−n
B(x |Vs,W )

= lim
t→0+

1

t

{ 1\
0

g[x− (r − t)vs] dr −
1\
0

g(x− rvs) dr
}

= lim
t→0+

1

t

[ 1−t\
−t

g(x− rvs) dr −
1\
0

g(x− rvs) dr
]

= lim
t→0+

1

t

[ 0\
−t

g(x − rvs) dr −
1\

1−t

g(x− rvs) dr
]
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= lim
t→0+

1

t

[ t\
0

g(x+ rvs) dr −
t\
0

g(x+ rvs − vs) dr
]

= ws−n(x)B(x |Vs−1,W ) − ws−n(x− vs)B(x− vs |Vs−1,W )

= ws−n(x)[B(x |Vs−1,W ) −B(x− vs |Vs−1,W )]

and we have got (5).

3. A fundamental function. Let

GVs
=

⋃

i1<...<in−1

〈vi1,...,vin−1
〉 +

{ s∑

j 6=i1,...,in−1

εjvj : εj = 0, 1
}

for n > 1

and

GVs
=

{ s∑

j=1

εjvj : εj = 0, 1
}

for n = 1.

As in the algebraic case we can prove that in the set R
n \GVs

,

Dvn,1
Dvn+1,w1

. . . Dvs,ws−n
B(x |Vs,W ) = 0.

Now we may consider the space S(Vs,W ) spanned by the integer trans-
lates of the box spline B(x |Vs,W ):

S(Vs,W ) = span{B(x− α |Vs,W ) : α ∈ Z
n}.

For n = 1 the space S(Vs,W ) is included in the space of cardinal Cheby-
shevian splines. In the algebraic case for n = 1 we have cardinal B-splines

N1(x) = χ[0,1)(x),

Nm(x) = (Nm−1 ∗N1)(x) =

1\
0

Nm−1(x− t) dt, m ≥ 2.

Now we need some definitions, lemmas and theorems.

Definition 2. The family of columns of the matrix Vs is called unimodu-

lar if the first n columns are linearly independent and ∀Y ⊂Vs,♯Y =n|detY |≤1.

Let f̂ denote the Fourier transform of f , i.e.

f̂(x) =
\

Rn

f(t)e−2πit·x dt.

In the algebraic case we have the following

Lemma 2 (see [4, 6]). The family V = Vs is unimodular if and only if

(6) {x ∈ R
n : ∀α∈ZnB̂(x− α |V ) = 0} = ∅.

For Chebyshevian box splines the condition (6) may not hold for a family
which is not unimodular:
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Example.

V4 =

[
1 0 2 0
0 1 0 1

]
, w1 = 1,

w2(x1, x2) = e−|2x1−1| for 0 ≤ x1 ≤ 1,

w2(x1 + α, x2) = w2(x1, x2) for α ∈ Z.

Applying (3) we obtain

B̂(x |V4,W )

=
\

[0,1]4

e−2πi[(u1+2u3)x1+(u2+u4)x2]w2(u1 + 2u3, u2) du1 du2 du3 du4

=

(
1 − e−2πix2

2πix2

)2 8∑

k=1

\\
Dk

e−2πi(u1+2u3)x1gk(u1, u3) du1 du3,

where

D1 = {(u1, u3) : 0 ≤ u1 ≤ 1/2, 0 ≤ u3 ≤ 1/4 − u1/2},

D2 = {(u1, u3) : 0 ≤ u1 ≤ 1/2, 1/4 − u1/2 ≤ u3 ≤ 1/2 − u1/2},

D3 = {(u1, u3) : 1/2 ≤ u1 ≤ 1, 0 ≤ u3 ≤ 1/2 − u1/2},

D4 = {(u1, u3) : 0 ≤ u1 ≤ 1, 1/2 − u1/2 ≤ u3 ≤ 3/4 − u1/2},

D5 = {(u1, u3) : 0 ≤ u1 ≤ 1, 3/4 − u1/2 ≤ u3 ≤ 1 − u1/2},

D6 = {(u1, u3) : 0 ≤ u1 ≤ 1/2, 1 − u1/2 ≤ u3 ≤ 1},

D7 = {(u1, u3) : 1/2 ≤ u1 ≤ 1, 1 − u1/2 ≤ u3 ≤ 5/4 − u1/2},

D8 = {(u1, u3) : 1/2 ≤ u1 ≤ 1, 5/4 − u1/2 ≤ u3 ≤ 1},

g1 = e−1+2u1+4u3 , g2 = g3 = e1−2u1−4u3 , g4 = e−3+2u1+4u3 ,

g5 = e3−2u1−4u3 , g6 = g7 = e−5+2u1+4u3 , g8 = e5−2u1−4u3 .

