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Abstract. Rasiowa and Sikorski [5] showed that in any Boolean algebra there is an ultrafilter
preserving countably many given infima. In [3] we proved an extension of this fact and gave some
applications. Here, besides further remarks, we present some of these results in a more general
setting.

1. Introduction. Let E be a subset and a an element of a Boolean algebra B, E ⊆ B
and a ∈ B. Assume that a is the infimum of E, a =

∧
E. An ultrafilter U preserves

a =
∧
E, if

a 6∈ U implies e 6∈ U for some e ∈ E.
In the section entitled “A theorem on the existence of prime ideals in Boolean algebras”

of their paper “A proof of the completeness theorem of Gödel” (cf. [5]), Rasiowa and

Sikorski prove the following theorem which is sometimes (cf. [4]) called the Lemma of

Rasiowa and Sikorski.

Theorem 1.1. Given infima a1 =
∧
E1, a2 =

∧
E2,. . . in a non-trivial (i.e., 0 6= 1)

Boolean algebra there is an ultrafilter preserving all these infima.

Since

a =
∧
E implies 0 =

∧
{e∩ ∼ a | e ∈ E},

this result can be rephrased as:

Corollary 1.2. Let E1, E2, . . . be subsets of a non-trivial Boolean algebra with 0 =∧
E1 =

∧
E2 = . . .. Then

(∗) there is an ultrafilter U s.t. for all n there is e ∈ En with ∼ e ∈ U.
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In [3] we gave necessary and sufficient “absolute” conditions for the existence of an

ultrafilter as in this corollary in case we omit the hypothesis 0 =
∧
E1 =

∧
E2 = . . .. (As

shown by E1 = {a} and E2 = {∼ a} with an arbitrary element a the hypothesis cannot

simply be omitted.)

Our result and proof method were inspired by a corresponding characterization of

the omissible types of (incomplete) first-order theories contained in [1], rediscovered and

applied in [2]. It is well-known that one of the first important applications of the Lemma of

Rasiowa and Sikorski is its use by Ryll-Nardzewski to characterize ω0-categorical theories

(cf. [6]). Implicitly, this characterization contains the so-called omitting types theorem.

In this paper we present our results extending the Lemma of Rasiowa and Sikorski in

a more general setting.

2. Inflationary and monotone operations. Let B be a set and J an operation

on ther power set of B,

J : Pow(B)→ Pow(B),

that is inflationary and monotone; here inflationary means that

X ⊆ J(X),

and monotone that

X ⊆ Y implies J(X) ⊆ J(Y ).

By transfinite induction one defines the subsets Jα of B by

J0 := ∅; Jα+1 := J(Jα); Jα :=
⋃
β<α

Jβ .

Then,

J∞ :=
⋃
α

Jα

is the least fixed-point of J , i.e.,

J(J∞) = J∞ and J(X) = X implies J∞ ⊆ X.

If κ is an infinite cardinal, we say that J is κ-ary, if

J(X) =
⋃
{J(X0) | X0 ⊆ X and |X0| < κ}

(here |Y | denotes the cardinality of Y ).

Now let I be a set and for i ∈ I let J i be an inflationary and monotone operation on

the power set of B. Define the union of JI of the J i’s,

JI : Pow(B)→ Pow(B),

by

JI(X) :=
⋃
{J i(X) | i ∈ I}.

Clearly, JI is inflationary and monotone. Moreover,

(1) Every fixed-point of JI is a fixed-point of each J i; in particular, JI∞ is a fixed-point

of each J i.
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Proof. Assume that JI(X) = X. Since J i is inflationary, we have X ⊆ J i(X) ⊆
JI(X) = X.

(2) If each J i is κ-ary, then so is JI and, for any α,

JIα =
⋃
{JI0α | I0 ⊆ I and |I0| < κ}

(here, JI0 is the union of the J i’s with i ∈ I0).

Proof. Clearly, the equality holds for α = 0. For α = β + 1 we have

JIβ+1 := JI(JIβ) =
⋃
i∈I

J i(JIβ)

=
⋃
i∈I

⋃
I0⊆I, |I0|<κ

J i(JI0β )

=
⋃

I0⊆I, |I0|<κ

JI0(JI0β ) =
⋃

I0⊆I, |I0|<κ

JI0β+1

(in deriving the first equality in the last line note that I1 ⊆ I2 implies JI1(X) ⊆ JI2(X)).

If α a limit ordinal then

JIα =
⋃
β<α

JIβ =
⋃

I0⊆I, |I0|<κ

⋃
β<α

JI0β =
⋃

I0⊆I, |I0|<κ

JI0α .

As a corollary we get:

(3) If each J i is κ-ary, then JI∞ =
⋃
{JI0∞ | I0 ⊆ I and |I0| < κ}.

Hence,

(4) If each J i is κ-ary, then for a ∈ B,

a ∈ JI∞ iff a ∈ JI0∞ for some I0 ⊆ I with |I0| < κ.

3. The generalization of the Lemma of Rasiowa and Sikorski. Fix a Boolean

algebra B. For a subset X of B denote by F (X) the filter generated by X,

F (X) := {b | there are n ≥ 0, a0, . . . , an ∈ X with a0 ∩ . . . ∩ an ≤ b}.

A filter F is proper, if 0 6∈ F . Henceforth, we shall use the letter U to denote ultrafilters,

i.e., proper filters such that a ∈ U or ∼ a ∈ U for all a ∈ B.
An ultrafilter U omits E, if there is e ∈ E such that ∼ e ∈ U (cf. 1.2). Then, we say

that E is omissible. Define J (= JE), J : Pow(B)→ Pow(B), by

J(X) := {∼ a | E ⊆ F (X ∪ {a})}.

