LOGIC, ALGEBRA, AND COMPUTER SCIENCE BANACH CENTER PUBLICATIONS, VOLUME 46 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1999

ON THE EXISTENCE OF PRIME IDEALS IN BOOLEAN ALGEBRAS

JÖRG FLUM

Mathematisches Institut, Universität Freiburg Eckerstr. 1 79104 Freiburg, Germany E-mail: flum@ruf.uni-freiburg.de

Abstract. Rasiowa and Sikorski [5] showed that in any Boolean algebra there is an ultrafilter preserving countably many given infima. In [3] we proved an extension of this fact and gave some applications. Here, besides further remarks, we present some of these results in a more general setting.

1. Introduction. Let *E* be a subset and *a* an element of a Boolean algebra $\mathcal{B}, E \subseteq B$ and $a \in B$. Assume that *a* is the infimum of *E*, $a = \bigwedge E$. An ultrafilter *U* preserves $a = \bigwedge E$, if

$$a \notin U$$
 implies $e \notin U$ for some $e \in E$.

In the section entitled "A theorem on the existence of prime ideals in Boolean algebras" of their paper "A proof of the completeness theorem of Gödel" (cf. [5]), Rasiowa and Sikorski prove the following theorem which is sometimes (cf. [4]) called *the* Lemma of Rasiowa and Sikorski.

THEOREM 1.1. Given infima $a_1 = \bigwedge E_1, a_2 = \bigwedge E_2, \ldots$ in a non-trivial (i.e., $0 \neq 1$) Boolean algebra there is an ultrafilter preserving all these infima.

$$a = \bigwedge E$$
 implies $0 = \bigwedge \{ e \cap \sim a \mid e \in E \},$

this result can be rephrased as:

COROLLARY 1.2. Let E_1, E_2, \ldots be subsets of a non-trivial Boolean algebra with $0 = \bigwedge E_1 = \bigwedge E_2 = \ldots$ Then

(*) there is an ultrafilter U s.t. for all n there is $e \in E_n$ with $\sim e \in U$.

1991 *Mathematics Subject Classification*: 03G05, 03E50, 06E10, 54D80. The paper is in final form and no version of it will be published elsewhere.

[119]

J. FLUM

In [3] we gave necessary and sufficient "absolute" conditions for the existence of an ultrafilter as in this corollary in case we omit the hypothesis $0 = \bigwedge E_1 = \bigwedge E_2 = \ldots$ (As shown by $E_1 = \{a\}$ and $E_2 = \{\sim a\}$ with an arbitrary element *a* the hypothesis cannot simply be omitted.)

Our result and proof method were inspired by a corresponding characterization of the omissible types of (incomplete) first-order theories contained in [1], rediscovered and applied in [2]. It is well-known that one of the first important applications of the Lemma of Rasiowa and Sikorski is its use by Ryll-Nardzewski to characterize ω_0 -categorical theories (cf. [6]). Implicitly, this characterization contains the so-called omitting types theorem.

In this paper we present our results extending the Lemma of Rasiowa and Sikorski in a more general setting.

2. Inflationary and monotone operations. Let B be a set and J an operation on ther power set of B,

$$J : \operatorname{Pow}(B) \to \operatorname{Pow}(B),$$

that is inflationary and monotone; here inflationary means that

$$X \subseteq J(X),$$

and monotone that

$$X \subseteq Y$$
 implies $J(X) \subseteq J(Y)$

By transfinite induction one defines the subsets J_{α} of B by

$$J_0 := \emptyset; \quad J_{\alpha+1} := J(J_\alpha); \quad J_\alpha := \bigcup_{\beta < \alpha} J_\beta.$$

Then,

$$J_{\infty} := \bigcup_{\alpha} J_{\alpha}$$

is the *least fixed-point* of J, i.e.,

$$J(J_{\infty}) = J_{\infty}$$
 and $J(X) = X$ implies $J_{\infty} \subseteq X$

If κ is an infinite cardinal, we say that J is κ -ary, if

$$J(X) = \bigcup \{ J(X_0) \mid X_0 \subseteq X \text{ and } |X_0| < \kappa \}$$

(here |Y| denotes the cardinality of Y).

