CONLEY INDEX THEORY BANACH CENTER PUBLICATIONS, VOLUME 47 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1999

SYMBOLIC DYNAMICS FOR THE RÖSSLER FOLDED TOWEL MAP

PIOTR ZGLICZYŃSKI

Institute of Mathematics, Jagiellonian University Reymonta 4, 30-059 Kraków, Poland E-mail: zgliczyn@im.uj.edu.pl

1. Main result. Let us define

$$f_{\mu}(x) := \mu x (1-x)$$
 (1)

We consider the following folded towel map introduced by Rössler in [R]: R(x, y, z) = $(\bar{x}, \bar{y}, \bar{z})(x, y, z),$

$$\bar{x}(x,y,z) = f_{3.8}(x) - a0.05(y+0.35)(1-2z)$$
 (2)

$$\bar{q}(x,y,z) = a0.1[(y+0.35)(1-2z)-1](1-1.9x)$$
 (3)

$$\bar{y}(x, y, z) = a0.1[(y + 0.35)(1 - 2z) - 1](1 - 1.9x)$$

$$\bar{z}(x, y, z) = f_{3.78}(z) + a0.2y$$

$$(3)$$

where $a \in [-1, 1]$. The case a = 1 was considered by Rössler in [R].

Before we state the main result of this note we define the notion of symbolic dynamics. Consider a continuous map $F : \mathbb{R}^n \to \mathbb{R}^n$. Suppose now that we have a family of compact mutually disjoint sets N_j for j = 0, 1, ..., l - 1. We set $N = \bigcup_{j=0}^{l-1} N_j$. An invariant part of the set N is defined by

$$\operatorname{Inv}(N,F) := \bigcap_{i \in \mathbb{Z}} F_{|N|}^{-i}(N)$$
(5)

Let $\Sigma_l := \{0, 1, \dots, l-1\}^{\mathbb{Z}}, \Sigma_l^+ := \{0, 1, \dots, l-1\}^{\mathbb{N}}$. Σ_l, Σ_l^+ are topological spaces with the Tikhonov topology. On Σ_l, Σ_l^+ we have the shift map σ given by

$$(\sigma(c))_i = c_{i+1}$$

For $i \in \mathbb{N}$ we define a map $\pi_i : \operatorname{Inv}(N, F) \to \{0, 1, \dots, l-1\}$ given by $\pi_i(x) = j$ iff $F^i(x) \in N_j$. Now we define a map $\pi : \operatorname{Inv}(N, F) \to \Sigma_l^+$ by $\pi(x) := (\pi_i(x))_{i \in \mathbb{N}}$. Such a

1991 Mathematics Subject Classification: Primary 58F15; Secondary 58G10.

[253]

Research supported by KBN grant 0892/P03/97/12.

The paper is in final form and no version of it will be published elsewhere.

map π is obviously continuous. The map π assigns to the point x the indices of the N_i -s its F-trajectory goes through. It is easy to see that

$$\pi \circ F = \sigma \circ \pi. \tag{6}$$

If F is also a homeomorphism, then the definition of π_i can be extended to all integers and the domain of π is Σ_l .

DEFINITION 1. Let F and N_j be as above. We will say that F has symbolic dynamics on l symbols iff π is onto and the preimage of any periodic sequence from Σ_l^+ contains periodic points of F.

The main result of this note is the following

THEOREM 1. If $|a| \leq 1$ then R^2 has a symbolic dynamics on two symbols. If |a| < 0.4 then R^4 has a symbolic dynamics on four symbols.

The proof of this theorem is based on the topological theorem from [Z1], which is presented in the next section.

2. Topological theorem. First we introduce some notations. Let $p \in \mathbb{R}^n$. By $x_i(p)$ we will denote the *i*-th coordinate of the point p. We will use the max norm on \mathbb{R}^n , so

$$|(x_1,\ldots,x_n)| := \max_i |x_i| \tag{7}$$

Let $Z \subset \mathbb{R}^n$, $x \in \mathbb{R}^n$. Then we use the following notations dist $(x, Z) = \inf\{|x-y||y \in Z\}$, $B(x, \epsilon) = \{y||x-y| < \epsilon\}$, $B(Z, \epsilon) = \{x| \text{dist} (x, Z) < \epsilon\}$, diam $Z = \sup_{x,y \in Z} |x-y|$.

By \mathcal{C} we will denote a parallelogram in \mathbb{R}^n , so

$$\mathcal{C} := \{ X \subset \mathbb{R}^n \mid X = \prod_{i=1}^n [x_{ai}, x_{bi}] \}$$
(8)

DEFINITION 2. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous, $X = [x_a, x_b]$ and $Y = [y_a, y_b]$. We say that X f-covers Y (with a margin δ) iff there exists $\delta > 0$ such that $[y_a - \delta, y_b + \delta]$ is contained either in $[f(x_a), f(x_b)]$ or in $[f(x_b), f(x_a)]$.