Hence

B̂(x |V4,W ) =

(
1 − e−2πix2

2πix2

)2
g(x1)

8e(1 + π2x2
1)

2
,

where

g(x1) = (1 + 2e · e−πix1 − 5e−2πix1 + 4e · e−3πix1 − 5e−4πix1

+ 2e · e−5πix1 + e−6πix1)

+ 2πi(1 − 2e · e−πix1 + e−2πix1 − e−4πix1

+ 2e · e−5πix1 − e−6πix1)x1

+ π2(−1 + 2e · e−πix1 − 3e−2πix1 + 4e · e−3πix1 − 3e−4πix1

+ 2e · e−5πix1 − e−6πix1)x2
1

=

2∑

k=0

αk(eπix1)xk
1
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and the coefficients αk depend only on eπix1 . If g(x̃1) = 0, then g(x̃1 +2j) =∑2
k=0 αk(eπix̃1)(x̃1 + 2j)k and since it is a polynomial of degree 2 with

respect to j, it is different from zero for some j except for the case when all
the coefficients of g are zero, and this happens for x1 = 1/2 and x1 = 3/2.
Hence the condition (6) is not satisfied.

Let X = V ∪ −V = {v1, . . . , vs,−v1, . . . ,−vs}. Then we define

B̃(x |X,W ) = (B(· |V,W ) ∗B(· | −V,W−))(x)

=
\

Rn

B(x− t |V,W )B(t | − V,W−) dt.

Lemma 3. We have

B(−x |V,W ) = B(x | −V,W−), B̃(x |X,W ) = B̃(−x |X,W )

and

B̂(x | −V,W−) = B̂(x |V,W ),

where W− = {f : f(−x) ∈W and −V = {x ∈ V : −x ∈ V }.

The proof follows directly from the definition of box splines.

Lemma 4. Let DVs,W f = Dvn+1,w1
. . . Dvs,ws−n

f and let B(x |Vs) and

B(x |X) be the algebraic box splines with respect to Vs and X = Vs ∪ −Vs

respectively ; moreover , in the cases W = 1 let all the functions wj be equal

to one. Then

D−Vs,W−DVs,W B̃(x |X,W ) = D−Vs,1DVs,1B(x |X).

P r o o f. Using the fact that convolution is commutative and Theorem 3
we obtain the equality

D−Vs,W−DVs,W B̃(x |X,W )

=
\

Rn

DVs,WB(x− t |Vs,W )D−Vs,W−B(t | −Vs,W
−) dt

=
\

Rn

DVs,1B(x− t |Vs)D−Vs,1B(t | −Vs) dt

= D−Vs,1DVs1

\
Rn

B(x− t |Vs)B(t | −Vs) dt = D−Vs,1DVs,1B(x |X)

since B(x |Vs) ∗ B(x | −Vs) = B(x,X) (see [4, 6]) and we have proved the
lemma.

Corollary. B̃(x |X,W ) = B(x | Ṽ , W̃ ), where

Ṽ = {v1, . . . , vn,−v1, . . . ,−vn,−vn+1, . . . ,−vs,−vn+1, . . . ,−vs},

W̃ = {1, . . . , 1︸ ︷︷ ︸
n

, w1(x), . . . , ws−n(x), w1(−x), . . . , ws−n(−x)}.
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Lemma 5. Let f, f̂ ∈ C(R) and for some δ > 0,

|f(x)| ≤ C(1 + ‖x‖)−n−δ, x ∈ R
n,

|f̂(x)| ≤ C(1 + ‖x‖)−n−δ, x ∈ R
n.

Then for every x ∈ R
n,
∑

α∈Zn

f(x− α) =
∑

α∈Zn

f̂(α)e2πiα·x.

For the proof we refer to [11] (see also [6]).

Lemma 6. Let functions ϕ and ψ be integrable, bounded and with compact

support. Then for every x ∈ R
n,

∑

α∈Zn

ϕ̂(x− α)ψ̂(x− α) =
∑

α∈Zn

(ϕ ∗ ψ)(−α)e2πiα·x.

For the proof we refer to [6].

Theorem 4. Let the family V be admissible and satisfy (6). Then for

every x ∈ R
n,

PX,W (x) =
∑

α∈Zn

B̃(α |X,W )e2πiα·x 6= 0.

