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1. Main result. Let us define

fµ(x) := µx(1− x) (1)

We consider the following folded towel map introduced by Rössler in [R]: R(x, y, z) =

(x̄, ȳ, z̄)(x, y, z),

x̄(x, y, z) = f3.8(x)− a0.05(y + 0.35)(1− 2z) (2)

ȳ(x, y, z) = a0.1[(y + 0.35)(1− 2z)− 1](1− 1.9x) (3)

z̄(x, y, z) = f3.78(z) + a0.2y (4)

where a ∈ [−1, 1]. The case a = 1 was considered by Rössler in [R].

Before we state the main result of this note we define the notion of symbolic dynamics.

Consider a continuous map F : Rn → Rn. Suppose now that we have a family of

compact mutually disjoint sets Nj for j = 0, 1, . . . , l − 1.

We set N =
⋃l−1
j=0Nj . An invariant part of the set N is defined by

Inv(N,F ) :=
⋂
i∈Z

F−i|N (N) (5)

Let Σl := {0, 1, . . . , l − 1}Z, Σ+
l := {0, 1, . . . , l − 1}N. Σl, Σ+

l are topological spaces

with the Tikhonov topology. On Σl, Σ+
l we have the shift map σ given by

(σ(c))i = ci+1

For i ∈ N we define a map πi : Inv(N,F ) → {0, 1, . . . , l − 1} given by πi(x) = j iff

F i(x) ∈ Nj . Now we define a map π : Inv(N,F ) → Σ+
l by π(x) := (πi(x))i∈N. Such a
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map π is obviously continuous. The map π assigns to the point x the indices of the Ni-s

its F -trajectory goes through. It is easy to see that

π ◦ F = σ ◦ π. (6)

If F is also a homeomorphism, then the definition of πi can be extended to all integers

and the domain of π is Σl.

Definition 1. Let F and Nj be as above. We will say that F has symbolic dynamics

on l symbols iff π is onto and the preimage of any periodic sequence from Σ+
l contains

periodic points of F .

The main result of this note is the following

Theorem 1. If |a| ≤ 1 then R2 has a symbolic dynamics on two symbols. If |a| < 0.4

then R4 has a symbolic dynamics on four symbols.

The proof of this theorem is based on the topological theorem from [Z1], which is

presented in the next section.

2. Topological theorem. First we introduce some notations. Let p ∈ Rn. By xi(p)

we will denote the i-th coordinate of the point p. We will use the max norm on Rn, so

|(x1, . . . , xn)| := max
i
|xi| (7)

Let Z ⊂ Rn, x ∈ Rn. Then we use the following notations dist(x, Z) = inf{|x−y||y ∈ Z},
B(x, ε) = {y||x− y| < ε}, B(Z, ε) = {x|dist (x, Z) < ε}, diamZ = supx,y∈Z |x− y|.

By C we will denote a parallelogram in Rn, so

C := {X ⊂ Rn |X =

n∏
i=1

[xai, xbi]} (8)

Definition 2. Let f : R → R be continuous, X = [xa, xb] and Y = [ya, yb]. We say

that X f -covers Y (with a margin δ) iff there exists δ > 0 such that [ya − δ, yb + δ] is

contained either in [f(xa), f(xb)] or in [f(xb), f(xa)].

Definition 3. Let X =
∏n
i=1[xai, xbi]. For i ∈ {1, . . . , n} we define the i-th upper

and lower edge of X respectively by

Ui(X) = {p ∈ X | xi(p) = xbi} (9)

Di(X) = {p ∈ X | xi(p) = xai} (10)

Definition 4. Let F : Rn → Rn be continuous, X =
∏n
i=1[xai, xbi] and Y =∏n

i=1[yai, ybi]. Let 1 ≤ i ≤ n. We say that X F -covers Y in i direction (with a mar-

gin δ) iff there exists δ > 0 such that one of the two following conditions hold

[yai − δ, ybi + δ] ⊂ [maxxi(F (Di(X))),minxi(F (Ui(X)))] (11)

[yai − δ, ybi + δ] ⊂ [maxxi(F (Ui(X))),minxi(F (Di(X)))] (12)

Definition 5. Let F : Rn → Rn be continuous, δ > 0, X =
∏n
i=1[xai, xbi] and

Y =
∏n
i=1[yai, ybi]. Let 1 ≤ i1 < i2 < . . . < ik ≤ n be a sequence of integers. We say that

