LOGIC, ALGEBRA, AND COMPUTER SCIENCE BANACH CENTER PUBLICATIONS, VOLUME 46 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1999

A CONSTRUCTIVE PROOF THAT EVERY 3-GENERATED *l*-GROUP IS ULTRASIMPLICIAL

DANIELE MUNDICI

Department of Computer Science University of Milano Via Comelico 39-41 20135 Milano, Italy E-mail: mundici@imiucca.csi.unimi.it

GIOVANNI PANTI

Department of Mathematics University of Udine Via delle Scienze 208 33100 Udine, Italy E-mail: panti@dimi.uniud.it

Abstract. We discuss the ultrasimplicial property of lattice-ordered abelian groups and their associated MV-algebras. We give a constructive proof of the fact that every lattice-ordered abelian group generated by three elements is ultrasimplicial.

1. Preliminaries. The infinite-valued calculus of Lukasiewicz stands to MV-algebras as the classical two-valued calculus stands to boolean algebras. Indeed, as proved by Chang [Cha58], the latter coincide with the subclass of MV-algebras satisfying the equation $x \oplus x = x$. The ultrasimplicial property of MV-algebras is a generalization of the fundamental fact that every boolean algebra is generated by the limit of the direct system of its finite partitions. Accordingly, this property is a prerequisite for such results as the joint refinability of MV-algebraic partitions, or even—assuming the appropriate σ -closure conditions—for the definition of an MV-algebraic notion of entropy.

Using the categorical equivalence between MV-algebras and abelian lattice-ordered groups with strong unit (see [Mun86]), one has a natural counterpart of the ultrasimplicial

¹⁹⁹¹ Mathematics Subject Classification: 03B50, 20K05.

The first named author is partially supported by CNR-GNSAGA Project on Symbolic Computation.

The paper is in final form and no version of it will be published elsewhere.

^[169]

property for any such group G—with or without strong unit—to the effect that every finite set of positive elements of G is positively generated by an *independent* set B of positive elements (see [Ell79] and [Han83]).

In [Mun88], from the algebraic analysis of disjunctive normal forms in the infinitevalued calculus, it is proved that every free abelian lattice-group is ultrasimplicial. Thus, since Handelman proved that the ultrasimplicial property is preserved under formation of quotients by order-ideals [Han83, Theorem 3(ii)], it follows that *every* abelian latticegroup, as well as every MV-algebra, is ultrasimplicial. However, Handelman's proof is nonconstructive, and gives no hint on how to construct the independent set B.

Aim of this paper is to give a *constructive* proof, for the case of 3-generated latticegroups, corresponding to 2-generated MV-algebras. We shall work throughout in the framework of partially ordered groups.

2. Definitions. A partially ordered abelian group is an abelian group G, together with a submonoid G^+ of G, such that G^+ generates G as a group and $G^+ \cap (-G^+) = \{0\}$. A *lattice-ordered abelian group* (ℓ -group, for short) is a partially ordered abelian group in which the order induced by

$$a \leq b$$
 iff $b-a \in G^+$

is a lattice order. Equivalently, an ℓ -group is a structure $(G, +, -, 0, \lor, \land)$ such that (G, +, -, 0) is an abelian group, (G, \lor, \land) is a lattice, and + distributes over \lor and \land . The words ℓ -subgroup and ℓ -homomorphism have their standard universal algebraic meaning, with respect to the signature $(+, -, 0, \lor, \land)$. An ℓ -ideal is an ℓ -subgroup J of G which is convex in G (i.e., $a \leq b \leq c$ in G and $a, c \in J$ imply $b \in J$). Thus, ℓ -ideals are precisely the same as kernels of ℓ -homomorphisms.

An ℓ -group is simplicially ordered iff it is isomorphic to a finite power \mathbb{Z}^m of the integers, with componentwise order. A partially ordered abelian group G is ultrasimplicially ordered iff it can be expressed as the union of an increasing chain

$$G_0 \subseteq G_1 \subseteq G_2 \subseteq \cdots$$

of simplicially ordered groups, satisfying $G_i^+ \subseteq G_{i+1}^+$ for every *i*. As shown in [Han83, Proposition 1], the ultrasimplicial property has the following equivalent reformulation:

(U) for every $a_1, \ldots, a_r \in G^+$ there exist $b_1, \ldots, b_s \in G^+$ that are linearly independent over \mathbb{Z} and span a_1, \ldots, a_r with integer coefficients ≥ 0 .

