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Abstract. In [13], an algebraic approach to the natural structure of domains of linguistic
variables was introduced. In this approach, every linguistic domain can be interpreted as an
algebraic structure called a hedge algebra. In this paper, a refinement structure of hedge algebras
based on free distributive lattices generated by linguistic hedge operations will be examined
in order to model structure of linguistic domains more properly. In solving this question, we
restrict our consideration to the specific hedge algebras called PN-homogeneous hedge algebras.
It is shown that any PN-homogeneous hedge algebra can be refined to a refined hedge algebra
(RHA, for short) and every RHA with a chain of the primary generators is a distributive lattice.
Especially, we shall examine RHAs with exactly two distinct generators, which will be called
symmetrical RHAs. Furthermore, in the symmetrical RHAs of the linguistic truth variable, we
are able to define negation and implication operation, which, according to their properties, may
be interpreted as logical negation and implication in a kind of fuzzy logic called linguistic-
valued logic. Some elementary properties of these operations will be also examined. This yields
a possibility to construct a method in linguistic reasoning, which is based on linguistic-valued
fuzzy logic corresponding to the symmetrical RHAs of the linguistic truth variable.

1. Introduction. It is known that humans reason by means of their own language

and they can choose and decide alternatives by evaluating semantics of linguistic terms.

The fundamental elements in human reasoning are sentences normally containing vague
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concepts, and these sentences have implicitly or explicitly a truth degree, which is often

expressed also by linguistic terms such as true, very true, more or less true, approximately

true, false, very false, etc. In connection with this, Rinks wrote in [22] that “verbal

coding is a human way of repackaging material into a few chunks of rich information.

Natural language is rather unique in this characteristic. Until recently, a unified theory

for manipulating in a strict mathematical sense non-numerical-valued variables, such as

linguistic terms, did not exist.”

Furthermore, it is well-known that Boolean algebras, Post algebras, 3-valued and

multiple-valued  Lukasiewicz algebras, etc. are algebraic foundations of classical or non-

classical logics (see, e.g., [4,8,20,21,23]). In this direction, we want to look for an algebraic

structure for fuzzy logic based on a suitable structure of truth vague concepts. It is known

that L.A. Zadeh introduced and examined fuzzy logic based on the notion of linguistic

variables. A linguistic variable is characterised by a quintuple (X,T (X), U,G,M), where

X is the name of the variable; T (X) denotes the term-set of X, U is a universe of discourse

of the base variable, G is a syntactic rule for generating linguistic terms of T (X), and M

is a semantic rule which is a mapping assigning to each linguistic term a fuzzy set on U .

Recall that a fuzzy set of U is an element of the set F (U, [0, 1]) of all functions from U

to the unit interval [0, 1]. In our approach, each term is associated with an element in an

RHA, and its meaning is expressed through the structure of such an RHA.

In the papers initiated by Ho & Wechler [5,13], an algebraic approach to the natural

structure of domains of linguistic variables was examined. As mentioned above, the main

aim of our investigation is to find an appropriate algebraic structure for fuzzy logic and

fuzzy reasoning, which could model human reasoning in an advantageous way. There are

three main reasons for pursuing the research in this direction. The first one is that the

domains of linguistic variables can be embedded into mathematical structure: the lattice

structure, which is well-known in applications to logic. In such a structure, these domains

can be ordered in a reasonable way, based on intuitive meanings of vague concepts. The

second one is that there exists a natural demand to find a mathematical method for

manipulating immediately linguistic terms as depicted above. The third one is that the

way ones interpret the meaning of linguistic terms as fuzzy sets loses the natural ordering

structure of linguistic domains.

In [13], an axiomatization for the so-called hedge algebras was introduced. Recall that

the axiomatization is based on a detailed discussion about the general characteristics of

linguistic hedges and vague concepts in natural language. The idea of this research was

suggested from the research works of Zadeh and Lakoff [18,26,28], in which linguistic

hedges and vague concepts are considered within the framework of fuzzy set theory.

In the algebraic approach, every linguistic domain can be interpreted as an algebra

AX = (X,G,H,≤), where (X,≤) is a poset and G is a set of the primary generators and

H is a set of unary operations representing linguistic hedges under consideration. In [14],

hedge algebras were extended by introducing two additional operations corresponding to

infimum and supremum of the so-called concept category of an element x, i.e. the set

H(x), which is generated from x by means of hedge operations.

It is shown that every extended hedge algebra (EHA, for short) with a lattice of the

primary generators is a lattice and they can be used as an algebraic basis for a fuzzy logic
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called linguistic-valued logic (see, e.g., Ho [5-7]). However, many linguistic terms, which

contain logical connectives disjunction “or” and/or conjunction “and” like ’Approximately

True or Possibly True’ , cannot be reasonably expressed by elements of hedge algebras.

The reason lies in the fact that although we can define in these algebras operations of

join ∪ and meet ∩, which may be interpreted as disjunction “or” and conjunction “and”,

but, in our opinion, these structures are rather rough. For example, let us consider the

set of all possible truth values

T = {true, false, very true, very false, approximately true,possibly true,

approximately true or possibly true, approximately true and possibly true, . . .}
We can see that the above linguistic value “approximately true or possibly true” will be

expressed by “true” in the structure of EHA of the set of linguistic truth values, i.e. they

define the same element in this algebra, which is clearly unsuitable in nature. Another

disadvantage is that EHA, in general, are not distributive and hence we are not able to

discuss the disjunction and conjunction normal forms.

In this paper we shall introduce some new axioms and obtain a class of algebras called

refined hedge algebras (RHAs, for short), which have a finer structure than that of hedge

algebras.

The paper is organised as follows: In Section 2 we shall present a way of constructing

the distributive lattices of hedge operations. We shall introduce in Section 3 an axiom-

atization for RHA. A characterization to determine the relative position of elements

in an RHA and some fundamental properties of this structure will be examined. The

main property, which says that every RHA with a chain of the primary generators is a

distributive lattice, will be studied in Section 4. In Section 5, RHAs with exactly two

distinct generators called symmetrical RHAs will be examined. As a consequence, these

RHAs are distributive lattices. Moreover, in Section 6 we shall point out that, in the

finite symmetrical RHAs of the domains of the linguistic truth variable, we are able to

define negation operation and implication operation, which may be interpreted as logical

negation and implication. Some elementary properties of these operations will be also

presented. Finally, some concluding remarks will be given in Section 7.

2. Distributive lattices of hedge operations. As mentioned in the previous sec-

tion, the main aim of our investigation is to find a finer structure than that of hedge

algebras. In order to construct this structure, we need some preparations.

First we shall recall some notions and notations introduced in [1]. Let P be a partial

ordered set (poset, for short).

Definition 2.1. An element a is said to cover an element b in a poset P , if a > b

and there is no x ∈ P such that a > x > b.

By the order o(P ) of a poset P we mean the number of its elements, and if this

number is finite, P is called a finite poset. Denote by l(P ) the length of a poset P .

In a poset P of finite length with the least element denoted by O, the height of an

element x ∈ P is, by definition, the least upper bound of the length of the chains O =

x0 < x1 < . . . < xn = x between O and x, and it is denoted by h(x). If P has the greatest

element, denoted by 1, then clearly h(1) = l(P ). Clearly also h(x) = 1 iff x covers O.
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Definition 2.2. A poset P is said to be graded if there exists a function from P to

the set Z of all integers with the natural ordering, g : P → Z, such that:

G1. x > y implies g(x) > g(y).

G2. If x covers y then g(x) = g(y) + 1.

Such a function g is called the graded function of P . It is known that any modular

lattice of finite length is graded by its height function h(x).

Let L be a modular lattice of finite length, we can define a relation R on L as follows:

∀x, y ∈ L, (x, y) ∈ R iff h(x) = h(y)

It is easily shown that R is an equivalence relation and then we have L =
⋃l(L)

i=0 Li

where Li = {x ∈ L/h(x) = i}, i = 0, . . . , l(L), are the equivalence classes of the relation

R. Clearly, L0 = {0} and Ll(L) = {1}.
In order to model the structure of sets of linguistic hedges, we need the following

assumption, which describes the fact that any two hedges belonging to two different

equivalence classes are always comparable:

(C0) Either x > y or x < y for any x ∈ Li and y ∈ Lj and i 6= j.

To illustrate this, the reader can see the classes L1 = {I}, L2 = {A,P,ML} and

L3 = {L} as in Figure 3.

It is not difficult to see that the following holds:

Proposition 2.1. Let L be a modular lattice of finite length satisfying (C0). Then

the following condition holds:

If o(Li) > 1 for an index i ∈ {1, . . . , l(L)− 1} then o(Li−1) = o(Li+1) = 1. Moreover,

if we denote e(Li+1) and e(Li−1) the single element of Li+1 and Li−1, respectively, then

e(Li+1) = ∨x∈Li
x and e(Li−1) = ∧x∈Li

x, where ∨ and ∧ are supremum and infimum in

L, respectively.

We proceed now to consider a hedge algebra1 AX = (X,G,H,≤), where (X,≤) is

a poset, G is a set of the primary generators and H is a set of unary operations repre-

senting linguistic hedges under consideration. It is assumed that H can be decomposed

into two disjoint subsets H+ and H− such that H+ + I and H− + I are finite modular

lattices, where I is the identity, i.e. Ix = x for every x in X, and considered as their

zero-element. An example for this can be seen in Figure 3.

We will denote by N+ and N− the lengths of H+ + I and H− + I, respectively.

Suppose that g+ and g− are the graded functions of H+ + I and H− + I, respectively.

Unless stated otherwise, in the sequel we shall always adopt the assumption that

H+ + I and H−+ I are finite modular lattices and satisfy the condition (C0). From now

on, V and L stand for the unit-operations in H+ + I and H− + I, respectively. Hence,

we have g+(V ) = N+, g−(L) = N− and

H+ + I =
⋃N+

i=0H
+
i where H+

i = {h ∈ H+ + I/g+(h) = i},
H− + I =

⋃N−

i=0H
−
i where H−i = {h ∈ H− + I/g−(h) = i}.

1See Ho & Wechler [14] for more details.
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We shall now construct lattices, which are “freely” generated from H++I and H−+I.

Let us consider H+ + I. Assume that for some index i ∈ 1, . . . , N+, o(H+
i ) > 1, and

H+
i = {hi1, . . . , hin}. By Proposition 2.1, the sets H+

i+1 = {hi+1} and H+
i−1 = {hi−1}

are single-element sets. For such i, the ordering relationships between the elements of

H+
i−1, H

+
i , H

+
i+1, can be expressed as in Figure 1. Note that, as assumed above, there

exists a natural ordering relation between classes H+
i and H+

i ≤ H+
j iff i ≤ j, where

H+
i ≤ H

+
j means that x ≤ y for every x ∈ H+

i and y ∈ H+
j .
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Denote by LH+
i = (L(H+

i ),∨,∧) the free distributive lattice2 generated from the

incomparable elements hi1, . . . , h
i
n of H+

i . Particularly, for an index i such that o(H+
i ) = 1,

we have LH+
i = H+

i . Put L+
u =

⋃N+

i=0 LH
+
i and LH+

i + I = (L+
u , H

+ + I,∨,∧). Lu+

becomes a distributive lattice under the ordering relation induced by the ordering relation

of the lattices LH+
i and that defined between classes H+

i , i.e. we have LH+
i ≤ LH

+
j , for

any i, j such that i ≤ j. Figure 2 shows a picture of a segment of the constructed lattice

LH+ + I, where o(H+
i ) > 1.