X F -covers Y in (i1, i2, . . . , ik)-direction (with a margin δ) if the following conditions

hold:
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• for every l = 1, . . . , k X F -covers Y in il direction with margin δ,

• for every j not in the sequence i1, i2, . . . , ik we have

xj(F (X)) ⊂ [yaj + δ, ybj − δ] (13)

To illustrate the notions introduced above let us consider the following example. Let

n = 3 and f1, f2, f3 : R → R and the segments Xi, Yi for i = 1, 2 be such that Xi

fi-covers Yi with margin δ < 1 and f3(x) = 0 for x ∈ R. We set X3 = Y3 = [−1, 1],

X = X1 × X2 × X3, Y = Y1 × Y2 × Y3. Consider the map F : R3 → R3 given by

F (x1, x2, x3) = (f1(x1), f2(x2), f3(x3)). It is easy to see that the set X F -covers Y in

(1, 2)-direction with margin δ. Consider now a perturbation F̃ : Rn → Rn of F such that

|F̃ − F ||X < δ. Then it is easy to see that X F̃ -covers Y in (1, 2)-direction.

Let F : Rn → Rn be a continuous map. Let us fix a sequence 1 ≤ i1 < i2 < . . . < ik ≤
n. Let {ei} be the canonical basis in Rn. Then we will call the linear subspace spanned

by {ei1 , . . . , eik} a topologically expanding direction (with respect to F ). The reason for

this name will be clear from theorem 2.

Definition 6. Let X,Y ∈ C. We will say that there exists an F -transition of length

m from X to Y iff there exists a sequence of sets {Nj}j=0,1,...,l ⊂ C and a sequence of

integers {mj}j=0,...,l−1, such that

N0 ⊂ X, Nl = Y

Nj F
mj -covers Nj+1 in (i1, . . . , ik)-direction, for j = 0, . . . , l − 1

m0 +m1 + . . .ml−1 = m

We will use the graphical notation X
Fm

=⇒ Y .

Suppose now that we have a family of sets Nj ∈ C for j = 0, 1, . . . , l−1 and an integer

m such that

Nj ∩Nk = ∅, for j, k = 0, . . . , l − 1, j 6= k (14)

Nj
Fm

=⇒ Nk, for j, k = 0, . . . , l − 1 (15)

We set N =
⋃l−1
j=0Nj . The following theorem is proved in [Z1]

Theorem 2. Let the family of sets {Nj}j=0,...,l−1 ⊂ C satisfy (14)–(15). Then Σ+
l =

π(Inv(N,Fm)). The preimage of any periodic sequence from Σ+
l contains periodic points

of Fm. If we additionally suppose that F is a homeomorphism, then Σl = π(Inv(N,Fm)).

3. Proof for |a| ≤ 1. Our aim is to apply theorem 2 to R to obtain theorem 1. As

topologically expanding directions we set e1, e3.

Let us set ε = 0.022, ε1 = 0.01, ε2 = 0.02 and define

xmax := max
x∈[0,1]

f3.8(x)− ε1 = 3.8/4− ε1 = 0.94 (16)

xmin := f3.8(xmax) = 0.21432 (17)

ymax := 0.1095 (18)

zmax := max
z∈[0,1]

f3.78(z)− ε = 3.78/4− ε = 0.923 (19)

zmin := f3.8(zmax) = 0.26864838 (20)
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Let D := [xmin, xmax]× [−ymax, ymax]× [zmin, zmax].

We show that

|ȳ| < ymax, for (x, y, z) ∈ D (21)

We have

|ȳ| ≤ 0.1|[(y + 0.35)(1− 2z)− 1](1− 1.9x)| ≤
0.1|(ymax + 0.35)(1− 2zmax)− 1||1− 1.9xmax| <

0.1(0.46 · 0.846 + 1)0.786 = 0.1 · 1.38916 · 0.786 < 0.1092

We show now

|x̄(x, y, z)− f3.8(x)| < ε2, for (x, y, z) ∈ D (22)

|z̄(x, y, z)− f3.78(z)| < ε, for (x, y, z) ∈ D (23)

(23) follows immediately from (4). To get (22) we compute

|x̄(x, y, z)− f3.8(x)| ≤ |0.05(y + 0.35)(1− 2z)| ≤
0.05(ymax + 0.35)|1− 2zmax| < 0.05 · 0.46 · 0.846 < 0.0195