It is well known that the free ℓ -group over n generators is the ℓ -subgroup $F\ell(n)$ of $\mathbb{R}^{(\mathbb{R}^n)}$ generated by the projection functions $\mathbf{x}_i : \mathbb{R}^n \to \mathbb{R}$, for $i = 1, \ldots, n$. Equivalently, $F\ell(n)$ is the ℓ -group of all homogeneous piecewise-linear functions with integer coefficients. These are defined as follows: a homogeneous piecewise-linear function with integer coefficients (a hpli function, for short) is a continuous function $\mathbf{f} : \mathbb{R}^n \to \mathbb{R}$ for which there exist finitely many elements $\mathbf{f}_1, \ldots, \mathbf{f}_m$ of $\operatorname{Hom}(\mathbb{Z}^n, \mathbb{Z})$ such that, for every $u \in \mathbb{R}^n$, there exists an index i with $\mathbf{f}(u) = \mathbf{f}_i(u)$.

By [Mun88], every free ℓ -group is ultrasimplicial. In [Han83, Theorem 3(ii)], it is claimed that the ultrasimplicial property is preserved under quotients, but the proof is—to say the least—nonconstructive. Let us note that Elliott's proof [Ell79] that every

totally ordered group is ultrasimplicial provides also a recipe for constructing, given $a_1, \ldots, a_r \in G^+$, elements b_1, \ldots, b_s satisfying property (U). The same holds for the proof in [Mun88], which can also be extended to finitely presented ℓ -groups (i.e., quotients of $F\ell(n)$ by congruences generated by finitely many equations of the form $\mathbf{f} = \mathbf{g}$, for $\mathbf{f}, \mathbf{g} \in F\ell(n)$); details of this extension are spelled out in [MP93].

In this paper we give a direct, effective proof that every ℓ -group generated by three elements is ultrasimplicial.

3. The main result. We need some preliminaries in piecewise-linear topology. Let $v_1, \ldots, v_m \in \mathbb{Z}^n$; the *polyhedral cone* σ generated by v_1, \ldots, v_m is their positive hull. Explicitly:

$$\sigma = \langle v_1, \dots, v_m \rangle = \{ r_1 v_1 + \dots + r_m v_m : r_1, \dots, r_m \in \mathbb{R}^+ \},\$$

where \mathbb{R}^+ is the set of real numbers ≥ 0 . We say that σ is k-dimensional iff the linear space spanned by σ is k-dimensional. We set

$$\sigma^{\vee} = \{ \mathbf{f} \in \operatorname{Hom}(\mathbb{R}^n, \mathbb{R}) : \mathbf{f}(u) \ge 0, \text{ for every } u \in \sigma \}.$$

A face τ of σ is any set of the form $\tau = \sigma \cap \ker \mathbf{f}$, for some $\mathbf{f} \in \sigma^{\vee}$. Equivalently, a face of σ is a nonempty convex subset τ of σ such that every line segment in σ which has an interior point in τ lies entirely in τ . The *relative interior* relint σ of σ is the topological interior of σ relative to the \mathbb{R} -vector space generated by σ . If σ is k-dimensional, then $u \in \operatorname{rel} \operatorname{int} \sigma$ iff there exist vectors $v_1, \ldots, v_k \in \sigma$ that are linearly independent over \mathbb{R} and such that $u = a_1v_1 + \cdots + a_kv_k$, with $a_1, \ldots, a_k \in \mathbb{R}^+ \setminus \{0\}$ (see, e.g., [Ful93, §1.2]).

A simplicial cone is a polyhedral cone of the form $\langle v_1, \ldots, v_m \rangle$, with v_1, \ldots, v_m linearly independent over \mathbb{R} . A nonzero point $v \in \mathbb{Z}^n$ is primitive iff its coordinates are relatively prime. The vertices of a simplicial cone σ are the uniquely determined primitive points v_1, \ldots, v_m such that $\sigma = \langle v_1, \ldots, v_m \rangle$.

A unimodular cone is a simplicial cone of the form $\langle v_1, \ldots, v_m \rangle$, where $v_1, \ldots, v_m \in \mathbb{Z}^n$ and there exist $v_{m+1}, \ldots, v_n \in \mathbb{Z}^n$ such that $v_1, \ldots, v_m, v_{m+1}, \ldots, v_n$ constitute a free basis for \mathbb{Z}^n . A fan is a finite set Σ of polyhedral cones such that:

- (i) every face of every cone of Σ belongs to Σ ;
- (ii) any two cones of Σ intersect in a common face.

The union of all cones of Σ is denoted by $|\Sigma|$; Σ is a *complete* fan iff $|\Sigma| = \mathbb{R}^n$. If all cones of Σ are unimodular, then Σ is said to be *unimodular*. Complete unimodular fans correspond to nonsingular projective toric varieties [Oda88], [Ful93], [Ewa96].

If Σ , Δ are fans, $|\Sigma| = |\Delta|$, and every cone of Δ is contained in some cone of Σ , then we say that Δ is a *subdivision* of Σ , and we write $\Delta \leq \Sigma$. In this case every cone of Σ is a union of cones of Δ . Any vertex of any cone of Σ is a *vertex* of Σ .