In an analogous way, we can construct the lattice LH− + I = (L−u , H
− + I,∨,∧),

generated from H− + I. Here, there is no confusion, because H+ and H− are assumed

to be disjoint and hence, so are LH+ and LH−, where LH+ = LH+ + I \ {I} and

LH− = LH− + I \ {I}. Thus, we have the following

Theorem 2.1. LH+ + I = (L+
u ,∨,∧, I, V,≤) and LH− + I = (L−u ,∨,∧, I, L,≤) are

finite distributive lattices.

Example 2.1. Let us consider the algebraic structure AX = (X,G,H,≤), in which

G = {True,False} and H+ = {V,M} and H− = {L,A, P,ML}. Here, for short, V ,

M , L, A, P , ML stand for Very, More, Little, Approximately, Possibly, More or Less,

correspondingly, and H++I and H−+I are lattices depicted in Figure 3. Clearly, H++I

and H− + I are finite modular lattices and satisfy condition (C0). By a construction as

above, the distributive lattices LH++I and LH−+I generated from H++I and H−+I,

respectively, can be represented as in Figure 4, where

x1 = P ∨ML, x2 = ML ∨A, x3 = A ∨ P , u1 = x2 ∧ x3, u2 = x3 ∧ x1, u3 = x1 ∧ x2,

y1 = P ∧ML, y2 = ML ∧A, y3 = A ∧ P , v1 = y2 ∨ y3, v2 = y3 ∨ y1, v3 = y1 ∨ y2,

E = (A ∨ P ) ∧ (P ∨ML) ∧ (ML ∨A) = (A ∧ P ) ∨ (P ∧ML) ∨ (ML ∧A).

2See, e.g., Birkhoff [1].
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3. An axiomatization for RHA and its elementary properties. Let us consider

a hedge algebra AX = (X,G,H,≤), where H++I and H−+I are finite modular lattices

satisfying condition (C0). Suppose that LH+ + I and LH− + I are distributive lattices,

which are generated from H+ + I and H− + I, respectively, as presented in the previous

section. Let I+ = {0, 1, . . . , N+}, I− = {0, 1, . . . , N−}, and SI+ = {i ∈ I+/o(H+
i ) > 1}

and SI− = {i ∈ I−/o(H−i ) > 1}. For simplifying the formulation of some statements,

in the sequel by ’c’ we mean either ’+’ or ’−’, and then for a statement containing,

for instance, the notation LHc
i for some i ∈ SIc, we mean the statement presents two

instances obtained by substituting “c” in turn by “+” and “−”. For example, under such
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convention we can state the following: for any i ∈ SIc, LHc
i is the free distributive lattice

generated from the incomparable elements of Hc
i and is a sublattice of LHc + I; and for

i ∈ Ic \ SIc, LHc
i is a single-element set, LHc

i = Hc
i and we have

LHc + I =

Nc⋃
i=0

LHc
i .

Put LH = LH+ ∪ LH− ∪ {I}.
Let us denote by UOS the set of two elements V and L, which are unit-operations in

LH++I and in LH−+I, respectively. Denote by Nat the set of all non-negative integers.

We introduce the following notion which will be used as an assumption throughout the

paper:

Definition 3.1. A hedge algebra AX = (X,G,H,≤) is said to be PN-homogeneous,

where PN is an abbreviation of Positive and Negative, provided that for any set Hc
i if

the unit operation V in H+ + I is positive3 (negative, resp.) w.r.t. a certain operation h

in Hc
i , then V is also positive (negative resp.) w.r.t. any other one in Hc

i .

For example, the hedge algebra AX = (X,G,H,≤) in Example 2.1 is a PN-homoge-

neous hedge algebra. Since every hedge h is a mapping from X into X, the image of an

element x in X under h will be denoted by hx instead of h(x), for convenience. Thus,

we can write khx instead of k(h(x)) for any h, k ∈ LH and x ∈ X. According to our

convention, for simplicity in formulating several statements as mentioned in [13], for any

h ∈ LH, we define hIx = Ix = x, i.e. when I occurs in an expression explicitly, any h

applying to Ix will have no effect.

The following definition gives us the semantics of the inequality h > k, which describes

a property in the natural language saying that a hedge is stronger than another one, e.g.

Little is stronger than Possibly.

Definition 3.2. An algebra AX = (X,G,LH,≤) is said to be semantically consistent

if for any h, k ∈ LHc + I, x ∈ X and hx 6= kx, h and k are comparable in LHc + I iff

hx and kx are comparable and if h > k then hx > kx, when hx > x, and hx < kx, when

hx < x.

Throughout the paper we always assume the considered algebra AX satisfies the

semantic consistency in Definition 3.2. For any two hedges h, k in LH, if the statement

x ≤ hx iff kx ≤ x holds, for every x in X, then h and k are said to be converse, or h is

converse to k and vice-versa. If the statement x ≤ hx iff x ≤ kx holds, for every x in X,

then h and k are said to be compatible.

Consider an algebra AX = (X,G,LH,≤), where G is a set of zero-argument opera-

tions, LH is a set of one-argument operations.

For every x ∈ X, LH(x) denotes the set of all elements generated from x by means of

operations in LH. More generally, for Y ⊂ X and H ′ ⊂ LH, H ′(Y ) denotes the subset

of X generated from the elements in Y by means of the operations in H ′. Particularly,

H ′(Ix) = {x}. As usual, LH∗ denotes the set of all strings of hedges in LH.

3See Ho & Wechler [13].
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Remark 3.1. From the construction of the lattices LH+ + I and LH− + I, it can be

seen that the lattices LH+ + I and LH− + I also satisfy condition (C0), in which the

notations Li and Lj are replaced with LHc
i and LHc

j , respectively.

Now, we introduce an axiomatization for a refinement structure of hedge algebras.

Definition 3.3. An algebra AX = (X,G,LH,≤) is said to be a refined hedge alge-

bra (or, briefly, RHA), if (H(G), G,H,≤) is a PN-homogeneous hedge algebra and the

following conditions hold:

(R1) Every operation in LH+ is a converse operation of the operations in LH−. In

addition, the unit operation V in LH+ is either positive or negative w.r.t. any operations

in LH.

(R2) If u and v are independent, i.e. u 6∈ LH(v) and v 6∈ LH(u), then x 6∈ LH(v)

for any x ∈ LH(u). For x 6= hx, x 6∈ LH(hx). Especially, if a, b ∈ G and a < b then

LH(a) < LH(b).

(R3) If hx and kx are incomparable, then so are any elements u ∈ LH(hx) and

v ∈ LH(kx). For any h 6= k and hx ≤ kx:

(i) If h, k ∈ LHc
i , for i ∈ SIc, and hx 6= kx then δhx < δkx, for any string of hedges δ.

Furthermore, for any y ∈ LH(kx) such that y 6≥ δkx, δhx and y are incomparable,

and for any z ∈ LH(hx) such that z 6≤ δhx, δkx and z are incomparable.

(ii) If both h and k are different from I and do not belong to the same sublattice LHc
i

or hx = kx, then h′hx ≤ k′kx, for any h′, k′ ∈ UOS.

(iii) If hx 6= kx then hx and kx are independent.

(R4) If u ∈ LH(x) and suppose that u 6∈ LH(hx), for any h ∈ LHc
i , i ∈ Ic then u ≥ v

(u ≤ v) for v ∈ LH(hx) implies u ≥ h′v (u ≤ h′v), for any h′ ∈ UOS.

Now, we give an intuitive illustration of some axioms in Definition 3.3. (R2) de-

scribes a linguistic property saying that, for instance, if u = Possibly true and v =

Approximately true, then u and v are independent and any term x generated from u,

e.g. x = Very Poss. true, must inherit the meaning of Possibly true and, hence, it cannot

be generated from Approximately true. (R4) models the following semantic property of

natural language: if hx = Approximately True and u satisfies the condition in (R4) with

v = Very Approximately true ≥ u then u must be a term generated from Little true and

hence u ≤ h′v, where h′ is either Very or Little. The statement (i) of (R3) is the basis

to establish a partially ordering between the elements presented in Figure 5, that suits

our intuition. The statement (ii) of (R3) guarantees that elements of L(A,P,ML)(True)

in Figure 6 must be less than I.True = True and greater than L.True. The statement (iii)

of (R3) states that a linguistic meaning generated from hx is not deduced from kx and

vice-versa.

Note that the first part of (ii) in (R3) can be reformulated to include the case where

one of h and k is to be the identity I, based on our convention upon I. But, then, it will

be a consequence of (R4).

Example 3.1. Let us consider an algebraic structure AX = (X,G,LH,≤), where

H = {V,M,L,A, P,ML} is the set of hedges considered in Example 2.1. For every hedge
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operation h in LH, hTrue and hFalse are the elements represented in Figure 6. For

x 6= True and x 6= False, we define hx = x. It can easily be seen that the operations are

well defined and AX satisfies the conditions in Definition 3.3.

For the sake of convenience, we recall some definitions in [13].
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Definition 3.4. For any h, k ∈ LH, we shall write hx <≤ kx (hx <≤ Ix) if for

any h′, k′ in UOS and any m,n ∈ Nat, V nh′hx ≤ V mk′kx (V nh′hx ≤ Ix). If the last

inequalities are always strict, then we shall write hx << kx (hx << Ix).

As an example, the inequality V nVery More true ≤ V mLittle Very true holds intu-

itively, for all n and m and so we can write More true <≤ Very true.

Definition 3.5. Let x and u be two elements in an RHA AX = (X,G,LH,≤). The

expression hn . . . h1u is said to be a canonical representation of x w.r.t. u in AX if

(i) x = hn . . . h1u; (ii) hi . . . h1u 6= hi−1 . . . h1u for every i ≤ n.

Theorem 3.1. Let AX = (X,G,LH,≤) be an RHA. Then, the following statements

hold:

(o) If hx <≤ kx then hx ≤ kx.

(i) The operations in LHc are compatible.

(ii) If x ∈ X is a fixed point of an operation h in LH, i.e. hx = x, then it is a fixed

point of the other ones.

(iii) If x = hn . . . h1u, then there exists an index i such that the suffix hi . . . h1u of x

is a canonical representation of x w.r.t. u and hjx = x, for all j > i.

(iv) If h 6= k and hx = kx then x is a fixed point.

