SYMBOLIC DYNAMICS FOR THE RÖSSLER FOLDED TOWEL MAP

PIOTR ZGLICZYŃSKI
Institute of Mathematics, Jagiellonian University
Reymonta 4, 30-059 Kraków, Poland
E-mail: zgliczyn@im.uj.edu.pl

1. Main result. Let us define

$$
\begin{equation*}
f_{\mu}(x):=\mu x(1-x) \tag{1}
\end{equation*}
$$

We consider the following folded towel map introduced by Rössler in $[\mathrm{R}]: R(x, y, z)=$ $(\bar{x}, \bar{y}, \bar{z})(x, y, z)$,

$$
\begin{align*}
& \bar{x}(x, y, z)=f_{3.8}(x)-a 0.05(y+0.35)(1-2 z) \tag{2}\\
& \bar{y}(x, y, z)=a 0.1[(y+0.35)(1-2 z)-1](1-1.9 x) \tag{3}\\
& \bar{z}(x, y, z)=f_{3.78}(z)+a 0.2 y \tag{4}
\end{align*}
$$

where $a \in[-1,1]$. The case $a=1$ was considered by Rössler in $[R]$.
Before we state the main result of this note we define the notion of symbolic dynamics.
Consider a continuous map $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Suppose now that we have a family of compact mutually disjoint sets N_{j} for $j=0,1, \ldots, l-1$.

We set $N=\bigcup_{j=0}^{l-1} N_{j}$. An invariant part of the set N is defined by

$$
\begin{equation*}
\operatorname{Inv}(N, F):=\bigcap_{i \in \mathbb{Z}} F_{\mid N}^{-i}(N) \tag{5}
\end{equation*}
$$

Let $\Sigma_{l}:=\{0,1, \ldots, l-1\}^{\mathbb{Z}}, \Sigma_{l}^{+}:=\{0,1, \ldots, l-1\}^{\mathbb{N}} . \Sigma_{l}, \Sigma_{l}^{+}$are topological spaces with the Tikhonov topology. On $\Sigma_{l}, \Sigma_{l}^{+}$we have the shift map σ given by

$$
(\sigma(c))_{i}=c_{i+1}
$$

For $i \in \mathbb{N}$ we define a map $\pi_{i}: \operatorname{Inv}(N, F) \rightarrow\{0,1, \ldots, l-1\}$ given by $\pi_{i}(x)=j$ iff $F^{i}(x) \in N_{j}$. Now we define a map $\pi: \operatorname{Inv}(N, F) \rightarrow \Sigma_{l}^{+}$by $\pi(x):=\left(\pi_{i}(x)\right)_{i \in \mathbb{N}}$. Such a

[^0]map π is obviously continuous. The map π assigns to the point x the indices of the N_{i}-s its F-trajectory goes through. It is easy to see that
\[

$$
\begin{equation*}
\pi \circ F=\sigma \circ \pi \tag{6}
\end{equation*}
$$

\]

If F is also a homeomorphism, then the definition of π_{i} can be extended to all integers and the domain of π is Σ_{l}.

Definition 1. Let F and N_{j} be as above. We will say that F has symbolic dynamics on l symbols iff π is onto and the preimage of any periodic sequence from Σ_{l}^{+}contains periodic points of F.

The main result of this note is the following
Theorem 1. If $|a| \leq 1$ then R^{2} has a symbolic dynamics on two symbols. If $|a|<0.4$ then R^{4} has a symbolic dynamics on four symbols.

The proof of this theorem is based on the topological theorem from [Z1], which is presented in the next section.
2. Topological theorem. First we introduce some notations. Let $p \in \mathbb{R}^{n}$. By $x_{i}(p)$ we will denote the i-th coordinate of the point p. We will use the max norm on \mathbb{R}^{n}, so

$$
\begin{equation*}
\left|\left(x_{1}, \ldots, x_{n}\right)\right|:=\max _{i}\left|x_{i}\right| \tag{7}
\end{equation*}
$$

Let $Z \subset \mathbb{R}^{n}, x \in \mathbb{R}^{n}$. Then we use the following notations $\operatorname{dist}(x, Z)=\inf \{|x-y| \mid y \in Z\}$, $B(x, \epsilon)=\{y| | x-y \mid<\epsilon\}, B(Z, \epsilon)=\{x \mid \operatorname{dist}(x, Z)<\epsilon\}, \operatorname{diam} Z=\sup _{x, y \in Z}|x-y|$.