LEMMA 3.1. Let Σ be a fan, $u \in |\Sigma|$. Then there exists $\sigma \in \Sigma$ such that $u \in \operatorname{relint} \sigma$ and, for every $\sigma \neq \sigma' \in \Sigma$, we have $u \notin \operatorname{relint} \sigma'$.

PROOF. Let $\sigma = \bigcap \{\tau \in \Sigma : u \in \tau\}$. Any polyhedral cone is the disjoint union of the relative interior of its faces [Oda88, Appendix]. This applies to σ , and hence $u \in \operatorname{relint} \sigma$.

Let $\sigma = \langle u, v, w_1, \ldots, w_r \rangle$ be an (r+2)-dimensional unimodular cone. Then $\tau = \langle u, v \rangle$ is a face of σ ; we call w = u + v the *Farey mediant* of τ . Let $\sigma' = \langle w, v, w_1, \ldots, w_r \rangle$, $\sigma'' = \langle u, w, w_1, \ldots, w_r \rangle$. Assume that Σ is a unimodular fan, with $\sigma \in \Sigma$. Define a subdivision Σ' of Σ by replacing each cone $\sigma \in \Sigma$ of which τ is a face by the two cones σ', σ'' obtained as above, along with all their faces. Then Σ' is a unimodular fan, and we say that Σ' is obtained by *starring* Σ along τ (see [Oda88, Proposition 1.26], or [Ewa96, Definition 6.1]).

Let u be a vertex of the complete unimodular fan Σ . The *Schauder hat* \mathbf{u} (or \mathbf{u}_{Σ} , if we need to make explicit the dependence upon Σ) of Σ at u is the unique homogeneous piecewise-linear function $\mathbf{u} : \mathbb{R}^n \to \mathbb{R}$ such that

(i) u(u) = 1;

(ii) $\mathbf{u}(v) = 0$, for every vertex $v \neq u$ of Σ ;

(iii) **u** is homogeneous linear on each cone of Σ .

Schauder hats exist for arbitrary vertices of Σ ; indeed, the unimodularity of the cones of Σ automatically ensures that the coefficients of every linear piece of **u** are integers (see [Mun88, Proposition 1.3] for details). Hence **u** is a hpli function, and an element of $F\ell(n)$.

Let Σ be a complete unimodular fan in \mathbb{R}^n ; let u_1, \ldots, u_t display all vertices of Σ . Then the Schauder hats $\mathbf{u}_1, \ldots, \mathbf{u}_t$ are linearly independent over \mathbb{Z} ; let H_{Σ} be the subgroup of $F\ell(n)$ generated —using the group operations only— by $\mathbf{u}_1, \ldots, \mathbf{u}_t$. Note that H_{Σ} , with the order inherited from $F\ell(n)$, is ℓ -isomorphic to \mathbb{Z}^t as a simplicial group, but it is not an ℓ -subgroup of $F\ell(n)$, since the lattice operations are different in the two structures. The zero-set of $\mathbf{f} \in F\ell(n)$ is $Z\mathbf{f} = \{v \in \mathbb{R}^n : \mathbf{f}(v) = 0\}$. Let a fixed ℓ -ideal J of $F\ell(n)$ be given; define

$$Z\Sigma = \bigcap \{ Z\mathbf{f} : \mathbf{f} \in H_{\Sigma} \cap J \}.$$

The dependence of $Z\Sigma$ on J is tacitly understood.

LEMMA 3.2. For any $\mathbf{f} \in H_{\Sigma}$, we have $\mathbf{f} \in J$ iff $Z\mathbf{f} \supseteq Z\Sigma$.

PROOF. For the nontrivial direction, suppose $Z\mathbf{f} \supseteq Z\Sigma$. Since $H_{\Sigma} \cap J$ is a subgroup of the finitely generated free \mathbb{Z} -module H_{Σ} , we can find generators $\mathbf{g}_1, \ldots, \mathbf{g}_h$ of $H_{\Sigma} \cap J$. Then

$$Z\Sigma = Z\mathbf{g}_1 \cap \cdots \cap Z\mathbf{g}_h \subseteq Z\mathbf{f}.$$

Let $\mathbf{g} = |\mathbf{g}_1| + \cdots + |\mathbf{g}_h| \in J$. Since $Z\mathbf{g} \subseteq Z|\mathbf{f}|$, we have by compactness $0 \leq |\mathbf{f}| \leq m\mathbf{g}$ in $F\ell(n)$, for some multiple $m\mathbf{g}$ of \mathbf{g} . Since J is convex, $|\mathbf{f}| \in J$, and since $-|\mathbf{f}| \leq \mathbf{f} \leq |\mathbf{f}|$, we have $\mathbf{f} \in J$.