(v) For any h, k ∈ LH, if x ≤ hx (x ≥ hx) then Ix <≤ hx (Ix ≥> hx) and if

hx ≤ kx, h 6= k and there is no i in SIc such that both h and k belong to LHc
i , then

hx <≤ kx.

Proof. First, we observe that the condition (R1) is the same as the axioms (A1) and

(A2) in Definition 3[13]. Therefore, the proofs of (o), (i), (ii), (iii) which are based on

(R1) are similar as that in [13].

By (ii), we can use the terminology “a fixed point” instead of “a fixed point of an

operation”.

Now we prove (iv). Assume the contrary, that x is not a fixed point. Suppose that

hx > x. If h and k are converse the kx ≤ x. Hence, hx > x ≥ kx, which contradicts the

hypothesis. If h and k are compatible then on account of Definition 3.2 and h 6= k, it

follows that hx 6= kx if hx 6= x, which is again impossible. Thus hx = x. For the case

where hx < x, the proof is similar. This concludes the proof of (iv).

To prove (v), suppose that x ≤ hx. If hx = x then x is a fixed point and so x ≤
V nh′hx, for each h′ ∈ UOS. If hx > x, by virtue of (R2), we have x 6∈ LH(hx) and

x ≤ h′hx, for h′ ∈ UOS, by (R4). Again by (R4) we obtain x ≤ V h′hx. Since x ∈ LH(x)

and x 6∈ LH(hx), applying (R4) repeatedly, we have x ≤ V nh′hx, i.e. Ix <≤ hx, by

Definition 3.4.

For the case where x ≥ hx, the proof is similar.

Now suppose that hx ≤ kx, h 6= k and h and k do not together belong to LHc
i for any

i. If hx = kx then x is a fixed point, by (iv) of the theorem. Thus, V nh′hx = V mk′kx,

for all h′, k′ ∈ UOS and m, n ∈ Nat.

Assume that hx < kx and k ∈ LHc
i0

, and h ∈ LHc
i1

, for i1, i0 ∈ Ic and i1 6= i0.

Assuming that h and k are converse, we have hx < x < kx. As proved above, it follows

that hx << x and x << kx. Thus hx << kx. Now assume that h and k are compatible.
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Put u = hx. Since hx 6= kx, it follows from (iv) of the theorem that hx 6= k1x for

any k1 ∈ LHc
i0

. By (R3), hx and k1x are independent and u = hx 6∈ LH(k1x), for any

k1 ∈ LHc
i0

. Since u ∈ LH(x), it follows from (R4) that u < k′kx, for any k′ ∈ UOS.

Applying (R4) again to the last inequality, we get u < V k′kx. Repeating this argument,

it implies that u = hx < V mk′kx, for any m ∈ Nat and k′ ∈ UOS. It can be seen that h

and k play a similar role and hence we can use the analogous argument as above, where

u = V mk′kx, and we obtain V mk′kx > V nh′hx, for any h′, k′ ∈ UOS and m,n ∈ Nat,

which means that hx << kx. So, we have proved that hx <≤ kx, which completes the

proof of (v).

The following theorem is a reformulation of Theorem 2 in [13] for RHAs.

Theorem 3.2. For any h ∈ LH, there exist two unit operations h− and h+ such that

h− is negative and h+ is positive w.r.t. h and for any h1, . . . , hn ∈ LH, x ∈ X,

V nh−hx ≤ hn . . . h1hx ≤ V nh+hx if hx ≥ x,
V nh−hx ≥ hn . . . h1hx ≥ V nh+hx if hx ≤ x.

Proof. We shall prove the theorem by induction on the number n of hedge operations.

Assume n = 1 and hx ≥ x. If h1 is positive w.r.t. h then we have h1hx ≥ hx. From the

assumptions of the operations h+ and h−, we have h+hx ≥ h1hx ≥ hx ≥ h−hx. Since

V is positive w.r.t. h+ and h− (see [13]), we obtain V h+hx ≥ h+hx ≥ h1hx ≥ hx ≥
h−hx ≥ V h−hx, which are the required inequalities.

If h1 is negative w.r.t. h, we have h1hx ≤ hx. By the assumption on the hedge h−, it

follows that h− and h1 are compatible and h− ≥ h1. So h−hx ≤ h1hx ≤ hx. By the same

argument as above, we obtain again V h+hx ≥ h+hx ≥ hx ≥ h1hx ≥ h−hx ≥ V h−hx.

For the case hx ≤ x, the proof is similar. Consequently, it has been proved that the

inequalities in the theorem hold for n = 1.

Assume that the theorem holds for n = i, i.e. if h1hx ≤ hx, then V ih+1 h1hx ≤
hi+1hi . . . h1hx ≤ V ih−1 h1x and if h1hx ≥ hx then V ih+1 h1hx ≥ hi+1hi . . . h1hx ≥
V ih−1 h1x, where h+1 , h

−
1 and h1 satisfy the assumption like that made on h+, h− and h.

Now we shall prove the induction conclusion for the case hx ≤ x. For the opposite

case, the proof is similar.

Suppose first that h1 is positive w.r.t. h, and so h1hx ≤ hx. From the induction

hypothesis it follows that hi+1hi . . . h1hx ≤ V ih−1 h1hx, and by (v) of Theorem 3.1, it

implies that V ih−1 h1hx ≤ hx ≤ h−hx ≤ V i+1h−hx, with a notice that h− is negative

w.r.t. h and V is positive w.r.t. h− and V . So, one of the two required inequalities is

true.

Since both h1 and h+ are positive w.r.t. h, it follows that they together belong to

either LH+ or LH−. So, h+ ≥ h1 and hence h+hx ≤ h1hx. In addition, if h+ 6= h1,

then by (v) of Theorem 3.1, it follows that h+hx <≤ h1hx. According to the induction

hypothesis and Definition 3.4, we have hi+1hi . . . h1hx ≥ V ih+1 h1hx ≥ V iV h+hx. If

h+ = h1, then h1 is either V or L. In both cases h+ = V and, hence, from the induction

hypothesis it follows that hi+1hi . . . h1hx ≥ V iV h1hx = V i+1h+hx. Thus, for the case

where h1 is positive w.r.t. h, the induction conclusion follows. Since the proof for the case

where h1 is negative w.r.t. h is similar, the theorem is completely proved.



74 NGUYEN CAT HO AND HUYNH VAN NAM

Corollary 3.1. (i) For any x ∈ X, if hx < kx and there is no i ∈ SIc such that

both h and k belong to LHc
i , then for any two strings of hedges δ and δ′, the inequality

δhx < δ′kx holds.

(ii) Let u be an arbitrary element in X and x ∈ LH(u). Then, there exist always

elements y, z ∈ UOS(u), i.e. z and y are generated from u by means of the unit oper-

ations, such that y ≥ x ≥ z. Furthermore, either one of the equalities u ≤ x ≤ V nhu

and u ≥ x ≥ V nhu holds, for a suitably chosen h ∈ LH and for sufficiently great number

n ∈ Nat.

Proof. For the proof of this corollary, we refer the reader to [13].

Now, the following theorem gives us a characterisation to determine the relative posi-

tion of elements in an RHA. Here, the notation xj is defined as follows: if x = hn . . . h1u,

then xj denotes the expression hj−1 . . . h1u, for 1 ≤ j ≤ n.

Theorem 3.3. Let x = hn . . . h1u and y = km . . . k1u be two arbitrary canonical repre-

sentations of x and y w.r.t. u, respectively. Then there exists an index j ≤ min(m,n) + 1

such that hj′ = kj′ , for all j′ < j and

(1) x < y iff one of the following conditions holds

(i) hjxj < kjxj and δkjxj ≤ δ′kjxj or δhjxj ≤ δ′hjxj if hj and kj together

belong to LHc
i for some i ∈ SIc, where xj = hj−1 . . . h1u, δ = hn . . . hj+1, δ′ =

km . . . kj+1;

(ii) hjxj < kjxj, otherwise;

(2) x = y iff m = n and hj = kj for all j ≤ n;

(3) x and y are incomparable iff there exists i ∈ SIc such that both hj and kj belong

to LHc
i and one of the following conditions holds:

(i) hjxj and kjxj are incomparable,

(ii) hjxj < kjxj and δkjxj 6≤ δ′kjxj,

(iii) hjxj > kjxj and δ′hjxj 6≤ δhjxj.

Proof. Let j be the least index such that hj 6= kj . It can be seen that j ≤ min(m,n)+

1, since I 6= h for every h ∈ LH.

Sufficiency : To prove the sufficiency of (1), suppose first that hjxj < kjxj and there

is no index i0 in SIc such that both hj and kj belong to LHc
i0

. From (v) of Theorem 3.1,

we obtain hjxj << kjxj and V phhjxj < V qkkjxj , for any h, k ∈ UOS and p, q ∈ Nat.

By Theorem 3.2, there exist h′, k′ ∈ UOS such that hn . . . hjxj ≤ V n−j−1h′hjxj and

km . . . kjxj ≥ V m−j−1k′kjxj , which imply that x < y.

If there exists an index i0 in SIc, such that both hj and kj belong to LHc
i0

, and

hjxj < kjxj and δkjxj ≤ δ′kjxj , then by (R3), we have δhjxj < δkjxj . Hence, x =

δhjxj < δkjxj ≤ δ′kjxj = y.

Since the sufficiency of (2) is evident, we prove the sufficiency of (3). Suppose that

there exists an index i0 in SIc such that both hj and kj belong to LHc
i0

. If (i) holds,

it follows from (R3) that x and y are incomparable. If (ii) holds, i.e. hjxj < kjxj and

δkjxj 6≤ δ′kjxj , then by (R3), we infer δhjxj < δkjxj . Moreover, it follows from (R3)

that δhjxj and z are incomparable, for any z ∈ LH(kjxj) such that δkjxj 6≤ z. Thus,

x = δhjxj and y = δ′kjxj are incomparable. In the case (iii) holds, the proof is similar.
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Necessity : Suppose that there is no index j such that hj 6= kj . Note that one of hj
and kj may be the operation I. Then, it is evident that the two canonical representations

of x and y are identical and hence x = y. Therefore, assuming that these two canonical

representations are different, there exists the least index j such that hj 6= kj . Obviously,

j ≤ min(m,n) + 1. Between hjxj and kjxj there are the following ordering relationships:

hjxj = kjxj , hjxj < kjxj , hjxj > kjxj and hjxj and kjxj are incomparable. From the

proof of the sufficiency, we have the following:

(1) If x < y then hjxj < kjxj . Furthermore, if there exists i0 in SIc such that both

hj and kj belong to LHc
i0

, then, by (R3), from δkjxj 6≤ δ′kjxj it follows that x and y

are incomparable. This contradicts the hypothesis and hence, δkjxj ≤ δ′kjxj . Likewise,

it can be proved that δhjxj ≤ δ′hjxj .
(2) If x = y then hjxj = kjxj . It remains to prove that if hjxj = kjxj then m = n

and hj = kj . In fact, if hj 6= kj , it follows by (iv) of Theorem 3.1 that xj is a fixed

point. Thus, from the definition of the canonical representations it follows that m = n

and hj = kj for all j ≤ n.