We set

Z0 := [0.295, 0.5], Z2 := [0.809, 0.922]

It is easy to check that

Z0 f3.78-covers Z2 with margin ε (24)

Z2 f3.78-covers Z0 with margin ε (25)

For (x, y, z) ∈ [xmin, xmax]× [−ymax, ymax]× Z0 we have

|x̄(x, y, z)− f3.8(x)| ≤ |0.05(y + 0.35)(1− 2z)| ≤
0.05(ymax + 0.35)|1− 2 · 0.295| < 0.05 · 0.46 · 0.41 < 0.0095

Hence

|x̄(x, y, z)− f3.8(x)| < ε1, for (x, y, z) ∈ [xmin, xmax]× [−ymax, ymax]× Z0 (26)

We set

X0 = [0.2347, 0.5], X1 = [0.5, 0.7653] (27)

X2 = [0.6927, 0.94]. (28)

Observe that X1 is the image of X0 under the reflection x→ 1− x.

It is easy to check that

X0, X1 both f3.8-cover X2 with a margin ε1 (29)

X2 f3.8-covers X0 ∪X1 with a margin ε2 (30)

We set

N00 = X0 × [−ymax, ymax]× Z0 (31)

N10 = X1 × [−ymax, ymax]× Z0 (32)

N2 = X2 × [−ymax, ymax]× Z2 (33)
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From (21)–(26), (29) and (29) it follows that N00 and N10 R-cover N2 in (1, 3)-

direction, and N2 R-covers in (1, 3)-direction both N00 and N10.

We want to apply theorem 2 to R, m = 2 and the sets N00, N10, but N00∩N10 6= ∅. We

overcome this problem by observing that there exist sets Ñ00 ⊂ intN00 and Ñ10 ⊂ intN10

such that Ñ00 and Ñ10 R-cover N2 in (1, 3)-direction. We have

Ñ00 ∩ Ñ10 = ∅ (34)

Ñ00
R2

=⇒ Ñ00, Ñ10 Ñ10
R2

=⇒ Ñ00, Ñ10 (35)

and hence by theorem 2 we get theorem 1 for |a| = 1.

4. Proof for small |a|. As in the previous section we want to apply theorem 2 to

obtain theorem 1. As topologically expanding directions we take again e1, e3.

We set

ymax := 0.12 (36)

Let D := [0, 1]× [−ymax, ymax]× [0, 1]. It is easy to see that

|ȳ(x, y, z)| < 0.15|a|, for (x, y, z) ∈ D (37)

Namely

|ȳ(x, y, z)| < |a|0.1|(ymax + 0.35) + 1| < 0.15|a|
So to have |ȳ| < ymax, we impose on a the following condition

|a| < 0.8 (38)

We have

|x̄(x, y, z)− f3.8(x)| < |a|0.05 · 0.5 · 1 = 0.025|a| (39)

|z̄(x, y, z)− f3.78(x)| ≤ |a|0.2 · ymax < 0.025|a| (40)

We define

X0 = [0.235, 0.5], X1 = [0.5, 0.765] (41)

Z0 := [0.3, 0.5], Z1 := [0.5, 0.7] (42)

It is easy to check that

X0, X1 f3.8-covers [0.7, 0.94] with margin 0.01 (43)

[0.7, 0.94] f3.8-covers X0 ∪X1 with margin 0.01 (44)

To obtain the sequence of coverings starting from Z0 and Z1 we define

Za1 = [0.81, 0.93] (45)

Za2 = [0.26, 0.5] ⊃ Z0 (46)

Za3 = [0.74, 0.93] (47)

It is easy to verify that with margin 0.01 the following covering relations hold:

Z0, Z1
f3.78
=⇒ Za1

f3.78
=⇒ Za2

f3.78
=⇒ Za3

f3.78
=⇒ Z0 ∪ Z1 (48)
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Let us define the sets

Nij = Xi × [−ymax, ymax]× Zj , for i, j = 0, 1 (49)

Now if |a| < 0.4 then 0.025|a| < 0.01. From the above considerations we obtain the

following covering relations:

Nij
R4

=⇒ N00 ∪N10 ∪N01 ∪N11, i, j = 0, 1 (50)

Using the above relations we obtain the symbolic dynamics for R4 on four symbols

referring to the sets Nij , which finishes the proof of theorem 1 for |a| < 0.4.
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