LEMMA 3.3. Let σ be a k-dimensional cone of Σ , and let $v_1, \ldots, v_p \in \sigma \cap Z\Sigma$. Let V denote the \mathbb{R} -vector space spanned by v_1, \ldots, v_p . Then $\sigma \cap Z\Sigma \supseteq \sigma \cap V$.

PROOF. Every $\mathbf{f} \in H_{\Sigma}$ is homogeneous linear on σ .

LEMMA 3.4. If Δ is a unimodular subdivision of Σ , then $Z\Delta \subseteq Z\Sigma$.

PROOF. $H_{\Sigma} \subseteq H_{\Delta}$, and hence $H_{\Sigma} \cap J \subseteq H_{\Delta} \cap J$.

LEMMA 3.5. Let Σ be such that $Z\Sigma$ is a union of cones of Σ . Then the set

 $\{\mathbf{u}/J:\mathbf{u} \text{ is a Schauder hat of } \Sigma \text{ and } \mathbf{u} \notin J\}$

is linearly independent over \mathbb{Z} in $F\ell(n)/J$.

PROOF. Let $\mathbf{f} = a_1 \mathbf{u}_1 + \cdots + a_t \mathbf{u}_t$, where $a_1, \ldots, a_t \in \mathbb{Z}$ and $\mathbf{u}_1, \ldots, \mathbf{u}_t$ are Schauder hats of Σ at distinct vertices of Σ . Assume $a_1 \neq 0$, $\mathbf{u}_1 \notin J$: we will show that $\mathbf{f} \notin J$. Since $u_1 \notin J$, by Lemma 3.2 there exists $v \in Z\Sigma \setminus Z\mathbf{u}_1$. Let σ be the cone of Σ to whose relative interior v belongs; as $v \in Z\Sigma$, and $Z\Sigma$ is a union of cones of Σ , we have $\sigma \subseteq Z\Sigma$. Since \mathbf{u}_1 is not identically 0 on σ , u_1 must be a vertex of σ . Since $\mathbf{f}(u_1) = a_1\mathbf{u}_1(u_1) = a_1 \neq 0$, then $Z\mathbf{f} \not\supseteq Z\Sigma$, and hence $\mathbf{f} \notin J$.

THEOREM 3.6. Let Σ be a complete unimodular fan, $|\Sigma| = \mathbb{R}^3$. Let J be an ℓ -ideal of $F\ell(3)$. Then there exists a subdivision Δ of Σ with the following two properties:

- (i) Δ can be obtained from Σ via a finite sequence of starrings along 2-dimensional cones;
- (ii) $Z\Delta$ is a union of cones of Δ .

4. Proof of Theorem 3.6. Let $\sigma \in \Sigma$, $k \in \{2,3\}$, $1 \le j \le k$. We say that σ is of type (k, j) with respect to Σ iff the following hold:

- (1) σ is k-dimensional;
- (2) $\sigma \cap Z\Sigma$ is *j*-dimensional;
- (3) relint $\sigma \cap Z\Sigma \neq \emptyset$.

If either relint $\sigma \cap Z\Sigma = \emptyset$, or σ is 0- or 1-dimensional, then σ is of no type. Note that (3) is equivalent to:

(3') $\sigma \cap Z\Sigma$ is not contained in a proper face of Σ .

Indeed, (3) clearly implies (3'), while the reverse direction follows from Lemma 3.3.

DEFINITION 4.1. For every $\sigma \in \Sigma$ of type (k, j), and every unordered pair u, v of distinct vertices of σ , we define the *badness* of (σ, u, v) , denoted by $\text{bad}_{\Sigma}(\sigma, u, v)$, as follows:

- (a) if k = j = 3, or k = j = 2, then $bad_{\Sigma}(\sigma, u, v) = \infty$.
- (b) if k = 3 and j = 2, then there exists a unique (up to multiplication by -1) primitive linear functional $\mathbf{f} \in \text{Hom}(\mathbb{Z}^3, \mathbb{Z})$ such that $\sigma \cap Z\mathbf{f} = \sigma \cap Z\Sigma$. Set

$$\operatorname{bad}_{\Sigma}(\sigma, u, v) = \begin{cases} 0, & \text{if } \mathbf{f}(u) \cdot \mathbf{f}(v) \ge 0; \\ |\mathbf{f}(u)| + |\mathbf{f}(v)|, & \text{otherwise.} \end{cases}$$

(c) if j = 1, then there exists a unique primitive $w \in \mathbb{Z}^3$ such that $\sigma \cap Z\Sigma = \langle w \rangle$. $w \in \operatorname{relint} \sigma$, and can be written uniquely as a linear combination of the vertices of σ with integer coefficients > 0. Set $\operatorname{bad}_{\Sigma}(\sigma, u, v) = a + b$, where a, b are the coefficients of u, v in the above expression for w.