(3) Suppose that x and y are incomparable. Then, there are only three possibilities:

hjxj < kjxj , hjxj > kjxj and hjxj and kjxj are incomparable. If hj and kj are converse

then it is easy to infer that x and y are comparable, a contradiction. If hj and kj are

compatible and there is no i0 in SIc such that both hj and kj belong to LHc
i0

, then

from Remark 3.1, it follows that hj and kj are comparable. So, hjxj and kjxj are also

comparable. Furthermore, from (v) of Theorem 3.1 and (ii) of Corollary 3.1, it is easy

to check that x and y are comparable, as well. This contradicts the assumption. Thus,

we have proved that if x and y are incomparable, then there exists an i0 in SIc such

that both hj and kj belong to LHc
i0

. Assume now that hjxj < kjxj . We have to prove

that δkjxj 6≤ δ′kjxj . In fact, by (R3), we have δhjxj < δkjxj . If δkjxj ≤ δ′kjxj then

x = δhjxj < δkjxj ≤ δ′kjxj = y, which contradicts the hypothesis. Thus, we have

δkjxj 6≤ δ′kjxj . In the case hjxj > kjxj , by an analogous argument we have δ′hjxj 6≤
δhjxj . This concludes the proof.

Remark 3.2. At first glance, one may think that the theorem is meaningless, because

it replaces the comparison of two elements by the comparison of two others: The com-

parison between x = δhjxj and y = δ′kjxj is changed to that between x′ = δkjxj and

y′ = δ′kjxj or between x′ = δhjxj and y′ = δ′hjxj . But, notice that the length of the

common suffix of x′ and y′ is greater than that of x and y. It leads to a procedure that

with a finite number of steps one can decide whether the given elements x and y are

comparable and which one is greater than the other.

Corollary 3.2. If x is not a fixed point and u is any element in X, then the canoni-

cal representation of x w.r.t. u, if it exists, is unique, i.e. if hn . . . h1u and km . . . k1u are

two canonical representations of x w.r. t. u, then m = n and hi = ki, for all i ≤ n.

The following proposition shows that if both h and k belong to LHc
i , for i ∈ SIc,

then from the property hx is a fixed point we can deduce that kx is also fixed point and

vice-versa. Intuitively, it means that, for such h and k, h can generate a proper meaning

from an element x (i.e. hx 6= x) iff k does so.
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Proposition 3.1. For any x ∈ X and i ∈ SIc. If there exists a hedge h ∈ LHc
i such

that hx is a fixed point, then so is kx, for any k ∈ LHc
i .

Proof. If hx = kx, then the assertion is evident. Assume that hx 6= kx. We shall

prove by cases as follows:

(i) Assume that hx < kx. It follows that V hx < V kx and if V kx > kx, then kx and

V hx are incomparable, by (i) of (R3). It contradicts the assumption that V hx = hx < kx.

If V kx < kx, then V kx and hx are incomparable, by (i) of (R3) and this again contradicts

the fact that hx = V hx < V kx. Since, by (R1), V kx and kx must be comparable, it

follows that V kx = kx, i.e. kx is a fixed point.

(ii) For the case where hx > kx, the proof is similar.

(iii) Suppose that hx and kx are incomparable. Since LHc
i , for i ∈ SIc, is a sublattice

of LHc+I, it follows that (h∨k) belongs to LHc
i . Clearly, hx and (h∨k)x are comparable.

By the cases proved above, it follows that (h ∨ k)x is a fixed point and, hence, by the

same reason, kx is a fixed point. The proof is completed.

The following proposition can be considered as a generalization of Proposition 3.1.

Proposition 3.2. For any x ∈ X and h, k ∈ LHc
i , for some i ∈ SIc and for any

string of hedges δ, δhx is a fixed point iff δkx is a fixed point.

Proof. Suppose that δhx is a fixed point. There are two cases:

Case (i): hx and kx are comparable. Without loss of generality, suppose that hx ≤ kx.

If hx = kx then, by (iv) of Theorem 3.1, x is a fixed point and, hence, so is δkx = x.

Now, assume that hx < kx. By (i) of (R3), it follows that δhx < δkx.

Suppose the contrary that δkx is not a fixed point. Take a suitable h′ so that h′δkx <

δkx. By (i) of (R3), δhx and h′δkx are incomparable. Again by (i)(R3), from hx < kx

it follows that δhx = h′δhx < h′δkx. We have a contradiction. Therefore, δkx is a fixed

point.

Case (ii): hx and kx are incomparable. By the same argument as in Case (iii) of the

proof of Proposition 3.1, we can prove that δkx is a fixed point.

Since h and k play symmetrical roles, the proof is completed.

Since the RHA is constructed from a given PN-homogeneous hedge algebra, a natural

question arises whether the PN-homogeneous property for the unit-operation V in LH++

I, but not in H++I, still holds if we replace Hc
i in Definition 3.1 with LHc

i . The following

proposition answers this question.

Proposition 3.3. If the unit operation V in LH+ + I is positive (negative, resp.)

w.r.t. a certain h in Hc
i , for i in SIc, then V is also positive (negative, resp.) w.r.t. any

operation in LHc
i .

Proof. We shall prove the assertion for the case of “positive”. The proof for the case

of “negative” is similar.

Assume that V is positive w.r.t. h ∈ Hc
i , for some i ∈ SIc. Since the hedge algebra

(H(G), G,H,≤) is PN-homogeneous, it follows that V is also positive w.r.t. any operation

in Hc
i . Since LHc

i is a free distributive lattice generated from incomparable elements in

Hc
i , for every k ∈ LHc

i there exists h′ ∈ Hc
i such that either k ≥ h′ or k ≤ h′. If k = h′,
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then V is already positive w.r.t. k. Consider the case h′ 6= k and suppose that h′x ≤ kx.

In the case h′x = kx, by (iv) of Theorem 3.1, x is a fixed point and so V kx = kx. Assume

that h′x < kx, we have V h′x < V kx, by (i)(R3). If h′x is a fixed point, then so is kx, by

Proposition 3.1, i.e. V kx = kx.

If V h′x > h′x, then h′x > x, since V is positive w.r.t. h′. Hence, kx ≥ x and, again

by (i)(R3) with δ to be empty, kx and V hx are incomparable. From this fact and the

inequality V h′x < V kx it follows from (i)(R3) that V kx ≥ kx ≥ x.

If V h′x < h′x, then h′x < x, since V is positive w.r.t. h′. From (i)(R3), it follows that

h′x and V kx are incomparable and, similarly as above, it can be derived that V kx ≤
kx ≤ x.

Since an analogous argument can be used for the case h′x ≥ kx, we have proved that,

in any case, either V kx ≤ kx ≤ x or V kx ≥ kx ≥ x, i.e. V is positive w.r.t. k. This

concludes the proof.

The following proposition states that hedge operations in the same sublattice have

analogous semantic properties in terms of ≤.

Proposition 3.4. For any h, k ∈ LHc
i , for some i ∈ SIc, and for any x ∈ X, we

have the following assertions:

(i) δhx > x (δhx < x) iff δkx > x (δkx < x), for any δ ∈ LH∗.
(ii) If hx 6= kx, then δhx and δ′hx are incomparable iff δkx and δ′kx are incomparable,

for any δ, δ′ ∈ LH∗.
(iii) δhx > δ′hx iff δkx > δ′kx, for any δ, δ′ ∈ LH∗.

Proof. The assertion (i) can easily be proved from the given assumption on h and k.

(ii) It is sufficient to prove the statement for the case where h and k are comparable,

since if h and k are incomparable in LHc
i , then there exists h′ in LHc

i such that h′ ≥ k

and h′ ≥ h. Hence, it can easily be seen that the assertion can be deduced from the case

being proved now. Moreover, without loss of generality, we can assume that hx > kx.

For any two strings of hedges δ and δ′, it follows from (i)(R3) that δhx > δkx and

δ′hx > δ′kx, and that the incomparability of δhx and δ′hx implies the incomparability

of two elements δ′hx and δkx and that of two elements δhx and δ′kx. Now, it can be

verified that the comparability of δkx and δ′kx leads to a contradiction. Similarly, we

can prove that the incomparability of δkx and δ′kx implies the incomparability of δhx

and δhx.

(iii) Similar as in the proof of (ii), we can assume without loss of generality that

hx > kx. It follows from (R3) that δhx > δkx and δ′hx > δ′kx, for any δ, δ′ ∈ LH∗.

Suppose now that δhx > δ′hx. It implies from (ii) that δkx and δ′kx are comparable.

Further, by (R3), we infer that δkx and δ′hx are incomparable and so, if δkx ≤ δ′kx then

δkx < δ′hx, we have a contradiction. Hence, δkx > δ′kx. Since the sufficiency is evident,

the proof is completed.

4. Lattice characteristic and distributivity of RHAs. In this section, we shall

study the main property of RHAs. It will be shown that RHA is a distributive lattice if

the set of the primary generators is a chain. Firstly, we shall prove the following theorem
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saying that RHA with a chain of the primary generators is a lattice. It also gives us

recursive formulas for computing infimum and supremum of elements in RHA.

Theorem 4.1. Let AX = (X,G,LH,≤) be an RHA and G be a chain of generators.

Then AX is a lattice. Moreover, for any two incomparable elements x and y in X, if

x = δhw, and y = δ′kw, where δ, δ′ ∈ LH∗ and w ∈ LH(a) for some a ∈ G, are

canonical representations of x and y, respectively, then both h and k belong to LHc
i , for

some i ∈ SIc and

x ∪ y =

{
δ(h ∨ k)w ∪ δ(h ∨ k)w if hw > w

δ(h ∧ k)w ∪ δ(h ∧ k)w if hw < w

x ∩ y =

{
δ(h ∧ k)w ∪ δ(h ∧ k)w if hw > w

δ(h ∨ k)w ∪ δ(h ∨ k)w if hw < w

where ∪, ∩ stand for join, meet in AX, while ∨, ∧ stand for join and meet in LHc + I.

Proof. From (R2) it follows that if x and y are incomparable in X, then there exists

an element a ∈ G such that x, y ∈ LH(a), since G is a chain. Thus, there exist two

canonical representations of x and y w.r.t. a, say x = hn . . . h1a and y = km . . . k1a. On

account of Theorem 3.3, there exists an index j ≤ min(m,n)+1 such that hi = ki, for any

i ≤ j. Furthermore, there exists i0 ∈ SIc such that hj , kj ∈ LHc
i0

. Let δ = hn . . . hj+1,

δ′ = km . . . kj+1, h = hj , k = kj . With this notation we have x = δhw and y = δ′kw,

where w = hj−1 . . . h1a.