Now let I be a set and for $i \in I$ let J^i be an inflationary and monotone operation on the power set of B. Define the *union* of J^I of the J^i 's,

$$J^I : \operatorname{Pow}(B) \to \operatorname{Pow}(B),$$

by

$$J^I(X) \quad := \quad \bigcup \, \{J^i(X) \mid i \in I\}.$$

Clearly, J^I is inflationary and monotone. Moreover,

(1) Every fixed-point of J^{I} is a fixed-point of each J^{i} ; in particular, J_{∞}^{I} is a fixed-point of each J^{i} .

PROOF. Assume that $J^{I}(X) = X$. Since J^{i} is inflationary, we have $X \subseteq J^{i}(X) \subseteq J^{I}(X) = X$.

(2) If each J^i is κ -ary, then so is J^I and, for any α ,

$$J_{\alpha}^{I} = \bigcup \left\{ J_{\alpha}^{I_{0}} \mid I_{0} \subseteq I \text{ and } |I_{0}| < \kappa \right\}$$

(here, J^{I_0} is the union of the J^i 's with $i \in I_0$).

PROOF. Clearly, the equality holds for $\alpha = 0$. For $\alpha = \beta + 1$ we have

$$\begin{split} I^{I}_{\beta+1} &:= \quad J^{I}(J^{I}_{\beta}) = \bigcup_{i \in I} J^{i}(J^{I}_{\beta}) \\ &= \quad \bigcup_{i \in I} \quad \bigcup_{I_{0} \subseteq I, |I_{0}| < \kappa} J^{i}(J^{I_{0}}_{\beta}) \\ &= \quad \bigcup_{I_{0} \subseteq I, |I_{0}| < \kappa} J^{I_{0}}(J^{I_{0}}_{\beta}) = \bigcup_{I_{0} \subseteq I, |I_{0}| < \kappa} J^{I_{0}}_{\beta+1} \end{split}$$

(in deriving the first equality in the last line note that $I_1 \subseteq I_2$ implies $J^{I_1}(X) \subseteq J^{I_2}(X)$). If α a limit ordinal then

$$J^{I}_{\alpha} = \bigcup_{\beta < \alpha} J^{I}_{\beta} = \bigcup_{I_0 \subseteq I, \, |I_0| < \kappa} \, \bigcup_{\beta < \alpha} J^{I_0}_{\beta} = \bigcup_{I_0 \subseteq I, \, |I_0| < \kappa} J^{I_0}_{\alpha}. \quad \bullet$$

As a corollary we get:

(3) If each J^i is κ -ary, then $J^I_{\infty} = \bigcup \{ J^{I_0}_{\infty} \mid I_0 \subseteq I \text{ and } |I_0| < \kappa \}.$

Hence,

(4) If each J^i is κ -ary, then for $a \in B$,

$$a \in J_{\infty}^{I}$$
 iff $a \in J_{\infty}^{I_{0}}$ for some $I_{0} \subseteq I$ with $|I_{0}| < \kappa$.

3. The generalization of the Lemma of Rasiowa and Sikorski. Fix a Boolean algebra \mathcal{B} . For a subset X of B denote by F(X) the filter generated by X,

 $F(X) := \{ b \mid \text{there are } n \ge 0, a_0, \dots, a_n \in X \text{ with } a_0 \cap \dots \cap a_n \le b \}.$

A filter F is *proper*, if $0 \notin F$. Henceforth, we shall use the letter U to denote ultrafilters, i.e., proper filters such that $a \in U$ or $\sim a \in U$ for all $a \in B$.

An ultrafilter U omits E, if there is $e \in E$ such that $\sim e \in U$ (cf. 1.2). Then, we say that E is omissible. Define $J (= J^E), J : Pow(B) \to Pow(B)$, by

$$I(X) := \{ \sim a \mid E \subseteq F(X \cup \{a\}) \}$$

Clearly,

(5) J is inflationary and monotone; if $|E| < \kappa$ then J is κ -ary.

(6) If $X \subseteq U$ and U omits E, then $J(X) \subseteq U$.

PROOF. Assume $X \subseteq U$, U omits E, and let $\sim a \in J(X)$. Then, $E \subseteq F(X \cup \{a\}) \subseteq F(U \cup \{a\})$. Therefore, $\sim a \in U$.