We shall use induction on eight parameters, ordered lexicographically from left to right as follows:

$$s_0(3,3), s_1(3,2), s_0(3,2), s_1(3,1), s_0(3,1), s_0(2,2), s_1(2,1), s_0(2,1).$$

These parameters are defined by:

- $s_0(k,k) =$ number of cones of type (k,k);
- for j < k, $s_1(k, j) = \sup\{ \operatorname{bad}_{\Sigma}(\sigma, u, v) : \sigma \text{ is of type } (k, j) \};$
- for j < k, $s_0(k, j)$ = number of triples (σ, u, v) such that σ is of type (k, j) and $bad_{\Sigma}(\sigma, u, v) = s_1(k, j)$ (triples are unordered, so $(\sigma, u, v) = (\sigma, v, u)$).

Note that, for j < k, we have $s_1(k, j) = 0$ iff $s_0(k, j) = 0$ iff Σ contains no cones of type (k, j).

LEMMA 4.2. If, for every $1 \le j < k \in \{2,3\}$, Σ contains no cones of type (k, j), then $Z\Sigma$ is a union of cones of Σ .

PROOF. Let $u \in Z\Sigma$, and let σ be the cone of Σ to whose relative interior u belongs. If σ is k-dimensional, then by our assumption $\sigma \cap Z\Sigma$ must be k-dimensional, too. By Lemma 3.3, $\sigma \subseteq Z\Sigma$.

We equip types with the following order:

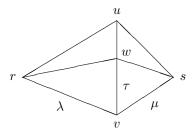
 $(3,3) \succ (3,2) \succ (3,1) \succ (2,2) \succ (2,1) \succ$ no type.

LEMMA 4.3. Let Σ, Δ be complete unimodular fans, and assume that Δ is a subdivision of Σ . Let $\delta \in \Delta$, and let $\sigma = \bigcap \{\tau \in \Sigma : \delta \subseteq \tau\}$. Then the type of δ in Δ is less than or equal to the type of σ in Σ . If $\delta = \sigma$ and the two types are equal, then $bad_{\Delta}(\sigma) = bad_{\Sigma}(\sigma)$.

PROOF. Clear from the definitions.

LEMMA 4.4. Suppose Σ contains a cone of type (k, j), with $1 \leq j < k \in \{2, 3\}$; let $s_0(3,3),\ldots,s_0(2,1)$ be the parameters associated to Σ . Then there exists a starring of Σ along a 2-dimensional cone such that—letting Σ' be the resulting fan and $s'_0(3,3),\ldots,s'_0(2,1)$ its associated parameters—the 8-tuple $(s'_0(3,3),\ldots,s'_0(2,1))$ is strictly smaller than $(s_0(3,3),\ldots,s_0(2,1))$ in the lexicographic ordering.

PROOF. Let (k, j) be the largest type (with respect to \succ) such that $s_1(k, j) \neq 0$. Let $\sigma \in \Sigma$ be of type (k, j), and let u, v be vertices of σ with $\operatorname{bad}_{\Sigma}(\sigma, u, v) = s_1(k, j)$. We star Σ along $\tau = \langle u, v \rangle$, obtaining Σ' ; let w = u + v. τ is the intersection of two uniquely determined 3-dimensional cones $\lambda, \mu \in \Sigma$. If k = 2, then $\sigma = \tau$, while if k = 3, we assume $\sigma = \lambda$. Upon taking a section of these cones by a suitable plane we obtain the following picture:



The starring replaces:

• λ with $\lambda' = \langle u, w, r \rangle$, $\lambda'' = \langle w, v, r \rangle$, and $\langle w, r \rangle$;

- τ with $\tau' = \langle u, w \rangle$, $\tau'' = \langle w, v \rangle$, and $\langle w \rangle$;
- μ with $\mu' = \langle u, w, s \rangle$, $\mu'' = \langle w, v, s \rangle$, and $\langle w, s \rangle$.

We proceed arguing by cases:

Case 1. $k = 3, j = 2, \sigma = \lambda$. Then $\sigma \cap Z\Sigma = \sigma \cap Z\mathbf{f}$, for some primitive $\mathbf{f} \in \text{Hom}(\mathbb{Z}^3, \mathbb{Z})$. Without loss of generality, $\mathbf{f}(u) < 0$. Also, $\tau \cap Z\Sigma = \tau \cap Z\mathbf{f} = \langle p \rangle$, with $p \in \text{relint } \tau$; by Lemmas 3.3 and 4.3, each of $\mu, \lambda', \lambda'', \mu', \mu''$ is of type $\preceq (3, 2)$. By Lemma 4.3, the parameter $s_0(3, 3)$ cannot increase. If it decreases, we are through. Otherwise, it suffices to prove that, for every $\rho \in \{\lambda', \lambda'', \mu', \mu''\}$, if ρ is of type (3, 2), u', v' are vertices of ρ , and $\langle u', v' \rangle$ is not a cone of Σ , then $\text{bad}_{\Sigma'}(\rho, u', v') < \text{bad}_{\Sigma}(\sigma, u, v)$. To this purpose, we again distinguish:

Subcase 1.1. $\rho = \lambda', u' = u, v' = w$. By Lemma 4.3, together with the assumption that λ' is of type (3,2), in Σ' , we have $\lambda' \cap Z\Sigma' = \lambda' \cap Z\mathbf{f}$. If $p \notin \operatorname{relint}\langle u, w \rangle$, then $\operatorname{bad}_{\Sigma'}(\rho, u', v') = 0$. Otherwise, $\mathbf{f}(u) < 0 < \mathbf{f}(w) < \mathbf{f}(v)$, and $\operatorname{bad}_{\Sigma'}(\rho, u', v') = |\mathbf{f}(u)| + |\mathbf{f}(w)| < |\mathbf{f}(u)| + |\mathbf{f}(v)| = \operatorname{bad}_{\Sigma}(\sigma, u, v)$.

Subcase 1.2. $\rho = \lambda', u' = r, v' = w$. Again, $\lambda' \cap Z\Sigma' = \lambda' \cap Z\mathbf{f}$. We may assume $\mathbf{f}(r) \cdot \mathbf{f}(w) < 0$ for, otherwise, $\operatorname{bad}_{\Sigma'}(\lambda', r, w) = 0$. Either $\mathbf{f}(u) < 0 < \mathbf{f}(w) < \mathbf{f}(v)$, or $\mathbf{f}(u) < \mathbf{f}(w) < 0 < \mathbf{f}(v)$. In the first case, $\operatorname{bad}_{\Sigma'}(\lambda', r, w) = |\mathbf{f}(r)| + |\mathbf{f}(w)| < |\mathbf{f}(r)| + |\mathbf{f}(v)| = \operatorname{bad}_{\Sigma}(\sigma, r, v) \leq \operatorname{bad}_{\Sigma}(\sigma, u, v)$. In the second case, $\operatorname{bad}_{\Sigma'}(\lambda', r, w) = |\mathbf{f}(r)| + |\mathbf{f}(w)| + |\mathbf{f}(w)| < |\mathbf{f}(r)| + |\mathbf{f}(w)| < |\mathbf{f}(w)|$

Subcase 1.3. $\rho = \mu', u' = u, v' = w$. Then μ is of type (3, 2) in Σ . Let $\mathbf{g} \in \operatorname{Hom}(\mathbb{Z}^3, \mathbb{Z})$ be primitive satisfying $\mu \cap Z\mathbf{g} = \mu \cap Z\Sigma$; then $\mu' \cap Z\mathbf{g} = \mu' \cap Z\Sigma'$ and $\mathbf{g}(p) = 0$. If $p \notin \operatorname{relint}\langle u, w \rangle$, then $\operatorname{bad}_{\Sigma'}(\mu', u, w) = 0$. Otherwise, without loss of generality, $\mathbf{g}(u) < 0 < \mathbf{g}(w) < \mathbf{g}(v)$, and $\operatorname{bad}_{\Sigma'}(\mu', u, w) = |\mathbf{g}(u)| + |\mathbf{g}(w)| < |\mathbf{g}(u)| + |\mathbf{g}(v)| = \operatorname{bad}_{\Sigma}(\mu, u, v) \leq s_1(3, 2)$.

Subcase 1.4. $\rho = \mu', u' = s, v' = w$. Then arguing as for Subcase 1.2 one gets the desired conclusion.

Subcase 1.5. $\rho = \lambda''$, or $\rho = \mu''$. The proof is the same as for the previous subcases.

Case 2. $k = 3, j = 1, \sigma = \lambda$. By our choice of $(k, j), \Sigma$ contains no cones of type (3, 2); by Lemmas 3.3 and 4.3, each of $\mu, \lambda', \lambda'', \mu', \mu''$ is either of type (3, 1), or of no type. If either parameter $s_0(3, 3), s_1(3, 2), s_0(3, 2)$ happens to change, then, by Lemma 4.3, $s_0(3, 3)$ must decrease—and we are done. If, on the other hand, none of these parameters changes, then to obtain the desired conclusion it suffices to prove that, for every $\rho \in \{\lambda', \lambda'', \mu', \mu''\}$, if ρ is of type (3, 1), u', v' are vertices of ρ , and $\langle u', v' \rangle \notin \Sigma$, then $\operatorname{bad}_{\Sigma'}(\rho, u', v') <$ $\operatorname{bad}_{\Sigma}(\sigma, u, v)$. We only consider the case $\rho = \lambda'$, the other cases being similar. If $\rho = \lambda'$, then $\sigma \cap Z\Sigma = \lambda' \cap Z\Sigma' = \langle p \rangle$, for a uniquely determined primitive $p \in \mathbb{Z}^3$. We have p = au + bv + cr, for uniquely determined $a, b, c \in \mathbb{Z}^+ \setminus \{0\}$. Since $p \in \operatorname{relint} \lambda'$, we have a > b. Also, p = (a - b)u + bw + cr, uniquely. Since $\langle u', v' \rangle \notin \Sigma$, we may assume v' = w. If u' = u, then $\operatorname{bad}_{\Sigma'}(\lambda', u', v') = (a - b) + b < a + b = \operatorname{bad}_{\Sigma}(\sigma, u, v)$. If u' = r, then $\operatorname{bad}_{\Sigma'}(\lambda', u', v') = b + c < a + c = \operatorname{bad}_{\Sigma}(\sigma, u, v)$.