Clearly,

(5) J is inflationary and monotone; if |E| < κ then J is κ-ary.

(6) If X ⊆ U and U omits E, then J(X) ⊆ U .

Proof. Assume X ⊆ U , U omits E, and let ∼ a ∈ J(X). Then, E ⊆ F (X ∪ {a}) ⊆
F (U ∪ {a}). Therefore, ∼ a ∈ U .

A simple transfinite induction using (6) shows

(7) if U omits E then J∞ ⊆ U.
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Moreover,

(8) J(X) = X iff X is a filter and in the quotient Boolean algebra B/X
we have

∧
E = 0

(here E = {ē | e ∈ E}, where ē denotes the equivalence class of e).

Proof. First, assume the right side of the equivalence. We only must show that

J(X) ⊆ X. So assume b ∈ J(X). Then E ⊆ F (X ∪ {∼ b}). Since
∧
E = 0 in B/X, we

have ∼ b = 0 in B/X, thus b ∈ X.

Now assume J(X) = X. Let x ∈ X. Then, E ⊆ F (X∪{∼ x}). If y ∈ X then F (X∪{∼
x}) = F (X ∪ {∼ x∪ ∼ y}), hence, E ⊆ F (X ∪ {∼ (x ∩ y)}), thus x ∩ y ∈ J(X) = X. If

x ≤ y then F (X ∪ {∼ y}) ⊇ F (X ∪ {∼ x}) ⊇ E and therefore, y ∈ J(X) = X. Finally,

let a ∈ B, and assume that in B/X,

ā ≤ ē for all e ∈ E.

Then E ⊆ F (X ∪ {a}), thus, ∼ a ∈ J(X) = X, hence, ā = 0.

Now let E be a non-empty class of subsets of B. We say that E is onissible, if there

is an ultrafilter U that omits E , i.e., that omits each E in E . Let JE be the union of the

JE ’s for E ∈ E , i.e.,

JE(X) =
⋃
E∈E

JE(X) = {∼ a | E ⊆ F (X ∪ {a}) for some E ∈ E}.

A transfinite induction, using (7), shows:

(9) If U omits E then JE∞ ⊆ U .

By (1) and (8) we get

(10) JE∞ is a filter and in the quotient Boolean algebra B/JE∞ we have
∧
E = 0 for every

E ∈ E .

Let C be a class of Boolean algebras and λ a cardinal. We say that C is R(asiowa)

S(ikorski)(λ)-good, if for any non-trivial Boolean algebra B in C and any set E , |E| < λ,

of non-empty subsets E of B with
∧
E = 0, there is an ultrafilter U that omits E . The

classical Lemma of Rasiowa and Sikorski (cf. 1.2) tells us that the class of all Boolean

algebras is RS(ω1)-good. Martin’s axiom is (equivalent to) the statement that the class

of all Boolean algebras with the countable chain condition is RS(2ω)-good (a Boolean

algebra satisfies the countable chain condition, if every subset of pairwise disjoint elements

is countable). The class of all Boolean algebras is not RS(ω+
1 )-good; a counterexample is

obtained by choosing an appropriate set E in the Boolean algebra of regular open subsets

of the partial order given by the set of partial functions from ω to ω1 with finite support

(cf. [4]).

Theorem 3.1. Let C be a RS(λ)-good class of Boolean algebras closed under quo-

tients. Then, for any Boolean algebra B in C and any family E, |E| < λ, of subsets of B,

E is omissible iff 0 6∈ JE∞.

Proof. If U omits E , then JE∞ ⊆ U by (9); hence, 0 6∈ JE∞. Otherwise, if 0 6∈ JE∞
then, by (8), JE∞ is a proper filter, B/JE∞ is a non-trivial Boolean algebra, and, in B/JE∞,
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we have
∧
E = 0 for all E ∈ E . Hence, by the assumption of RS(λ)-goodness there is an

ultrafilter U in B/JE∞ that omits {E | E ∈ E}. Therefore, U−1 := {b ∈ B | b̄ ∈ U} is an

ultrafilter omitting E .
Recall that a Boolean algebra B is retractive, if for every proper filter F in B there

is a homomorphism f from B/F to B such that π ◦ f is the identity on B/F (here, π

denotes the canonical homomorphism from B onto B/F ). Clearly,

if B is retractive and has the ccc, then every quotient of B has the ccc.

Every interval algebra and every tree algebra is retractive (see [4]). Hence, we obtain

from the preceding theorem (taking as C the class of interval algebras (or, the class of

tree algebras) with ccc):

Corollary 3.2. Assume Martin’s axiom and let B be an interval algebra or a tree

algebra with the countable chain condition. Furthermore, let E, |E| < 2ω, be a family of

subsets of B. Then E is omissible iff 0 6∈ JE∞.

Theorem 3.3. Let C be a RS(λ)-good class of Boolean algebras closed under quo-

tients. For B in C and any family E, |E| < λ, of subsets E of B with |E| < κ the following

holds: if every subfamily of E of cardinality less than κ is omissible, then E is omissible.

Proof. Let E0 be an arbitrary subfamily of E of cardinality less than κ. Since E0
is omissible, 0 6∈ JE0∞ by (9). As JE is κ-ary (cf. (5) and (2)), we have by (3), 0 6∈ JE∞.

Hence, by the previous theorem, E is omissible.

An instance of this theorem is:

Corollary 3.4. Assume Martin’s axiom and let E, |E| < 2ω, be a family of countable

subsets of an interval algebra or of a tree algebra with the countable chain condition. If

every countable subfamily of E is omissible, then E is omissible.

References

[1] J. Barwise and Y. N. Moschovakis, Global inductive definability, Jour. Symb. Logic
43(1978), 521–534.
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