DEFINITION 3. Let $X = \prod_{i=1}^{n} [x_{ai}, x_{bi}]$. For $i \in \{1, \ldots, n\}$ we define the *i*-th upper and lower edge of X respectively by

$$U_i(X) = \{ p \in X \mid x_i(p) = x_{bi} \}$$
(9)

$$D_i(X) = \{ p \in X \mid x_i(p) = x_{ai} \}$$
(10)

DEFINITION 4. Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be continuous, $X = \prod_{i=1}^n [x_{ai}, x_{bi}]$ and $Y = \prod_{i=1}^n [y_{ai}, y_{bi}]$. Let $1 \le i \le n$. We say that X F-covers Y in i direction (with a margin δ) iff there exists $\delta > 0$ such that one of the two following conditions hold

$$[y_{ai} - \delta, y_{bi} + \delta] \subset [\max x_i(F(D_i(X))), \min x_i(F(U_i(X)))]$$
(11)

$$[y_{ai} - \delta, y_{bi} + \delta] \subset [\max x_i(F(U_i(X))), \min x_i(F(D_i(X)))]$$
(12)

DEFINITION 5. Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be continuous, $\delta > 0$, $X = \prod_{i=1}^n [x_{ai}, x_{bi}]$ and $Y = \prod_{i=1}^n [y_{ai}, y_{bi}]$. Let $1 \le i_1 < i_2 < \ldots < i_k \le n$ be a sequence of integers. We say that X F-covers Y in (i_1, i_2, \ldots, i_k) -direction (with a margin δ) if the following conditions hold:

- for every l = 1, ..., k X F-covers Y in i_l direction with margin δ ,
- for every j not in the sequence i_1, i_2, \ldots, i_k we have

$$x_j(F(X)) \subset [y_{aj} + \delta, y_{bj} - \delta] \tag{13}$$

To illustrate the notions introduced above let us consider the following example. Let n = 3 and $f_1, f_2, f_3 : \mathbb{R} \to \mathbb{R}$ and the segments X_i, Y_i for i = 1, 2 be such that X_i f_i -covers Y_i with margin $\delta < 1$ and $f_3(x) = 0$ for $x \in \mathbb{R}$. We set $X_3 = Y_3 = [-1, 1]$, $X = X_1 \times X_2 \times X_3, Y = Y_1 \times Y_2 \times Y_3$. Consider the map $F : \mathbb{R}^3 \to \mathbb{R}^3$ given by $F(x_1, x_2, x_3) = (f_1(x_1), f_2(x_2), f_3(x_3))$. It is easy to see that the set X F-covers Y in (1, 2)-direction with margin δ . Consider now a perturbation $\tilde{F} : \mathbb{R}^n \to \mathbb{R}^n$ of F such that $|\tilde{F} - F|_{|X} < \delta$. Then it is easy to see that $X \tilde{F}$ -covers Y in (1, 2)-direction.

Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be a continuous map. Let us fix a sequence $1 \leq i_1 < i_2 < \ldots < i_k \leq n$. Let $\{e_i\}$ be the canonical basis in \mathbb{R}^n . Then we will call the linear subspace spanned by $\{e_{i_1}, \ldots, e_{i_k}\}$ a topologically expanding direction (with respect to F). The reason for this name will be clear from theorem 2.

DEFINITION 6. Let $X, Y \in \mathcal{C}$. We will say that there exists an *F*-transition of length m from X to Y iff there exists a sequence of sets $\{N_j\}_{j=0,1,\dots,l} \subset \mathcal{C}$ and a sequence of integers $\{m_j\}_{j=0,\dots,l-1}$, such that

$$N_0 \subset X, \quad N_l = Y$$

$$N_j F^{m_j}\text{-covers } N_{j+1} \text{ in } (i_1, \dots, i_k)\text{-direction, for } j = 0, \dots, l-1$$

$$m_0 + m_1 + \dots m_{l-1} = m$$

We will use the graphical notation $X \stackrel{F^m}{\Longrightarrow} Y$.