Case 3. $k = 2, j = 1, \sigma = \tau$. This is even simpler than Case 2. It suffices to observe that, by our choice of (k, j), Σ contains no cones of either type (3, 2) or (3, 1). Also, each of $\lambda, \mu, \lambda', \lambda'', \mu', \mu''$ is of no type. In case one of the parameters $\succ s_1(2, 1)$ happens

to change, then, by Lemma 4.3, the greatest such changing parameter must actually decrease. If, on the other hand, no parameter $\succ s_1(2,1)$ does change, then the same argument as in Case 2 yields the desired conclusion.

The proof of Theorem 3.6 is now complete: as a matter of fact, let a complete unimodular fan Σ be given, $|\Sigma| = \mathbb{R}^3$. If $Z\Sigma$ is not a union of cones of Σ , then, by Lemma 4.2, Σ contains a cone of type (k, j), for some j < k. Using Lemma 4.4, we have a chain of starrings $\Sigma > \Sigma' > \Sigma'' > \cdots$, which must terminate, since the set of 8-tuples of parameters is well ordered; say it stops at Δ . Then Δ contains no cones of type (k, j) for k > j, and Lemma 4.2 yields the desired conclusion.

5. Conclusion

THEOREM 5.1. Every ℓ -group G with three generators is ultrasimplicial.

PROOF. We can safely identify G with the quotient ℓ -group $F\ell(3)/J$, for some ℓ ideal J. Let $\mathbf{f}_1/J, \ldots, \mathbf{f}_r/J \in (F\ell(3)/J)^+$. Replacing each \mathbf{f}_i by $\mathbf{f}_i \vee \mathbf{0}$, and deleting all elements annihilated by the quotient map, we may assume $\mathbf{f}_1, \ldots, \mathbf{f}_r \in F\ell(3)^+ \setminus J$. Each \mathbf{f}_i is of the form

$$\mathbf{f}_i = \bigvee_{s \in S} \bigwedge_{t \in T} \mathbf{g}_{st}^i$$

where S, T are finite index sets, and each \mathbf{g}_{st}^i is in Hom $(\mathbb{Z}^3, \mathbb{Z})$. Let $\mathbf{g}_1, \ldots, \mathbf{g}_k$ display all \mathbf{g}_{st}^i , for $1 \leq i \leq r$. For every permutation φ of $\{1, \ldots, k\}$, let

$$\sigma_{\varphi} = \{ x \in \mathbb{R}^3 : \mathbf{g}_{\varphi(1)}(x) \le \mathbf{g}_{\varphi(2)}(x) \le \dots \le \mathbf{g}_{\varphi(k)}(x) \}.$$

Then a routine argument shows that each σ_{φ} is a polyhedral cone and that the set Γ of all faces of all σ_{φ} 's is a complete fan; moreover, every \mathbf{f}_i is linear on every cone of Γ .

We make three successive refinements. The first two are standard constructions:

- firstly, we refine Γ to a fan Π whose cones are all simplicial. This can be accomplished without introducing new vertices, following [Ewa96, Theorem 4.2];
- secondly, we refine Π to a complete unimodular fan Σ , as in the proof of [Ewa96, Theorem 8.5].

Thirdly, in the light of Theorem 3.6,

we refine Σ to a fan Δ such that ZΔ (relative to the ideal J) is a union of cones of Δ.

Let u_1, \ldots, u_t be the vertices of Δ , and $\mathbf{u}_1, \ldots, \mathbf{u}_t$ their associated Schauder hats. Since, for every i,

$$\mathbf{f}_i = \mathbf{f}_i(u_1) \cdot \mathbf{u}_1 + \dots + \mathbf{f}_i(u_t) \cdot \mathbf{u}_t,$$

it follows that the set $\{\mathbf{u}_1/J, \ldots, \mathbf{u}_t/J\} \setminus \{\mathbf{0}/J\}$ spans $\mathbf{f}_1/J, \ldots, \mathbf{f}_r/J$ positively and, by Lemma 3.5, is linearly independent over \mathbb{Z} in $F\ell(3)/J$. Hence condition (U) is satisfied, and the proof is complete.