A simple transfinite induction using (6) shows

(7) if U omits E then $J_{\infty} \subseteq U$.

J. FLUM

Moreover,

- (8) J(X) = X iff X is a filter and in the quotient Boolean algebra \mathcal{B}/X we have $\bigwedge \overline{E} = 0$
 - (here $\overline{E} = \{\overline{e} \mid e \in E\}$, where \overline{e} denotes the equivalence class of e).

PROOF. First, assume the right side of the equivalence. We only must show that $J(X) \subseteq X$. So assume $b \in J(X)$. Then $E \subseteq F(X \cup \{\sim b\})$. Since $\bigwedge \overline{E} = 0$ in \mathcal{B}/X , we have $\overline{\sim b} = 0$ in \mathcal{B}/X , thus $b \in X$.

Now assume J(X) = X. Let $x \in X$. Then, $E \subseteq F(X \cup \{\sim x\})$. If $y \in X$ then $F(X \cup \{\sim x\}) = F(X \cup \{\sim x \cup \sim y\})$, hence, $E \subseteq F(X \cup \{\sim (x \cap y)\})$, thus $x \cap y \in J(X) = X$. If $x \leq y$ then $F(X \cup \{\sim y\}) \supseteq F(X \cup \{\sim x\}) \supseteq E$ and therefore, $y \in J(X) = X$. Finally, let $a \in B$, and assume that in \mathcal{B}/X ,

$$\bar{a} \leq \bar{e}$$
 for all $e \in E$.

Then $E \subseteq F(X \cup \{a\})$, thus, $\sim a \in J(X) = X$, hence, $\bar{a} = 0$.

Now let \mathcal{E} be a non-empty class of subsets of B. We say that \mathcal{E} is *onissible*, if there is an ultrafilter U that *omits* \mathcal{E} , i.e., that omits each E in \mathcal{E} . Let $J^{\mathcal{E}}$ be the union of the J^{E} 's for $E \in \mathcal{E}$, i.e.,

$$J^{\mathcal{E}}(X) = \bigcup_{E \in \mathcal{E}} J^{E}(X) = \{ \sim a \mid E \subseteq F(X \cup \{a\}) \text{ for some } E \in \mathcal{E} \}.$$

A transfinite induction, using (7), shows:

(9) If U omits \mathcal{E} then $J_{\infty}^{\mathcal{E}} \subseteq U$.

By (1) and (8) we get

(10) $J_{\infty}^{\mathcal{E}}$ is a filter and in the quotient Boolean algebra $\mathcal{B}/J_{\infty}^{\mathcal{E}}$ we have $\bigwedge \overline{E} = 0$ for every $E \in \mathcal{E}$.

Let \mathcal{C} be a class of Boolean algebras and λ a cardinal. We say that \mathcal{C} is R(asiowa) S(ikorski)(λ)-good, if for any non-trivial Boolean algebra \mathcal{B} in \mathcal{C} and any set \mathcal{E} , $|\mathcal{E}| < \lambda$, of non-empty subsets E of B with $\bigwedge E = 0$, there is an ultrafilter U that omits \mathcal{E} . The classical Lemma of Rasiowa and Sikorski (cf. 1.2) tells us that the class of all Boolean algebras is RS(ω_1)-good. Martin's axiom is (equivalent to) the statement that the class of all Boolean algebras with the countable chain condition is RS(2^{ω})-good (a Boolean algebra satisfies the *countable chain condition*, if every subset of pairwise disjoint elements is countable). The class of all Boolean algebras is not RS(ω_1^+)-good; a counterexample is obtained by choosing an appropriate set \mathcal{E} in the Boolean algebra of regular open subsets of the partial order given by the set of partial functions from ω to ω_1 with finite support (cf. [4]).

THEOREM 3.1. Let C be a RS(λ)-good class of Boolean algebras closed under quotients. Then, for any Boolean algebra \mathcal{B} in C and any family \mathcal{E} , $|\mathcal{E}| < \lambda$, of subsets of B,

$$\mathcal{E}$$
 is omissible iff $0 \notin J_{\infty}^{\mathcal{E}}$.