By \mathcal{C} we will denote a parallelogram in \mathbb{R}^{n}, so

$$
\begin{equation*}
\mathcal{C}:=\left\{X \subset \mathbb{R}^{n} \mid X=\prod_{i=1}^{n}\left[x_{a i}, x_{b i}\right]\right\} \tag{8}
\end{equation*}
$$

Definition 2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous, $X=\left[x_{a}, x_{b}\right]$ and $Y=\left[y_{a}, y_{b}\right]$. We say that $X f$-covers $Y($ with a margin $\delta)$ iff there exists $\delta>0$ such that $\left[y_{a}-\delta, y_{b}+\delta\right]$ is contained either in $\left[f\left(x_{a}\right), f\left(x_{b}\right)\right]$ or in $\left[f\left(x_{b}\right), f\left(x_{a}\right)\right]$.

Definition 3. Let $X=\prod_{i=1}^{n}\left[x_{a i}, x_{b i}\right]$. For $i \in\{1, \ldots, n\}$ we define the i-th upper and lower edge of X respectively by

$$
\begin{align*}
U_{i}(X) & =\left\{p \in X \mid x_{i}(p)=x_{b i}\right\} \tag{9}\\
D_{i}(X) & =\left\{p \in X \mid x_{i}(p)=x_{a i}\right\} \tag{10}
\end{align*}
$$

Definition 4. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuous, $X=\prod_{i=1}^{n}\left[x_{a i}, x_{b i}\right]$ and $Y=$ $\prod_{i=1}^{n}\left[y_{a i}, y_{b i}\right]$. Let $1 \leq i \leq n$. We say that $X F$-covers Y in i direction (with a mar$\operatorname{gin} \delta$) iff there exists $\delta>0$ such that one of the two following conditions hold

$$
\begin{align*}
& {\left[y_{a i}-\delta, y_{b i}+\delta\right] \subset\left[\max x_{i}\left(F\left(D_{i}(X)\right)\right), \min x_{i}\left(F\left(U_{i}(X)\right)\right)\right]} \tag{11}\\
& {\left[y_{a i}-\delta, y_{b i}+\delta\right] \subset\left[\max x_{i}\left(F\left(U_{i}(X)\right)\right), \min x_{i}\left(F\left(D_{i}(X)\right)\right)\right]} \tag{12}
\end{align*}
$$

Definition 5. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuous, $\delta>0, X=\prod_{i=1}^{n}\left[x_{a i}, x_{b i}\right]$ and $Y=\prod_{i=1}^{n}\left[y_{a i}, y_{b i}\right]$. Let $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$ be a sequence of integers. We say that $X F$-covers Y in $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$-direction (with a margin δ) if the following conditions hold:

- for every $l=1, \ldots, k X F$-covers Y in i_{l} direction with margin δ,
- for every j not in the sequence $i_{1}, i_{2}, \ldots, i_{k}$ we have

$$
\begin{equation*}
x_{j}(F(X)) \subset\left[y_{a j}+\delta, y_{b j}-\delta\right] \tag{13}
\end{equation*}
$$

To illustrate the notions introduced above let us consider the following example. Let $n=3$ and $f_{1}, f_{2}, f_{3}: \mathbb{R} \rightarrow \mathbb{R}$ and the segments X_{i}, Y_{i} for $i=1,2$ be such that X_{i} f_{i}-covers Y_{i} with margin $\delta<1$ and $f_{3}(x)=0$ for $x \in \mathbb{R}$. We set $X_{3}=Y_{3}=[-1,1]$, $X=X_{1} \times X_{2} \times X_{3}, Y=Y_{1} \times Y_{2} \times Y_{3}$. Consider the map $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by $F\left(x_{1}, x_{2}, x_{3}\right)=\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right), f_{3}\left(x_{3}\right)\right)$. It is easy to see that the set $X F$-covers Y in $(1,2)$-direction with margin δ. Consider now a perturbation $\tilde{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ of F such that $|\tilde{F}-F|_{\mid X}<\delta$. Then it is easy to see that $X \widetilde{F}$-covers Y in (1,2)-direction.

Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a continuous map. Let us fix a sequence $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq$ n. Let $\left\{e_{i}\right\}$ be the canonical basis in \mathbb{R}^{n}. Then we will call the linear subspace spanned by $\left\{e_{i_{1}}, \ldots, e_{i_{k}}\right\}$ a topologically expanding direction (with respect to F). The reason for this name will be clear from theorem 2.

Definition 6. Let $X, Y \in \mathcal{C}$. We will say that there exists an F-transition of length m from X to Y iff there exists a sequence of sets $\left\{N_{j}\right\}_{j=0,1, \ldots, l} \subset \mathcal{C}$ and a sequence of integers $\left\{m_{j}\right\}_{j=0, \ldots, l-1}$, such that

$$
\begin{gathered}
N_{0} \subset X, \quad N_{l}=Y \\
N_{j} F^{m_{j}} \text {-covers } N_{j+1} \text { in }\left(i_{1}, \ldots, i_{k}\right) \text {-direction, for } j=0, \ldots, l-1 \\
m_{0}+m_{1}+\ldots m_{l-1}=m
\end{gathered}
$$

We will use the graphical notation $X \xrightarrow{F^{m}} Y$.
Suppose now that we have a family of sets $N_{j} \in \mathcal{C}$ for $j=0,1, \ldots, l-1$ and an integer m such that

$$
\begin{array}{r}
N_{j} \cap N_{k}=\emptyset, \quad \text { for } j, k=0, \ldots, l-1, j \neq k \\
N_{j} \stackrel{F^{m}}{\Longrightarrow} N_{k}, \quad \text { for } j, k=0, \ldots, l-1 \tag{15}
\end{array}
$$

We set $N=\bigcup_{j=0}^{l-1} N_{j}$. The following theorem is proved in [Z1]
ThEOREM 2. Let the family of sets $\left\{N_{j}\right\}_{j=0, \ldots, l-1} \subset \mathcal{C}$ satisfy (14)-(15). Then $\Sigma_{l}^{+}=$ $\pi\left(\operatorname{Inv}\left(N, F^{m}\right)\right)$. The preimage of any periodic sequence from Σ_{l}^{+}contains periodic points of F^{m}. If we additionally suppose that F is a homeomorphism, then $\Sigma_{l}=\pi\left(\operatorname{Inv}\left(N, F^{m}\right)\right)$.
3. Proof for $|a| \leq 1$. Our aim is to apply theorem 2 to R to obtain theorem 1. As topologically expanding directions we set e_{1}, e_{3}.

Let us set $\epsilon=0.022, \epsilon_{1}=0.01, \epsilon_{2}=0.02$ and define

$$
\begin{align*}
x_{\max } & :=\max _{x \in[0,1]} f_{3.8}(x)-\epsilon_{1}=3.8 / 4-\epsilon_{1}=0.94 \tag{16}\\
x_{\min } & :=f_{3.8}\left(x_{\max }\right)=0.21432 \tag{17}\\
y_{\max } & :=0.1095 \tag{18}\\
z_{\max } & :=\max _{z \in[0,1]} f_{3.78}(z)-\epsilon=3.78 / 4-\epsilon=0.923 \tag{19}\\
z_{\min } & :=f_{3.8}\left(z_{\max }\right)=0.26864838 \tag{20}
\end{align*}
$$

Let $D:=\left[x_{\min }, x_{\max }\right] \times\left[-y_{\max }, y_{\max }\right] \times\left[z_{\min }, z_{\max }\right]$.
We show that

$$
\begin{equation*}
|\bar{y}|<y_{\max }, \quad \text { for }(x, y, z) \in D \tag{21}
\end{equation*}
$$

We have

$$
\begin{gathered}
|\bar{y}| \leq 0.1|[(y+0.35)(1-2 z)-1](1-1.9 x)| \leq \\
0.1\left|\left(y_{\max }+0.35\right)\left(1-2 z_{\max }\right)-1\right|\left|1-1.9 x_{\max }\right|< \\
0.1(0.46 \cdot 0.846+1) 0.786=0.1 \cdot 1.38916 \cdot 0.786<0.1092
\end{gathered}
$$