P r o o f (cf. [6]). We apply Lemma 6 to the functions ϕ(x) = B(x |V,W )
and ψ(x) = B(x | −V,W−). Hence

∑

α∈Zn

[B(· |V,W )]∧(x− α)[B(· | −V,W−)]∧(x− α)

=
∑

α∈Zn

(B(· |V,W ) ∗B(· | −V,W−))(−α)e2πiα·x

=
∑

α∈Zn

B̃(−α|X,W )e2πiα·x =
∑

α∈Zn

B̃(α|X,W )e2πiα·x.

Using Lemma 3 we obtain

[B(· |V,W )]∧(x)[B(· | −V,W−)]∧(x) = |[B(· |V,W )]∧(x)|2.

Hence ∑

α∈Zn

|[B(· |V,W )]∧(x− α)|2 =
∑

α∈Zn

B̃(α |X,W )e2πiα·x

and by (6) we obtain the theorem.

Since the trigonometric polynomial PX,W is different from zero for every
x ∈ R

n, the function 1/PX,W is periodic and of class C∞. Hence we may
expand it in a Fourier series:

(7)
1

PX,W (x)
=

∑

α∈Zn

bX,W (α)e2πiα·x,



Generalization of box splines 269

where

bX,W (α) =
\

[0,1]n

1

PX,W (x)
e−2πiα·x dx.

Lemma 7. Let the family V be admissible and satisfy (6). Then the se-

quence bX,W = {bX,W (α)} of coefficients of the expansion of 1/PX,W is

exponentially decaying , i.e. there exist constants C > 0 and 0 < q < 1 such

that

(8) |bX,W (α)| ≤ Cq‖α‖, α ∈ Z
n,

where ‖α‖ = |α1| + . . .+ |αn|.

The proof is the same as in the algebraic case (see [6]).

Let V satisfy the condition (6).

Definition 3. The fundamental function associated with the familyX =
V ∪ −V and the family W is the function

ΦX,W (x) =
∑

α∈Zn

bX,W (α)B̃(x− α |X,W ).

Lemma 8. For every α ∈ Z
n,

(9) ΦX,W (α) = δ0,α.

P r o o f (see [6]). Taking the Cauchy product of the Fourier series for
PX,W and 1/PX,W we obtain (7).

As in the algebraic case we obtain (see [6])

Lemma 9. There exist constants C > 0 and 0 < q < 1 such that

|ΦX,W (x)| ≤ Cq‖x‖, x ∈ R
n.

Now we may define interpolating operators I and Ih as follows: for every
function g defined on Z

n we put

Ig(x) =
∑

α∈Zn

g(α)ΦX,W (x− α),

Ihg(x) =
∑

α∈Zn

g(α)ΦX,W (x/h − α).

The problem of the convergence of the operators Ih will be considered
in another paper.

Let

B∗
V,W (x) =

∑

α∈Zn

bX,W (α)B(x− α |V,W ), x ∈ R
n.

We have the following (see [6])



270 Z. Wronicz

Lemma 10. For every β ∈ Z
n,

(B∗
V,W , B(· − β |V,W ))Rn = δ0,β .

Moreover , there exist constants C > 0 and 0 < q < 1 such that

|B∗
V,W (x)| ≤ Cq‖x‖, x ∈ R

n.

P r o o f. Applying Lemma 3 and changing variables we obtain

(B∗
X,W , B(· − β |V,W ))Rn

=
∑

α∈Zn

bX,W (α)
\

Rn

B(x− α |V,W )B(x− β |V,W ) dx

=
∑

α∈Zn

bX,W (α)
\

Rn

B(x− (α− β) |V,W )B(x |V,W ) dx

=
∑

α∈Zn

bX,W (α)
\

Rn

B(x | −V,W−)B((β − α) − x |V,W ) dx

=
∑

α∈Zn

bX,W (α)B̃(β − α |X,W ) = ΦX,W (β) = δ0,β .

The inequality is proved as in the algebraic case.

Because of this lemma we call the function B∗
V,W the biorthogonal func-

tion.
Using the Jensen inequality and Lemma 9 we may prove (see [6]) the

following

Theorem 5. Let the family V be admissible and satisfy the condition

(6). Then for every 1 ≤ p ≤ ∞ there exist constants C1 > 0 and C2 > 0
such that for every sequence a = {aα} ⊂ lp,

C1‖a‖lp ≤
∥∥∥

∑

α∈Zn

aαB(x− α |V,W )
∥∥∥

Lp
≤ C2‖a‖lp .

Corollary. Let the family V be admissible and satisfy the condition (6).
Then the system of box splines {B(·−α |V,W )}α∈Zn is linearly independent.

The results of this paper were announced by the author in [13] and [14].

Problem. Prove that if Vs is unimodular then Vs satisfies (6).
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