We shall prove the theorem for the supremum. The proof for the infimum can be

obtained by duality.

Let us first consider the case where hw > w. Then, we also have kw > w. It implies

that (h∨k)w > w and h∨k ∈ LHc
i0

, since LHc
i0

is a sublattice of LHc + I. By Definition

3.2 and (i)(R3), we have δ(h ∨ k)w ≥ δhw, δ′(h ∨ k)w ≥ δ′kw.

We shall prove that t ≥ {δ(h ∨ k)w, δ′(h ∨ k)w}, for any t ∈ LH(a), t > {x, y}.
Suppose that t = lp . . . l1a is the canonical representation of t w.r.t. a. Consider the

case that t ∈ LH(w) and so we have t = lp . . . lj+1ljw. Since t > {x, y} it follows from

Theorem 3.3 that ljw > {hw, kw}. Remember that hw > w and, hence, lj ≥ h ∨ k and

ljw ≥ (h ∨ k)w. If li 6∈ LHc
i0

, by (v) Theorem 3.1 we obtain ljw >> (h ∨ k)w and so, we

can infer that

t > {δ(h ∨ k)w, δ′(h ∨ k)w}.
Let lj ∈ LHc

i0
and assume that ljw = (h ∨ k)w. If lj 6= (h ∨ k), then by (iv) Theorem

3.1, w is a fixed point and hence w = hw, contrary to assumption. Thus, lj = (h ∨ k)

and, since ljw > hw, ljw > kw and t > {x, y}, Theorem 3.3 yields

t ≥ {δ(h ∨ k)w, δ′(h ∨ k)w}.

Now, assume that ljw > (h∨k)w. Thus, t = lp . . . ljw > lp . . . lj+1(h∨k)w, by (i)(R3).

Since t > {x, y} and it is easily seen that x = δhw < δljw, y = δ′kw < δ′ljw, we infer

again by (i)(R3) that t ≥ {δljw, δ′ljw}. Applying Proposition 3.4 to the last inequalities,

we get

lp . . . lj+1(h ∨ k)w ≥ {δ(h ∨ k)w, δ′(h ∨ k)w}.
Hence, t > {δ(h ∨ k)w, δ′(h ∨ k)w}, which is the desired inequality.
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Now, consider the case that t 6∈ LH(w). Then, there exists an index j′ ≤ j − 1 such

that hi = li for any i < j′ and lj′u > hj′u, where u = hj′−1 . . . h1a. If there is no i1 ∈ SIc
such that hj′ , lj′ ∈ LHc

i1
then it follows from (v) Theorem 3.1 that lj′u >> hj′u and,

hence, by Theorem 3.2, it can easily be verified that t > {δ(h∨ k)w, δ′(h∨ k)w}. If there

exists i1 ∈ SIc such that hj′ , lj′ ∈ LHc
i1

, we set s = j − j′ − 1 and prove the assertion by

induction on the number s of hedge operations.

For s = 0, i.e. j′ = j − 1, and w = hj′u, we can write t ≥ {x = δhhj′u, y = δ′khj′u},
and applying (i)(R3) to lj′u > hj′u, it follows that t ≥ {δhlj′u, δ′klj′u}. Since hhj′u >

hj′u and the elements x = δhhj′u and y = δ′khj′u are incomparable, it follows also

from Proposition 3.4 that hlj′u > lj′u and that δhlj′u and δ′klj′u are incomparable.

Clearly, t ∈ LH(lj′u) and analogously to the case where t ∈ LH(w), with w = lj′u, we

can prove that t ≥ {δ(h ∨ k)lj′u, δ
′(h ∨ k)lj′u}. Moreover, it follows from (i)(R3) that

δ(h ∨ k)lj′u > δ(h ∨ k)hj′u = δ(h ∨ k)w and δ′(h ∨ k)lj′u > δ′(h ∨ k)hj′u = δ′(h ∨ k)w

and, hence, t > {δ(h ∨ k)w, δ′(h ∨ k)w}.
Assume the induction hypothesis, that the inequality holds for every s ≤ i. For s =

i+ 1, we have j′ + i+ 1 = j − 1 and w = hj−1 . . . hj′+1hj′u. Set w′ = hj−1 . . . hj′+1lj′u.

It follows from Proposition 3.4 that hw′ > w′, since hw > w and hj′ , lj′ ∈ LHc
i1

. Using

again (i)(R3) as above, we get

t ≥ {δhhj−1 . . . hj′+1lj′u, δ
′khj−1 . . . hj′+1lj′u}

and by Proposition 3.4 we see that δhhj−1 . . . hj′+1lj′u and δ′khj−1 . . . hj′+1lj′u are in-

comparable. If t ∈ LH(w′) then, by the same argument as for the case t ∈ LH(w), we

obtain

t ≥ {δ(h ∨ k)hj−1 . . . hj′+1lj′u, δ
′(h ∨ k)hj−1 . . . hj′+1lj′u}

and, hence, t > {δ(h ∨ k)w, δ′(h ∨ k)w}, on account of (i)(R3) applied to hj′u < lj′u.

If t 6∈ LH(w′) then there exists an index j′′, which satisfies j′ + 1 ≤ j′′ ≤ j − 1,

such that hi′ = li′ for any i′ satisfying j′′ > i′ ≥ j′ + 1 and lj′′u
′ > hj′′u

′, where

u′ = lj′′−1 . . . lj′u. By also an analogous argument as in the case where t 6∈ LH(w),

if there is no i2 ∈ SIc such that hj′′ , lj′′ ∈ LHc
i2

then, by the same argument as for

t 6∈ LH(w) we obtain t > {δ(h∨k)w′, δ′(h∨k)w′} and hence, t > {δ(h∨k)w, δ′(h∨k)w}.
If there exists i2 ∈ SIc such that hj′′ , lj′′ ∈ LHc

i2
then by the induction hypothesis

we have

t ≥ {δ(h ∨ k)hj−1 . . . hj′′+1lj′′u
′, δ′(h ∨ k)hj−1 . . . hj′′+1lj′′u

′}.
Since hj′′u

′ < lj′′u
′, we have δ(h∨k)hj−1 . . . hj′′+1lj′′u

′ > δ(h∨k)hj−1 . . . hj′′+1hj′′u
′

> δ(h∨ k)w and δ′(h∨ k)hj−1 . . . hj′′+1lj′′u
′ > δ′(h∨ k)hj−1 . . . hj′′+1hj′′u

′ > δ′(h∨ k)w,

and so t > {δ(h ∨ k)w, δ′(h ∨ k)w}, which is what we desire.

By the proved inequality, we can see that if supremum of two elements x and y exists

then sup{x, y} = sup{δ(h ∨ k)w, δ′(h ∨ k)w}.
So, it remains to prove that sup{δ(h∨k)w, δ′(h∨k)w} always exists. Indeed, we shall

argue by induction on the length of string δ of hedges. If |δ| = 0 then the assertion is

evident, since (h ∨ k)w and δ′(h ∨ k)w are comparable. Assume that the assertion holds

for |δ| ≤ i. For the case |δ| = i+ 1, if δ(h ∨ k)w and δ′(h ∨ k)w are comparable then the

assertion is clearly true. If x′ = δ(h∨ k)w and y′ = δ′(h∨ k)w are incomparable, then we
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can use the same argument as for x and y to prove that for any t ∈ X, if t > {x′, y′} then

t ≥ {δ1(h′ ∨ k′)w′, δ′1(h′ ∨ k′)w′}, where h′, k′ satisfy the same assumption like that on h

and k. Since |δ1| < i, sup{δ1(h′ ∨ k′)w′, δ′1(h′ ∨ k′)w′} exists by the induction hypothesis.

Consequently,

sup{δ(h ∨ k)w, δ′(h ∨ k)w} = sup{δ1(h′ ∨ k′)w′, δ′1(h′ ∨ k′)w′} = sup{x, y}.

Since the proof for the case where hw < w is similar, the theorem is completely

proved.

For any x ∈ X, let us denote LH[x] = {hx/h ∈ LH}. Theorem 2.1 and Theorem 4.1

yield

Corollary 4.1. Let AX = (X,G,LH,≤) be an RHA and G is a chain. The following

statements hold

(i) LH(x) is a sublattice of AX.

(ii) LH[x] is a distributive sublattice of AX.

Proposition 4.1. Let AX = (X,G,LH,≤) be an RHA and G be a chain. Then, for

any h, k ∈ LHc
i , where i ∈ SIc, and for any x ∈ X such that hx 6= kx, there exists a

lattice isomorphism f from LH(hx) onto LH(kx) defined as follows: f(δhx) = δkx.

Proof. By Proposition 3.4.

Before proving the distributivity of RHA, we need the following

Theorem 4.2 [2]. Let L be a lattice. L is a non-distributive lattice iff M5 or N5 can

be embedded into L, where M5 or N5 are two five-element lattices depicted in Figure 7.
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Now, we shall prove the following theorem.

Theorem 4.3. Let AX = (X,G,LH,≤) be an RHA. If G is a chain then AX is a

distributive lattice.

Proof. On account of Theorem 4.2, we suppose the contrary that N5 can be em-

bedded into AX as its sublattice, i.e. there exist elements x, y, z ∈ X such that x and y

are comparable, say x > y, and the pairs x,z and y, z are incomparable. In addition, the
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following equalities hold: x∩ z = y ∩ z and x∪ z = y ∪ z. It can be seen that there exists

a ∈ G such that all elements x, y, z, x ∩ z, x ∪ z ∈ LH(a).

Suppose that x = hn . . . h1a, y = km . . . k1a, z = lp . . . l1a are canonical represen-

tations of x, y, z w.r.t. a, respectively. By Theorem 3.3, there exists an index j ≤
min(n,m, p) + 1 such that hj′ = kj′ = lj′ for any j′ < j, and at least one of the

two operations hj and kj is different from lj , say hj 6= lj . Since x and z are incompa-

rable, by Theorem 3.3, hj and lj must belong to the same LHi
c, for some i ∈ SIc. Set

w = hj−1 . . . h1a, δx = hn . . . hj+1, δy = km . . . kj+1, δz = lp . . . lj+1. If kj = lj then

ljw < hjw, by Theorem 3.3. It follows from Theorem 4.1 that x ∪ z ∈ LH(hjw) and

y∪z ∈ LH(ljw), which contradicts the fact that x∪z = y∪z. Thus, kj 6= lj . If kj 6∈ LHc
i

then kjw < hjw and, by Remark 3.1, we also have kjw < hjw, and hence, by Theo-

rem 3.3, we obtain y < z, a contradiction. Thus, kj ∈ LHc
i . According to Theorem 4.1,

it follows that

x ∪ z ∈ LH((hj ∨ lj)w), y ∪ z ∈ LH((kj ∨ lj)w)

x ∩ z ∈ LH((hj ∧ lj)w), y ∩ z ∈ LH((kj ∧ lj)w)
if hjw > w .

x ∪ z ∈ LH((hj ∧ lj)w), y ∪ z ∈ LH((kj ∧ lj)w)

x ∩ z ∈ LH((hj ∨ lj)w), y ∩ z ∈ LH((kj ∨ lj)w)
if hjw < w .