Suppose now that we have a family of sets $N_j \in C$ for j = 0, 1, ..., l-1 and an integer m such that

$$N_j \cap N_k = \emptyset$$
, for $j, k = 0, \dots, l-1, j \neq k$ (14)

$$N_j \stackrel{F'''}{\Longrightarrow} N_k, \quad \text{for } j, k = 0, \dots, l-1$$
 (15)

We set $N = \bigcup_{j=0}^{l-1} N_j$. The following theorem is proved in [Z1]

THEOREM 2. Let the family of sets $\{N_j\}_{j=0,...,l-1} \subset C$ satisfy (14)–(15). Then $\Sigma_l^+ = \pi(\operatorname{Inv}(N, F^m))$. The preimage of any periodic sequence from Σ_l^+ contains periodic points of F^m . If we additionally suppose that F is a homeomorphism, then $\Sigma_l = \pi(\operatorname{Inv}(N, F^m))$.

3. Proof for $|a| \leq 1$. Our aim is to apply theorem 2 to R to obtain theorem 1. As topologically expanding directions we set e_1, e_3 .

Let us set $\epsilon = 0.022$, $\epsilon_1 = 0.01$, $\epsilon_2 = 0.02$ and define

$$x_{max} := \max_{x \in [0,1]} f_{3.8}(x) - \epsilon_1 = 3.8/4 - \epsilon_1 = 0.94$$
(16)

$$x_{min} := f_{3.8}(x_{max}) = 0.21432 \tag{17}$$

$$y_{max} := 0.1095$$
 (18)

$$z_{max} := \max_{z \in [0,1]} f_{3.78}(z) - \epsilon = 3.78/4 - \epsilon = 0.923$$
(19)

$$z_{min} := f_{3.8}(z_{max}) = 0.26864838 \tag{20}$$

Let $D := [x_{min}, x_{max}] \times [-y_{max}, y_{max}] \times [z_{min}, z_{max}].$ We show that

$$|\bar{y}| < y_{max}, \quad \text{for } (x, y, z) \in D$$
 (21)

We have

$$\begin{split} |\bar{y}| &\leq 0.1 | [(y+0.35)(1-2z)-1](1-1.9x) | \leq \\ 0.1 | (y_{max}+0.35)(1-2z_{max})-1 | | 1-1.9x_{max} | < \\ 0.1(0.46\cdot 0.846+1) 0.786 = 0.1\cdot 1.38916\cdot 0.786 < 0.1092 \end{split}$$

We show now

$$\begin{aligned} |\bar{x}(x,y,z) - f_{3.8}(x)| &< \epsilon_2, \quad \text{for } (x,y,z) \in D \\ |\bar{z}(x,y,z) - f_{3.78}(z)| &< \epsilon, \quad \text{for } (x,y,z) \in D \end{aligned}$$
(22)

$$|x(x,y,x)| = \int \int \frac{1}{2\pi} \int \frac{1$$

$$(23)$$
 follows immediately from (4). To get (22) we compute

$$\begin{aligned} & |\bar{x}(x,y,z) - f_{3.8}(x)| \le |0.05(y+0.35)(1-2z)| \le \\ & 0.05(y_{max}+0.35)|1-2z_{max}| < 0.05 \cdot 0.46 \cdot 0.846 < 0.0195 \end{aligned}$$

We set

$$Z_0 := [0.295, 0.5], \quad Z_2 := [0.809, 0.922]$$

It is easy to check that

$$Z_0 f_{3.78}$$
-covers Z_2 with margin ϵ (24)

$$Z_2 f_{3.78}$$
-covers Z_0 with margin ϵ (25)

For
$$(x, y, z) \in [x_{min}, x_{max}] \times [-y_{max}, y_{max}] \times Z_0$$
 we have
 $|\bar{x}(x, y, z) - f_{3.8}(x)| \le |0.05(y + 0.35)(1 - 2z)| \le$

$$0.05(y_{max} + 0.35)|1 - 2 \cdot 0.295| < 0.05 \cdot 0.46 \cdot 0.41 < 0.0095$$

Hence

$$|\bar{x}(x, y, z) - f_{3.8}(x)| < \epsilon_1, \text{ for } (x, y, z) \in [x_{min}, x_{max}] \times [-y_{max}, y_{max}] \times Z_0$$
 (26)
We set

$$X_0 = [0.2347, 0.5], \qquad X_1 = [0.5, 0.7653]$$

$$X_0 = [0.2347, 0.5], \qquad X_1 = [0.5, 0.7653]$$
(27)
$$X_2 = [0.6927, 0.94].$$
(28)

Observe that X_1 is the image of X_0 under the reflection $x \to 1 - x$. It is easy to check that

$$X_0, X_1$$
 both $f_{3.8}$ -cover X_2 with a margin ϵ_1 (29)

$$X_2 f_{3.8}$$
-covers $X_0 \cup X_1$ with a margin ϵ_2 (30)

We set

$$N_{00} = X_0 \times \left[-y_{max}, y_{max}\right] \times Z_0 \tag{31}$$

$$N_{10} = X_1 \times [-y_{max}, y_{max}] \times Z_0$$
(32)

$$N_2 = X_2 \times [-y_{max}, y_{max}] \times Z_2 \tag{33}$$

256

From (21)–(26), (29) and (29) it follows that N_{00} and N_{10} *R*-cover N_2 in (1,3)-direction, and N_2 *R*-covers in (1,3)-direction both N_{00} and N_{10} .