We show now

$$
\begin{array}{ll}
\left|\bar{x}(x, y, z)-f_{3.8}(x)\right|<\epsilon_{2}, & \text { for }(x, y, z) \in D \\
\left|\bar{z}(x, y, z)-f_{3.78}(z)\right|<\epsilon, & \text { for }(x, y, z) \in D \tag{23}
\end{array}
$$

(23) follows immediately from (4). To get (22) we compute

$$
\begin{gathered}
\left|\bar{x}(x, y, z)-f_{3.8}(x)\right| \leq|0.05(y+0.35)(1-2 z)| \leq \\
0.05\left(y_{\max }+0.35\right)\left|1-2 z_{\max }\right|<0.05 \cdot 0.46 \cdot 0.846<0.0195
\end{gathered}
$$

We set

$$
Z_{0}:=[0.295,0.5], \quad Z_{2}:=[0.809,0.922]
$$

It is easy to check that
$Z_{0} f_{3.78}$-covers Z_{2} with margin ϵ
$Z_{2} f_{3.78}$-covers Z_{0} with margin ϵ

For $(x, y, z) \in\left[x_{\min }, x_{\max }\right] \times\left[-y_{\max }, y_{\max }\right] \times Z_{0}$ we have

$$
\begin{gathered}
\left|\bar{x}(x, y, z)-f_{3.8}(x)\right| \leq|0.05(y+0.35)(1-2 z)| \leq \\
0.05\left(y_{\max }+0.35\right)|1-2 \cdot 0.295|<0.05 \cdot 0.46 \cdot 0.41<0.0095
\end{gathered}
$$

Hence

$$
\begin{equation*}
\left|\bar{x}(x, y, z)-f_{3.8}(x)\right|<\epsilon_{1}, \quad \text { for }(x, y, z) \in\left[x_{\min }, x_{\max }\right] \times\left[-y_{\max }, y_{\max }\right] \times Z_{0} \tag{26}
\end{equation*}
$$

We set

$$
\begin{align*}
X_{0} & =[0.2347,0.5], \quad X_{1}=[0.5,0.7653] \tag{27}\\
X_{2} & =[0.6927,0.94] . \tag{28}
\end{align*}
$$

Observe that X_{1} is the image of X_{0} under the reflection $x \rightarrow 1-x$.
It is easy to check that
X_{0}, X_{1} both $f_{3.8}$-cover X_{2} with a margin ϵ_{1}
$X_{2} f_{3.8}$-covers $X_{0} \cup X_{1}$ with a margin ϵ_{2}

We set

$$
\begin{align*}
N_{00} & =X_{0} \times\left[-y_{\max }, y_{\max }\right] \times Z_{0} \tag{31}\\
N_{10} & =X_{1} \times\left[-y_{\max }, y_{\max }\right] \times Z_{0} \tag{32}\\
N_{2} & =X_{2} \times\left[-y_{\max }, y_{\max }\right] \times Z_{2} \tag{33}
\end{align*}
$$

From (21)-(26), (29) and (29) it follows that N_{00} and $N_{10} R$-cover N_{2} in (1,3)direction, and $N_{2} R$-covers in (1,3)-direction both N_{00} and N_{10}.

We want to apply theorem 2 to $R, m=2$ and the sets N_{00}, N_{10}, but $N_{00} \cap N_{10} \neq \emptyset$. We overcome this problem by observing that there exist sets $\tilde{N}_{00} \subset \operatorname{int} N_{00}$ and $\tilde{N}_{10} \subset \operatorname{int} N_{10}$ such that \tilde{N}_{00} and $\tilde{N}_{10} R$-cover N_{2} in (1,3)-direction. We have

$$
\begin{array}{r}
\tilde{N}_{00} \cap \tilde{N}_{10}=\emptyset \\
\tilde{N}_{00} \stackrel{R^{2}}{\Longrightarrow} \tilde{N}_{00}, \tilde{N}_{10} \quad \tilde{N}_{10} \stackrel{R^{2}}{\Longrightarrow} \tilde{N}_{00}, \tilde{N}_{10} \tag{35}
\end{array}
$$

and hence by theorem 2 we get theorem 1 for $|a|=1$.
4. Proof for small $|a|$. As in the previous section we want to apply theorem 2 to obtain theorem 1. As topologically expanding directions we take again e_{1}, e_{3}.