By virtue of axiom (i)(R3), it can easily be seen that (hj ∨ lj)w = (kj ∨ lj)w and

(hj ∧ lj)w = (kj ∧ lj)w, since x ∪ z = y ∪ z and x ∩ z = y ∩ z. Consequently, it follows

from (ii) of Corollary 4.1 that hj = kj .

Now, we shall show that the assumption concerning the sublattice N5 will lead to a

contradiction by induction on the length |δx| of the string δx mentioned above.

We shall only prove the case hjw > w, since the argument for the other case is similar.

Assume that |δx| = 0. Then, it follows from Theorem 4.1 that

x ∪ z = (hj ∨ lj)w ∪ δz(hj ∨ lj)w, y ∪ z = δy(hj ∨ lj)w ∪ δz(hj ∨ lj)w
and

x ∩ z = (hj ∧ lj)w ∩ δz(hj ∧ lj)w, y ∩ z = δy(hj ∧ lj)w ∩ δz(hj ∧ lj)w.
Suppose that (hj ∨ lj)w is a fixed point. By Proposition 3.2, hw is a fixed point,

for every h ∈ LHc
i . By virtue of Theorem 3.3, it follows that {x, y, z, x ∪ z, y ∩ x} is

isomorphic to {hjw, kjw, ljw, (hj∨lj)w, (kj∨lj)w}, which contradicts the fact that LH[w]

is distributive by (ii) of Corollary 4.1. Now suppose that (hj ∨ lj)w, (hj ∧ lj)w are not

fixed points. So, if (hj ∨ lj)w = δz(hj ∨ lj)w then |δz| = 0, and hence, x∪ z = (hj ∨ lj)w,

x ∩ z = (hj ∧ lj)w. Since x > y and hj = kj , it follows from (iii), Proposition 3.4

that (hj ∨ lj)w > δy(hj ∨ lj)w and (hj ∧ lj)w > δy(hj ∧ lj)w. Thus, by Theorem 4.1,

y ∩ z = δy(hj ∧ lj)w and, hence, x ∩ z = (hj ∧ lj)w > y ∩ z, contrary to assumption.

If (hj ∨ lj)w > δz(hj ∨ lj)w then, by (iii) Proposition 3.4, (hj ∧ lj)w > δy(hj ∧ lj)w,

and again by Theorem 4.1, x ∪ z = (hj ∨ lj)w and x ∩ z = δz(hj ∧ lj)w. On the other

hand, since y ∩ z = δy(hj ∧ lj)w ∩ δz(hj ∧ lj)w = x ∩ z, it follows that δy(hj ∧ lj)w ≥
δz(hj ∧ lj)w. Also, by Proposition 3.4, it implies that δy(hj ∨ lj)w ≥ δz(hj ∨ lj)w, which

yields y ∪ z = δy(hj ∨ lj)w < (hj ∨ lj)w = x ∪ z, contrary to assumption.

By an analogous argument, the assumption (hj ∨ lj)w < δz(hj ∨ lj)w also leads to a

contradiction. This concludes the proof of the case where |δx| = 0.
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Now suppose that a contradiction will follow for all elements x, y and z satisfying the

mentioned assumption and, as well, the condition |δx| < i. Let us consider x, y and z,

which satisfy this assumption as well as the equality |δx| = i. It follows from Theorem 4.1

that
x ∪ z = δx(hj ∨ lj)w ∪ δz(hj ∨ lj)w, y ∪ z = δy(hj ∨ lj)w ∪ δz(hj ∨ lj)w

and
x ∩ z = δx(hj ∧ lj)w ∩ δz(hj ∧ lj)w, y ∩ z = δy(hj ∧ lj)w ∩ δz(hj ∧ lj)w

since hjw > w.

Let x′ = δx(hj ∨ lj)w, y′ = δy(hj ∨ lj)w and z′ = δz(hj ∨ lj)w. By the assumption

made on x, y and z, and by Proposition 4.1, it can be seen that x′, y′ and z′ also satisfy

the assumption like that made on x, y and z. Then, by an analogous argument as at

the beginning of the proof, it follows that there exists an index j′ satisfying j < j′ ≤
min(n,m, p) + 1 such that hj′′ = kj′′ = lj′′ for any j′′ < j′, and kj′ = hj′ 6= lj′ and,

moreover, hj′ , lj′ ∈ LHc
i′ , for some i′ ∈ SIc.

Set w′ = hj′−1 . . . hj+1(hj ∨ lj)w, δ′x = hn . . . hj′+1, δ′y = km . . . kj′+1, δ′z = lp . . . lj′+1.

Note that |δ′x| < i, and, hence, according to the induction hypothesis, it leads to a

contradiction. This shows that N5 cannot be embedded into AX as its sublattice.

Similarly, we can prove that M5 cannot be embedded into AX as its sublattice, as

well. This concludes the proof.

5. Symmetrical RHA. In this section we prepare an algebraic foundation to inves-

tigate fuzzy logic, based on an algebraic point of view. As we know, L.A. Zadeh introduced

and examined fuzzy logic based on the notion of linguistic variables. A linguistic variable

of Truth is characterised by a quintuple (Truth, T (Truth), U,G,M), where Truth is the

name of the variable; T (Truth) denotes the term-set of Truth, U is a universe of dis-

course of the base variable, i.e. the unit interval [0,1], G is a syntactic rule for generating

linguistic terms of T(Truth), and M is a semantic rule which is a mapping assigning

to each linguistic term a fuzzy set on U . In our approach, each term is associated with

an element in an RHA, and its meaning is expressed through the structure of such an

RHA. Intuitively, we can recognise some what of symmetricity of the set T(Truth) and

therefore, we have to examine the so-called symmetrical RHAs.

In natural languages there are many linguistic variables, which have only two distinct

primary terms. These terms have intuitive contradictory meaning such as ’true’ and

’false’, ’old’ and ’young’, ’large’ and ’small’, ’tall’ and ’short’, etc. This suggested Ho

and Wechler to investigate in [14] extended hedge algebras (EHAs) with exactly two

generators, one of which is called positive generator, denoted by t, and the other is called

negative generator, denoted by f . The positive and negative generators are characterised

by V t ≥ t, V f ≤ f and t > f . Under such a normalisation, it seems reasonable to consider

’true’, ’old’, ’large’ and ’tall’ as positive generators and ’false’, ’young’, ’small’ and ’short’

as negative ones.

In this section we shall also examine RHA with exactly one positive and one negative

generator. Let an RHA AX = (X,G,LH,≤) be given, where the set G of generators

consists of one positive and one negative generator, G = {t, f}. For every x in X, we

define a so-called contradictory element of the element x as follows:



REFINEMENT STRUCTURE OF HEDGE ALGEBRAS 83

Assume that x = hn . . . h1c, where c ∈ G, is a representation of x with respect to

c. An element y is said to be a contradictory element of x if it can be represented as

hn . . . h1c
′, with c′ ∈ G and c′ 6= c. For example, y = ’very very false’ is a contradictory

element of x = ’very very true’; v = ’very little bad’ is a contradictory element of u =

’very little good’. It is obvious that a positive generator is a contradictory element of its

negative one and vice-versa. By definition, it is also obvious that if y is a contradictory

element of x then x is a contradictory element of y.

Definition 5.1. An RHA AX = (X,G,LH,≤), where G consists exactly of one

positive and one negative generator, is said to be a symmetrical RHA provided every

element x in X has a unique contradictory element in X, denoted by x−.

We now give a characterisation of symmetrical RHAs.

Theorem 5.1. A RHA AX = (X,G,LH,≤) is symmetrical iff AX satisfies the fol-

lowing assumption:

(SYM) For every element x ∈ X, x is a fixed point iff x− is a fixed point.

Proof. To prove the necessity, assume the contrary that x is a fixed point and

x− 6= hx−, for some h ∈ LH. By definition, (x−)− = x and the contradictory element

of u = hx− is the element u− = hx = x. This shows that u and x− are two distinct

contradictory elements of x, a contradiction to the definition of symmetrical RHAs.

Now we prove the sufficiency. Assume that AX satisfies the assumption (SYM). Con-

sider an arbitrary element x ∈ X and let u and v be two contradictory elements of x.

Suppose that u and v are defined by u = hn . . . h1c
− and v = km . . . k1c

−, which

correspond to two representations hn . . . h1c and km . . . k1c of x, where c, c− ∈ G and

c 6= c−. It is known that there exists an index i ≤ min(n,m) such that hi . . . h1c is the

canonical representation of x w.r.t. c. This implies that hj = kj for all j ≤ i. It is clear

that if m = n = i then u = v. If either i < n or i < m then x is a fixed point. By

the assumption (SYM), hi . . . h1c
− is also a fixed point and, hence, again u = v, which

concludes the proof.

Notice that, by Theorem 4.3, every symmetrical RHA AX = (X,G,LH,≤) is a

distributive lattice. Moreover, we have the following:

Theorem 5.2. For every symmetrical RHA AX = (X,G,LH,≤), the following state-

ments hold:

(i) (hx)− = hx−, for every h ∈ LH and x ∈ X
(ii) (x−)− = x, for every x ∈ X.

(iii) hx > x iff hx− < x−, for every h ∈ LH and x ∈ X.

(iv) hx > kx iff hx− < kx−, for any h, k ∈ LH and x ∈ X.

(v) x < y iff x− > y−, for any x, y ∈ X.

(vi) (x ∪ y)− = x− ∩ y− and (x ∩ y)− = x− ∪ y−, for any x, y ∈ X, where ∪ and ∩
stand for join and meet, respectively, in AX.

Proof. The assertion (i) is a direct consequence of the definition of the contradictory

elements in AX. Assertion (ii) follows immediately from the fact that, for every x ∈ X,

x− is uniquely defined and x is a contradictory element of x−.
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Now we shall prove assertion (iii) by induction on the length of the canonical repre-

sentations of x w.r.t. a generator:

Let |x| = 1, where |x| denotes the length of the canonical representation of x w.r.t.

a generator c. Clearly, x = c ∈ G. If V c > c and hc > c then V and h are compatible.

Thus, the inequality hc− < c− follows from the fact that V c− < c−. If V c < c and hc > c

then V and h are converse. Hence, V c− > c− implies hc− < c−. For the other cases, the

proof is similar. Therefore, the assertion (iii) is true for |x| = 1. Assume that (iii) holds

for all x satisfying |x| < i. Let u = hx with |u| = i and consider the case that khx > hx.

If k is positive w.r.t. h, then hx > x and, by the induction hypothesis, hx− < x−. Hence,

it implies that khx− < hx−, since the equality cannot occur, by assumption (SYM). By

the same argument, it can be proved that ku− < u− implies ku > u.