We want to apply theorem 2 to R, m = 2 and the sets N_{00}, N_{10} , but $N_{00} \cap N_{10} \neq \emptyset$. We overcome this problem by observing that there exist sets $\tilde{N}_{00} \subset \operatorname{int} N_{00}$ and $\tilde{N}_{10} \subset \operatorname{int} N_{10}$ such that \tilde{N}_{00} and $\tilde{N}_{10} \operatorname{R-cover} N_2$ in (1,3)-direction. We have

$$\tilde{N}_{00} \cap \tilde{N}_{10} = \emptyset \tag{34}$$

$$\tilde{N}_{00} \stackrel{R^2}{\Longrightarrow} \tilde{N}_{00}, \tilde{N}_{10} \quad \tilde{N}_{10} \stackrel{R^2}{\Longrightarrow} \tilde{N}_{00}, \tilde{N}_{10}$$

$$(35)$$

and hence by theorem 2 we get theorem 1 for |a| = 1.

4. Proof for small |a|. As in the previous section we want to apply theorem 2 to obtain theorem 1. As topologically expanding directions we take again e_1, e_3 .

We set

$$y_{max} := 0.12$$
 (36)

Let $D := [0,1] \times [-y_{max}, y_{max}] \times [0,1]$. It is easy to see that

$$|\bar{y}(x,y,z)| < 0.15|a|, \text{ for } (x,y,z) \in D$$
 (37)

Namely

$$|\bar{y}(x,y,z)| < |a|0.1|(y_{max} + 0.35) + 1| < 0.15|a|$$

So to have $|\bar{y}| < y_{max}$, we impose on a the following condition

 $|a| < 0.8 \tag{38}$

We have

$$\bar{x}(x, y, z) - f_{3.8}(x)| < |a|0.05 \cdot 0.5 \cdot 1 = 0.025|a| \tag{39}$$

$$|\bar{z}(x,y,z) - f_{3.78}(x)| \le |a| 0.2 \cdot y_{max} < 0.025 |a|$$
(40)

We define

$$X_0 = [0.235, 0.5], \quad X_1 = [0.5, 0.765]$$
(41)

$$Z_0 := [0.3, 0.5], \quad Z_1 := [0.5, 0.7] \tag{42}$$

It is easy to check that

2

$$X_0, X_1 f_{3.8}$$
-covers [0.7, 0.94] with margin 0.01 (43)

$$[0.7, 0.94] f_{3.8}$$
-covers $X_0 \cup X_1$ with margin 0.01 (44)

To obtain the sequence of coverings starting from Z_0 and Z_1 we define

$$Z_1^a = [0.81, 0.93] \tag{45}$$

$$Z_2^a = [0.26, 0.5] \supset Z_0 \tag{46}$$

$$Z_3^a = [0.74, 0.93] \tag{47}$$

It is easy to verify that with margin 0.01 the following covering relations hold:

$$Z_0, Z_1 \stackrel{f_{3.78}}{\Longrightarrow} Z_1^a \stackrel{f_{3.78}}{\Longrightarrow} Z_2^a \stackrel{f_{3.78}}{\Longrightarrow} Z_3^a \stackrel{f_{3.78}}{\Longrightarrow} Z_0 \cup Z_1 \tag{48}$$

Let us define the sets

$$N_{ij} = X_i \times [-y_{max}, y_{max}] \times Z_j, \quad \text{for } i, j = 0, 1$$

$$\tag{49}$$

Now if |a| < 0.4 then 0.025|a| < 0.01. From the above considerations we obtain the following covering relations:

$$N_{ij} \stackrel{R^*}{\Longrightarrow} N_{00} \cup N_{10} \cup N_{01} \cup N_{11}, \quad i, j = 0, 1$$
(50)

Using the above relations we obtain the symbolic dynamics for R^4 on four symbols referring to the sets N_{ij} , which finishes the proof of theorem 1 for |a| < 0.4.

References

- [R] O. E. RÖSSLER, An equation for hyperchaos, 155–157, Physics Letters, 71A, 1979.
- [Z1] P. ZGLICZYŃSKI, On periodic points for systems of weakly coupled 1-dim maps, IM UJ preprint 1997/15.