PROOF. If U omits \mathcal{E} , then $J_{\infty}^{\mathcal{E}} \subseteq U$ by (9); hence, $0 \notin J_{\infty}^{\mathcal{E}}$. Otherwise, if $0 \notin J_{\infty}^{\mathcal{E}}$ then, by (8), $J_{\infty}^{\mathcal{E}}$ is a proper filter, $\mathcal{B}/J_{\infty}^{\mathcal{E}}$ is a non-trivial Boolean algebra, and, in $\mathcal{B}/J_{\infty}^{\mathcal{E}}$,

122

we have $\bigwedge \overline{E} = 0$ for all $E \in \mathcal{E}$. Hence, by the assumption of $\operatorname{RS}(\lambda)$ -goodness there is an ultrafilter U in $\mathcal{B}/J_{\infty}^{\mathcal{E}}$ that omits $\{\overline{E} \mid E \in \mathcal{E}\}$. Therefore, $U^{-1} := \{b \in B \mid \overline{b} \in U\}$ is an ultrafilter omitting \mathcal{E} .

Recall that a Boolean algebra \mathcal{B} is *retractive*, if for every proper filter F in \mathcal{B} there is a homomorphism f from \mathcal{B}/F to \mathcal{B} such that $\pi \circ f$ is the identity on \mathcal{B}/F (here, π denotes the canonical homomorphism from \mathcal{B} onto \mathcal{B}/F). Clearly,

if \mathcal{B} is retractive and has the ccc, then every quotient of \mathcal{B} has the ccc.

Every interval algebra and every tree algebra is retractive (see [4]). Hence, we obtain from the preceding theorem (taking as C the class of interval algebras (or, the class of tree algebras) with ccc):

COROLLARY 3.2. Assume Martin's axiom and let \mathcal{B} be an interval algebra or a tree algebra with the countable chain condition. Furthermore, let \mathcal{E} , $|\mathcal{E}| < 2^{\omega}$, be a family of subsets of \mathcal{B} . Then \mathcal{E} is omissible iff $0 \notin J_{\infty}^{\mathcal{E}}$.

THEOREM 3.3. Let C be a RS (λ) -good class of Boolean algebras closed under quotients. For \mathcal{B} in C and any family \mathcal{E} , $|\mathcal{E}| < \lambda$, of subsets E of \mathcal{B} with $|E| < \kappa$ the following holds: if every subfamily of \mathcal{E} of cardinality less than κ is omissible, then \mathcal{E} is omissible.

PROOF. Let \mathcal{E}_0 be an arbitrary subfamily of \mathcal{E} of cardinality less than κ . Since \mathcal{E}_0 is omissible, $0 \notin J_{\infty}^{\mathcal{E}_0}$ by (9). As $J^{\mathcal{E}}$ is κ -ary (cf. (5) and (2)), we have by (3), $0 \notin J_{\infty}^{\mathcal{E}}$. Hence, by the previous theorem, \mathcal{E} is omissible.

An instance of this theorem is:

COROLLARY 3.4. Assume Martin's axiom and let \mathcal{E} , $|\mathcal{E}| < 2^{\omega}$, be a family of countable subsets of an interval algebra or of a tree algebra with the countable chain condition. If every countable subfamily of \mathcal{E} is omissible, then \mathcal{E} is omissible.

References

- J. BARWISE and Y. N. MOSCHOVAKIS, Global inductive definability, Jour. Symb. Logic 43(1978), 521–534.
- [2] E. CASANOVAS and R. FARRÉ, Omitting types in incomplete theories, Jour. Symb. Logic 41(1996), 236–245.
- [3] J. FLUM, An extension of the lemma of Rasiowa and Sikorski, to appear.
- [4] S. KOPPELBERG, General theory of Boolean algebras, Volume I of D. Monk, editor, Handbook of Boolean algebras, North-Holland, 1989.
- [5] H. RASIOWA and R. SIKORSKI, A proof of the completeness theorem of Gödel, Fund. Math. 37(1950), 193–200.
- [6] C. RYLL-NARDZEWSKI, On the categoricity in power $\leq \omega$, Bull. Acad. Pol. Sci. 7(1959), 545-548.