Analogously, we can prove (iii) for the other cases.

Now, we prove (iv). If h and k are converse, then hx > x > kx and by (iii) it implies

that hx− < x− < kx−. If h and k are compatible then hx > kx > x, which implies h > k

in LHc + I. Since, by (iii), we have kx− < x− and, hence, hx− < kx−.

Note that, as above, the equality hx− = kx− does not occur, since in the contrary

case, x− is a fixed point and, hence, so is its contradictory element x, by (SYM).

The proof for the two last assertions will be more complicated. First, we prove (v).

It is known that if x ∈ LH(c) and y ∈ LH(c′), with c 6= c′, then c > c′ can follow from

x > y. By definition, x− ∈ LH(c′) and y− ∈ LH(c) and, hence, x− < y−.

Suppose that x, y ∈ LH(c) and x > y, and x = hn . . . h1w, y = km . . . k1w are,

respectively, the canonical representation of x and y w.r.t. w, where w ∈ LH(c) and

h1 6= k1. Note that one of h1 and k1 may be the identity I. From x > y it follows that

h1w > k1w, by Theorem 3.3 and, by (iv), we have h1w
− < k1w

−.

Without loss of generality, we assume h1 6= I and shall prove the necessity of (v) by

induction on the length of the string σ = hn . . . h1, denoted by |σ|.
First consider the case when |σ| = 1, i.e. x = h1w > y = km . . . k1w. If there is no

index i in SIc such that both h1 and k1 belong to LHc
i , then from the fact h1w

− < k1w
−

above it follows that x = h1w
− < y−, by (1),Theorem 3.3. In the opposite case, i.e. there

exists an index i ∈ SIc such that h1, k1 ∈ LHc
i and also by (1),Theorem 3.3, from the fact

x > y it follows that h1w ≥ km . . . k2h1w. If x = h1w = km . . . k2h1w occurs in the last

inequality, then x is a fixed point and, hence, k1w is also a fixed point, i.e. y = k1w. Then,

by (SYM), h1w
− and k1w

− are also fixed points. Thus, x− = h1w
− < k1w

− = y−. If

h1w > km . . . k2h1w, then k2 6= I and, by Theorem 3.3, we have h1w > k2h1w. Hence, it

follows from (iii) that h1w
− < k2h1w

−. Again by Theorem 3.3, the last inequality implies

h1w
− < km . . . k2h1w

−. Moreover, by (R3), we have km . . . k2h1w
− < km . . . k2k1w

− and

so, x− = h1w
− < km . . . k2h1w

− < km . . . k2k1w
− = y−, which is what we require to

prove for the case |σ| = 1.

Now let us assume the induction hypothesis, that x = hn . . . h1w > y = km . . . k1w

implies that x− = hn . . . h1w
− > y− = km . . . k1w

− for all strings of hedges σ satisfying

|σ| < p, and for any w ∈ LH(c). To prove the induction conclusion let us consider

x = hp . . . h1w, i.e. |σ| = p.

If there is no index i in SIc such that both h1 and k1 belong to LHc
i , then from

h1w
− < k1w

− it follows that x− < y−, by (1), Theorem 3.3. If there exists an index
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i in SIc such that both h1 and k1 belong to LHc
i , then from x = hp . . . h1w > y =

km . . . k1w, it follows, by Theorem 3.3, that x = hp . . . h1w ≥ km . . . k2h1w. Putting

y1 = km . . . k2h1w, it is clear that y1 > y, by (R3). Since h1w
− < k1w

−, as a conse-

quence of (R3), we have y−1 < y−. Applying Theorem 3.3 to two elements x and y1, it

follows that there exists an index j such that 2 ≤ j ≤ min(p,m) + 1 and hj′ = kj′ ,

for 2 ≤ j′ < j. If x = y1 then we have p = m = j and hjwj = kjwj , where

wj = hj−1 . . . h1w. Therefore, we have hjw
−
j = kjw

−
j , by (iv). Hence, x− = hjw

−
j =

kjw
−
j = y−1 < y−.

Assume that x > y1, by Theorem 3.3, it follows that hjwj > kjwj , and, thus, hjw
−
j <

kjw
−
j , by (iv). Note that the length of the string σ′ = hp . . . hj+1 is less than or equal to

p. Therefore, by the induction hypothesis, it follows that x− = hp . . . hj+1hjw
−
j < y−1 =

kn . . . kj+1kjw
−
j . Consequently, we have x− < y−. On account of (ii), it is evident that

the sufficiency of (v) can be deduced directly from the necessity. This concludes the proof

of (v).

To prove (vi), we find first, by (v), that x = y iff x− = y− and that x and y are

incomparable iff x− and y− are incomparable. We shall prove the validity of (x ∪ y)− =

x− ∩ y−. The proof for (x ∩ y)− = x− ∪ y− can be obtained by duality.

If x and y are comparable then the assertion follows directly from (v). Suppose that

x and y are incomparable and x = hn . . . h1w, y = km . . . k1w are, respectively, the

canonical representation of x and y w.r.t. w, where w ∈ LH(c), for some c ∈ G, such

that h1 6= k1. We shall prove the assertion by induction on the length of the string

σ = hn . . . h1, denoted by |σ|.
First, let us suppose that |σ| = 1, i.e. x = h1w. By Theorem 3.3, it follows that there

exists an index i in SIc such that both h1 and k1 belong to LHc
i . By Theorem 4.1, we

have

x ∪ y =

{
(h1 ∨ k1)w ∪ km . . . k2(h1 ∨ k1)w if h1w > w,

(h1 ∧ k1)w ∪ km . . . k2(h1 ∧ k1)w if h1w < w.

Recall that LHc
i is a sublattice of LHc + I. Hence, if h1w > w then (h1 ∨ k1)w > w.

If h1w is a fixed point then so are (h1 ∨ k1)w and k1w, by Proposition 3.1. Hence,

y = k1w and x ∪ y = (h1 ∨ k1)w. Furthermore, by (SYM), it follows that h1w
−, k1w

−,

(h1 ∨ k1)w− are also fixed points, i.e. x− = h1w
−, y− = k1w

−. On the other hand,

by (iii), it follows from h1w > w that h1w
− < w−. Thus, by Theorem 4.1, we have

x− ∩ y− = (h1 ∨ k1)w− = (x ∪ y)−.

Now assume that h1w is not a fixed point. If k2 is positive w.r.t. (h1∨k1), then k2(h1∨
k1)w > (h1 ∨k1)w. Notice that equality cannot occur, since if k2(h1 ∨k1)w = (h1 ∨k1)w,

then (h1 ∨ k1)w is a fixed point and, hence, so is h1w, a contradiction. By Theorem 3.3,

we have km . . . k2(h1 ∨ k1)w > (h1 ∨ k1)w, which yields x ∪ y = km . . . k2(h1 ∨ k1)w. By

definition, we have (x ∪ y)− = km . . . k2(h1 ∨ k1)w−. On the other hand, by (iii), from

k2(h1 ∨ k1)w > (h1 ∨ k1)w it follows that k2(h1 ∨ k1)w− < (h1 ∨ k1)w−. Consequently,

km . . . k2(h1∨k1)w− < (h1∨k1)w−, by Theorem 3.3. Thus, x−∩y− = km . . . k2(h1∨k1)w−,

which is the requirement.

Since the proof for the case h1w < w is similar, this concludes the proof for the case

|σ| = 1.
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Now, let us suppose that (x ∪ y)− = x− ∩ y− holds for all x and y with the string

σ of hedges satisfying |σ| < p, and with any w ∈ LH(c). We shall prove the induction

conclusion for x = hp . . . h1w, where |σ| = p.

Since x and y are incomparable, it follows from Theorem 3.3 that there exists an

index i in SIc such that both h1, k1 ∈ LHc
i . Moreover, by Theorem 4.1, we have

x ∪ y =

{
hp . . . h2(h1 ∨ k1)w ∪ km . . . k2(h1 ∨ k1)w if h1w > w,

hp . . . h2(h1 ∧ k1)w ∪ km . . . k2(h1 ∧ k1)w if h1w < w.

First, assume that h1w > w. By (iii), h1w
− < w− and by (v), x− and y− are in-

comparable. So, on account of Theorem 4.1, we have x− ∩ y− = hp . . . h2(h1 ∨ k1)w− ∩
km . . . k2(h1 ∨ k1)w−, where x− = hp . . . h1w

− and y− = km . . . k1w
−. Further, if

hp . . . h2(h1 ∨ k1)w and km . . . k2(h1 ∨ k1)w are comparable, then, by (v), it is obvious

that
(x ∪ y)− = (hp . . . h2(h1 ∨ k1)w ∪ km . . . k2(h1 ∨ k1)w)−

= hp . . . h2(h1 ∨ k1)w− ∩ km . . . k2(h1 ∨ k1)w−

= x− ∩ y−.
If x1 = hp . . . h2(h1 ∨ k1)w and y1 = km . . . k2(h1 ∨ k1)w are incomparable then, by

Theorem 3.3, there exists an index j satisfying 2 ≤ j < min(p,m) + 1 such that hj′ = kj′

for all j′ satisfying 2 ≤ j′ < j, and there exists an index i′ in SIc such that hj , kj ∈ LHc
i .

Thus, it follows from Theorem 4.1 that

x1 ∪ y1 =

{
hp . . . hj+1(hj ∨ kj)wj ∪ km . . . kj+1(hj ∨ kj)wj if hjwj > wj ,

hp . . . hj+1(hj ∧ kj)wj ∪ km . . . kj+1(hj ∧ kj)wj if hjwj < wj ,

where wj = hj−1 . . . h2(h1 ∨ k1)w. Clearly, |σ′| < p, where σ′ = hp . . . hj+1. As proved

above, x−1 and y−1 must be incomparable.

If hjwj > wj then hjw
−
j < w−j , by (iii). Therefore, again by Theorem 4.1,

x− ∩ y− = hp . . . hj+1(hj ∨ kj)w−j ∩ km . . . kj+1(hj ∨ kj)w−j = x−1 ∩ y
−
1 .

Now, combining the obtained equalities and taking into account the induction hypoth-

esis, we obtain (x∪y)− = (hp . . . hj+1(hj∨kj)wj∪km . . . kj+1(hj∨kj)wj)
− = (x1∪y1)− =

x−1 ∩ y
−
1 = x− ∩ y−.

For the case hjwj < wj , the proof is similar.

Since the proof for the case h1w < w, can be obtained by duality, the theorem is

completely proved.