We set

$$
\begin{equation*}
y_{\max }:=0.12 \tag{36}
\end{equation*}
$$

Let $D:=[0,1] \times\left[-y_{\max }, y_{\max }\right] \times[0,1]$. It is easy to see that

$$
\begin{equation*}
|\bar{y}(x, y, z)|<0.15|a|, \quad \text { for }(x, y, z) \in D \tag{37}
\end{equation*}
$$

Namely

$$
|\bar{y}(x, y, z)|<|a| 0.1\left|\left(y_{\max }+0.35\right)+1\right|<0.15|a|
$$

So to have $|\bar{y}|<y_{\max }$, we impose on a the following condition

$$
\begin{equation*}
|a|<0.8 \tag{38}
\end{equation*}
$$

We have

$$
\begin{array}{r}
\left|\bar{x}(x, y, z)-f_{3.8}(x)\right|<|a| 0.05 \cdot 0.5 \cdot 1=0.025|a| \\
\left|\bar{z}(x, y, z)-f_{3.78}(x)\right| \leq|a| 0.2 \cdot y_{\max }<0.025|a| \tag{40}
\end{array}
$$

We define

$$
\begin{array}{r}
X_{0}=[0.235,0.5], \quad X_{1}=[0.5,0.765] \\
Z_{0}:=[0.3,0.5], \quad Z_{1}:=[0.5,0.7] \tag{42}
\end{array}
$$

It is easy to check that

$$
\begin{gather*}
X_{0}, X_{1} f_{3.8} \text {-covers }[0.7,0.94] \quad \text { with margin } 0.01 \tag{43}\\
{[0.7,0.94] f_{3.8} \text {-covers } X_{0} \cup X_{1} \quad \text { with margin } 0.01} \tag{44}
\end{gather*}
$$

To obtain the sequence of coverings starting from Z_{0} and Z_{1} we define

$$
\begin{array}{r}
Z_{1}^{a}=[0.81,0.93] \\
Z_{2}^{a}=[0.26,0.5] \supset Z_{0} \\
Z_{3}^{a}=[0.74,0.93] \tag{47}
\end{array}
$$

It is easy to verify that with margin 0.01 the following covering relations hold:

$$
\begin{equation*}
Z_{0}, Z_{1} \stackrel{f_{3.78}}{\Longrightarrow} Z_{1}^{a} \stackrel{f_{3.78}}{\Longrightarrow} Z_{2}^{a} \stackrel{f_{3.78}}{\Longrightarrow} Z_{3}^{a} \stackrel{f_{3.78}}{\Longrightarrow} Z_{0} \cup Z_{1} \tag{48}
\end{equation*}
$$

Let us define the sets

$$
\begin{equation*}
N_{i j}=X_{i} \times\left[-y_{\max }, y_{\max }\right] \times Z_{j}, \quad \text { for } i, j=0,1 \tag{49}
\end{equation*}
$$

Now if $|a|<0.4$ then $0.025|a|<0.01$. From the above considerations we obtain the following covering relations:

$$
\begin{equation*}
N_{i j} \stackrel{R^{4}}{\Longrightarrow} N_{00} \cup N_{10} \cup N_{01} \cup N_{11}, \quad i, j=0,1 \tag{50}
\end{equation*}
$$

Using the above relations we obtain the symbolic dynamics for R^{4} on four symbols referring to the sets $N_{i j}$, which finishes the proof of theorem 1 for $|a|<0.4$.

References

[R] O. E. Rössler, An equation for hyperchaos, 155-157, Physics Letters, 71A, 1979.
[Z1] P. Zgliczyński, On periodic points for systems of weakly coupled 1-dim maps, IM UJ preprint 1997/15.

[^0]: 1991 Mathematics Subject Classification: Primary 58F15; Secondary 58G10.
 Research supported by KBN grant 0892/P03/97/12.
 The paper is in final form and no version of it will be published elsewhere.