Final remarks. A moment's reflection shows that a (constructive) proof of the ultrasimplicial property of all *n*-generated ℓ -groups immediately extends to all ℓ -groups.

Thus it is natural to consider the following question: can the techniques of this paper be extended to n-generated ℓ -groups ?

Theorem 3.6 is the only step in our proof that cannot be immediately generalized to higher dimensions. One can reasonably expect that the *n*-dimensional generalization of this theorem requires an induction argument over more complicated parameters. As a working hypothesis, for any *j*-dimensional cone $\sigma \cap Z\Sigma$ lying inside a *k*-dimensional cone $\sigma \in \Sigma$ natural badness parameters are provided by the Plücker coordinates of $\sigma \cap Z\Sigma$ with respect to the basis given by the *j*-dimensional faces of σ (see, e.g., [BML67, Chapter XVI] for background). The attentive reader may have noticed that also the parameters used in this paper are based on Plücker coordinates, although in a slightly disguised form.

For an instructive example, let $\sigma = \langle v_1, \ldots, v_4 \rangle$ be a 4-dimensional cone of a fan Σ , and suppose the 2-dimensional cone $\sigma \cap Z\Sigma$ to be positively spanned by the two linearly independent vectors $p, q \in \mathbb{Z}^n \cap \sigma$. Let us construct the exterior algebra $\bigwedge^2 \mathbb{Z}^4$, with basis $v_1 \wedge v_2, \ldots, v_3 \wedge v_4$, and assume that $p \wedge q$ has coordinates $\xi_{12}, \ldots, \xi_{34} \in \mathbb{Z}$ in $\bigwedge^2 \mathbb{Z}^4$, with $\xi_{12}, \ldots, \xi_{34}$ relatively prime. It follows that

$$s = |\xi_{12}| + \dots + |\xi_{34}|$$

is a natural badness parameter for $\sigma \cap Z\Sigma$ in σ . Indeed, $\sigma \cap Z\Sigma$ coincides with a face of σ exactly when s = 1. We must star σ in such a way that s decreases. Starring σ along one of its faces corresponds to a base change in $\bigwedge^2 \mathbb{Z}^4$. Now, while in dimension ≤ 3 every base change corresponds to a starring, this does not hold in higher dimensions; for example, the base change arising from the substitution of $v_1 \wedge v_2 + v_3 \wedge v_4$ for $v_1 \wedge v_2$ does not correspond to any starring, because $v_1 \wedge v_2 + v_3 \wedge v_4$ is not reducible in $\bigwedge^2 \mathbb{Z}^4$. In algebraic-geometric terms, one has to figure out a path of starrings, leading from the base points $v_1 \wedge v_2, \ldots, v_3 \wedge v_4$ to the point $p \wedge q$, and never leaving the Grassmannian of lines in \mathbb{P}^3 .

Further complications arise from the requirement that the starrings employed to decrease the badness of $\sigma \cap Z\Sigma$ in σ should not result in increasing the badness of $\sigma' \cap Z\Sigma$ in σ' , for any $\sigma' \in \Sigma$.

Closing a circle of ideas, as a final source of complication it might well be the case that the *n*-dimensional generalization of the results of this paper requires that the starring operation should be performed along arbitrary cones of Σ (see [Oda88] or [Ewa96]), rather than only 2-dimensional cones.

References

- [BML67] G. BIRKHOFF and S. MAC LANE, Algebra. The Macmillan Co., New York, 1967.
- [Cha58] C. C. CHANG, Algebraic analysis of many valued logics. Trans. Amer. Math. Soc., 88:467–490, 1958.
- [Ell79] G. ELLIOTT, On totally ordered groups, and K₀. In Ring Theory (Proc. Conf. Univ. Waterloo, Waterloo, 1978), volume 734 of Lecture Notes in Math., pages 1–49. Springer, 1979.
- [Ewa96] G. EWALD, Combinatorial Convexity and Algebraic Geometry. Springer, 1996.

- [Ful93] W. FULTON, An introduction to Toric Varieties, volume 131 of Annals of Mathematics Studies. Princeton University Press, Princeton, N.J., 1993.
- [Han83] D. HANDELMAN, Ultrasimplicial dimension groups. Arch. Math., 40:109–115, 1983.
- [MP93] D. MUNDICI and G. PANTI, The equivalence problem for Bratteli diagrams. Technical Report 259, Department of Mathematics, University of Siena, Siena, Italy, 1993.
- [Mun86] D. MUNDICI, Interpretation of AF C^{*}-algebras in Lukasiewicz sentential calculus. J. of Functional Analysis, 65:15–63, 1986.
- [Mun88] D. MUNDICI, Farey stellar subdivisions, ultrasimplicial groups, and K_0 of AF C^* -algebras. Advances in Math., 68(1):23–39, 1988.
- [Oda88] T. ODA, Convex Bodies and Algebraic Geometry. Springer, 1988.