6. RHA of linguistic truth variable as an algebraic foundation of linguistic-

valued logic. It is known that linguistic variables, especially linguistic truth variable,

which were interpreted in the framework of fuzzy set theory by Zadeh as quintuple

(X,T (X), U,G,M) (see, e.g., [26-28]), have an important role in investigation of fuzzy

logic and approximate reasoning methods. In the same time, the symmetrical EHA of

linguistic truth variable can be taken as a basic algebraic structure for linguistic-valued

fuzzy logic and linguistic reasoning methods developed in [5-7]. In the previous section,

we have examined symmetrical RHAs and proved their several important properties. Par-

ticularly, all those properties hold for each RHA of linguistic truth variables. However,

as an algebraic structure modelling domains of linguistic truth variable, we shall discuss
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in more detail the semantics of negation and implication and show that their properties

may be appropriate for a certain fuzzy logic.

Let us consider a symmetrical RHA AT = (T,C, LH,≤) of linguistic truth variable

generated by two primary generators ’True’ and ’False’, where ’True’ is the positive

generator and ’False’ is the negative one, i.e. C = {True,False}. For simplicity, we assume

that AT is finite.

It is known that the RHA AT under consideration is a distributive lattice. Thus, the

lattice operations of join and meet can model the semantics of the logical disjunction and

conjunction. Now, we show that the operator “−” can be interpreted as a negation.

Let AT = (T,C, LH,≤) be a symmetrical RHA of linguistic truth variable, where the

underlying set T is defined as follows:

First we define LHn[C], for n ≥ 0, by the following procedure:

LH0[C] = C, LHn+1[C] = LH[LHn[C]].

Notice that, by our convention, the identity I will only stand in a prefix of an expres-

sion, for instance I . . . Ih . . . h′x, and it means that if I occurs explicitly in an expression,

then every hedge operation applying to I has no effect, i.e. hIu = Iu = u. Therefore,

it is easily seen that C ⊂ LH[C] ⊂ LH2[C] ⊂ . . . ⊂ LHn[C] ⊂ . . .. In general, this

chain is infinite. However, in applications, we use only a bounded number of hedges in

concatenation and, hence, we require the above chain of inclusions to be finite.

Let p be a fixed positive integer. For any x ∈ LHp[C] and x 6∈ LHp−1[C], we define

hx = x, for every h ∈ LH and, so, we have C ⊂ LH[C] ⊂ LH2[C] ⊂ . . . ⊂ LHp[C]. Let

T = LHp[C]. Clearly, if AT is finite, then there exists p ≥ 0 such that T = LHp[C]. It

is known that this algebra AT is a complete distributive lattice. In addition, based on

the properties of the unit-operation V , it is easy to see that the elements V pTrue and

V pFalse are the greatest and least elements in AT and they will be denoted by 1 and by

0, respectively.

As observed by Ho & Wechler in [14], the negation of vague concept may often be its

contradictory concept, if it exists. For example, ’good’ and ’true’ are vague concepts and

they involve an intuitively intended meaning. Refuting this meaning, one may often think

of the meaning of the concepts ’bad’ and ’false’, which are the contradictory concepts of

’good’ and ’true’, respectively, and vice-versa. This interpretation was adopted in many

investigations of fuzzy reasoning (see, e.g., [25-28]). Furthermore, it may still be possible

to discuss how to refute statements containing vague concepts which are not primary

concepts, for example, the concept ’Very little true’. It is natural to regard the negation

of ’Very little true’ as to be a concept of ’false’ and it may most probably be the concept

’Very little false’, a contradictory concept of the concept ’Very little true’.

Therefore, analogous to the paper [14] by Ho and Wechler, we now define the negation

of an element x in AT to be its contradictory element, i.e. −x = x−. This operation −
is called negation operation. The implication operation, denoted by ⇒, in this algebra is

defined in this paper in a regular way, i.e. by means of the negation operation and the

join operation, as follows:

x⇒ y = ¬x ∪ y, for any x and y of AT .
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We introduce in AT a new generator W defined by LH(True) > W > LH(False) and

hW = W , for all h ∈ LH. This element W can be understood as ’Unknown’.

Note that the algebra AT with the new element W also preserves all properties of

the symmetrical RHA, where W = W−. Therefore, without loss of generality we assume

that the set of generators of the symmetrical RHA AT consists of three elements True,

W and False, where W is defined as above and True > W > False.

Let AT = (T,C, LH,≤), with C = {True,W,False} and underlying set T defined as

above, be a symmetrical RHA of the linguistic truth variable. As examined above, the

operations ∪, ∩, ¬, ⇒ can be derived in AT and, so, we can write

AT = (T,C, LH,≤,¬,∪,∩,⇒, 0, 1).

Throughout this section we always write simply AT for such an algebra.

We are now ready to discuss some elementary properties of the negation operation

and the implication operation. From the definition of these operations and Theorem 5.2,

it is not difficult to see that the following holds.

Theorem 6.1. Let AT be a symmetrical RHA of the linguistic truth variable. Then

(i) ¬(hx) = h¬x, for every h ∈ LH and x ∈ T .

(ii) ¬(¬x) = x, for all x ∈ T .

(iii) ¬(x ∪ y) = ¬x ∩ ¬y and ¬(x ∩ y) = ¬x ∪ ¬y, for all x, y ∈ T .

(iv) x ∩ ¬x ≤ y ∪ ¬y, for all x, y ∈ T .

(v) x ∩ ¬x ≤W ≤ x ∪ ¬x, for all x ∈ T .

(vi) ¬1 = 0, ¬0 = 1 and ¬W = W .

(vii) x > y iff ¬x < ¬y, for all x, y ∈ T .

It is worth to mention that the statements (ii)-(iv) of Theorem 6.1 show that the

algebra AT is a Kleen algebra in the sense of Skala [24] and (vi) shows that this algebra

includes the 3-valued  Lukasiewicz algebra {0,W, 1} as its subalgebra.

As a consequence of the definition of the implication operation and Theorem 6.1, we

have the following

Theorem 6.2. Let AT be a symmetrical RHA of the linguistic truth variable. Then

(i) x⇒ y = ¬y ⇒ ¬x.

(ii) x⇒ (y ⇒ z) = y ⇒ (x⇒ z).

(iii) x⇒ y ≥ x′ ⇒ y′ if x ≤ x and/or y ≥ y′.
(iv) x⇒ y = 1 iff either x = 0 or y = 1.

(v) 1⇒ x = x and x⇒ 1 = 1; 0⇒ x = 1 and x⇒ 0 = ¬x.

(vi) x⇒ y ≥W iff either x ≤W or y ≥W , and

x⇒ y ≤W iff x ≥W and y ≤W .

7. Conclusions. In this paper RHA has been introduced and investigated. We have

proved that RHA with a chain of the primary generators is a distributive lattice. We

would like to note that the primary generators of almost linguistic variables constitute

linearly ordered sets. Furthermore, in the symmetrical RHAs of linguistic truth variable

we are able to define negation operation and implication operation. Note that a method
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in linguistic reasoning based on linguistic-valued fuzzy logic corresponding to the sym-

metrical EHAs has been established in [7]. In this direction, we hope that it is possible to

develop deductive reasoning methods based on RHAs. Remember that the symmetrical

RHAs have a finer structure than that of the symmetrical EHAs and their operations

may model the semantics of logical connectives more appropriately.

Some researchers, who are familiar with the fuzzy sets theory, might have some crit-

icisms on the way we have defined negation and implication as above. In the authors’

opinion, in an algebraic approach to fuzzy logic, the way we define negation, which sat-

isfies (ii) and (vii) of Theorem 6.1, may be unique. Remember that there exists only a

unique complement operation in a finite linear set, that satisfies these two properties.

The important thing which justifies the reasonableness of negation and implication is

their properties, which have been proved in the algebras under consideration. Theorem 6.1

and 6.2 show that the symmetrical RHAs of the linguistic truth variable are logically

rich enough to examine a kind of fuzzy logic, called linguistic-valued logic, and develop

linguistic reasoning methods.

For comparison of our study with fuzzy set approach to fuzzy logics, we present

roughly here a general idea of fuzzy logics based on fuzzy sets theory. As we have said

previously, a basic notion to construct approximate reasoning methods is the concept of

linguistic variable (see [28]), which is interpreted as quintuple (X,T (X), U,G,M), where

X is the name of the variable; T (X) denotes the term-set of X, U is a universe of discourse

of the base variable, G is a syntactic rule for generating linguistic terms of T (X), and

M is a semantic rule which is a mapping assigning to each linguistic term a fuzzy set on

U , i.e. a function from U into the unit interval [0, 1]. Let us denote by F (U, [0, 1]) the

set of all functions from U into the unit interval [0, 1]. If τ is a linguistic value in T (X)

then M(τ) ∈ F (U, [0, 1]), the set of all functions from U into [0, 1], is a meaning of τ , and

if, for example, a connective OR occurs in τ , for example τ = App.True OR Poss.True,

then M(OR) is an operation on F (U, [0, 1]), e.g. M(OR) = Max or M(OR) is a t-norm

operation. So, a non-computational structure T (X), from the viewpoint of fuzzy set

theory, is embedded in F (U, [0, 1]), a computational structure.

The authors emphasise that in approximate reasoning methods, the semantic mapping

M is rather subjective and, in applications, its reasonableness is justified by experiments.

However, it is clear that there is an intuitive structure of the set T (X) and, then, a

question arises on mathematical point of view, whether M preserves this structure, or,

more exactly, whether M models the intuitive structure of T (X) appropriately.

Based on our study, the answer is no by the following reasons.

First, we have pointed out in the paper that T (X) has a rich enough algebraic struc-

ture and M does not preserve even the ordering relation of T (X).

Second, from the algebraic point of view we should use the mathematical structure

of the image M(T (X)) ⊆ F (U, [0, 1]) as an underlying structure to investigate and

construct fuzzy reasoning methods. However, it can be seen that this structure is too

weak and, hence, one has to use the functional structure of the whole set F (U, [0, 1]) in-

stead of M(T (X)) to develop fuzzy reasoning methods, irrespectively of whether the set

F (U, [0, 1]) models the structure of M(T (X)) suitably or not. Note that the set M(T (X))

is countably infinite and in applications it is in general finite only, and we can see that the
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difference between the structures of M(T (X)) and F (U, [0, 1]) is too big and, so, this may

be a main reason which causes certain unreasonable questions, in the authors’ opinion,

and large errors in application of fuzzy reasoning methods (see [3,16,17,19]). For example,

the operation MAX on fuzzy sets (as functions) in M(T (X)), which has to be defined

meaningfully only in F (U, [0, 1]), cannot model the connective OR in natural language

reasonably, especially in the case M(T (X)) is finite.

From this point of view, our main contribution is the following.

1. We have proved that T (X) has a good enough mathematical structure, denoted by

A(T (X)) and it is also a computational structure. Particularly, the structure A(T (Truth))

of linguistic variable of Truth can be considered as a rich enough logical foundation for

approximate reasoning.

2. Now, linguistic variable can be interpreted as a quartuple (X,T (X), G,M), where

X, T (X) and G are the same as above, but M is a mapping from T (X) onto A(T (X))

which models rather well the meaning of the terms in T (X).
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