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I. INTRODUCTION

A. Quasiconformal mappings

1. Notation. Throughout these lectures we will consider domains D in the euclidean

complex plane R2 and its one point compactification R
2

= R2 ∪ ∞ equipped with the

chordal metric

q(z, w) =
2|z − w|√

|z|2 + 1
√
|w|2 + 1

for z, w ∈ R2
.

2. Linear dilatation of a homeomorphism. Suppose that D and D′ are domains in R
2

and that f : D → D′ is a homeomorphism. For z ∈ D \ {∞, f−1(∞)} and 0 < r <

dist(z, ∂D) we let

lf (z, r) = min
|z−w|=r

|f(z)− f(w)|, Lf (z, r) = max
|z−w|=r

|f(z)− f(w)|

and call

Hf (z) = lim sup
r→0

Lf (z, r)

lf (z, r)

the linear dilatation of f at z.

3. Geometric definition. A sense preserving homeomorphism f : D → D′ is a K-

quasiconformal mapping where 1 ≤ K <∞ if

a. Hf is bounded in D \ {∞, f−1(∞)},
b. Hf ≤ K a.e. in D.

4. Class ACL. A continuous real valued function u is ACL in a domain D ⊂ R2
if for

each rectangle [a, b]× [c, d] ⊂ D,

a. u(x+ iy) is absolutely continuous in x for a.e. y ∈ [c, d],

b. u(x+ iy) is absolutely continuous in y for a.e. x ∈ [a, b].
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5. Analytic definition. A sense preserving homeomorphism f : D → D′ is K-quasicon-

formal if and only if

a. f is ACL in D,

b. maxθ |∂θf |2 ≤ KJf a.e. in D.

Here ∂θf denotes the directional derivative of f taken in the direction θ and Jf the

Jacobian of f .

6. Remark. If a homeomorphism f is ACL in D, then it has finite partial derivatives

a.e. in D by measure theoretic arguments and hence a differential a.e. in D [24].

7. Modulus and extremal length of a curve family. Suppose that Γ is a family of curves

in R
2
. We want to assign a number or modulus which measures the size of Γ and is

conformally invariant. We say that ρ is admissible for Γ or in adm(Γ) if ρ is nonnegative

and Borel measurable in R2 and if ∫
γ

ρ(z)|dz| ≥ 1

for each locally rectifiable γ ∈ Γ. The modulus of the family Γ is then defined as

mod(Γ) = inf
ρ

∫
R2

ρ(z)2 dm,

where the infimum is taken over ρ ∈ adm(Γ), and the extremal length of Γ is given by

λ(Γ) =
1

mod(Γ)
.

8. Conformal invariance of the modulus. If f : D → D′ is conformal and if Γ is a

family of curves in D, then mod(f(Γ)) = mod(Γ).

9. Proof. We consider the case where D,D′ ⊂ R2. For each ρ′ ∈ adm(f(Γ)) let

ρ(z) =

{
ρ′(f(z))|f ′(z)| if z ∈ D,

0 if z ∈ R2 \D.

Then ρ is nonnegative and Borel measurable in R2. If γ is locally rectifiable, then f(γ) ∈
f(Γ) is locally rectifiable and∫

γ

ρ(z)|dz| =
∫
γ

ρ′(f(z))|f ′(z)||dz| =
∫
f(γ)

ρ′(w)|dw| ≥ 1.

Thus ρ ∈ adm(Γ),

mod(Γ) ≤
∫
R2

ρ(z)2dm =

∫
D

ρ′(f(z))2|f ′(z)|2dm =

∫
D′
ρ′(w)2dm ≤

∫
R2

ρ′(w)2dm

whence

mod(Γ) ≤ inf
ρ′

∫
R2

ρ′(w)2dm = mod(f(Γ)).

Finally we obtain mod(Γ) = mod(f(Γ)) by applying the above argument to f−1.

10. Remark. If the curves γ ∈ Γ are disjoint arcs, we may think of them as homo-

geneous electric wires. Then the modulus mod(Γ) is a conformally invariant electrical

transconductance for the family of wires γ and the extremal length λ(Γ) is the total
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electrical resistance of the system. In particular, mod(Γ) is big if the curves γ are short

and plentiful and small if the curves are long or scarce.

11. Modulus definition. A sense preserving homeomorphism f : D → D′ isK-quasicon-

formal if and only if

1

K
mod(Γ) ≤ mod(f(Γ)) ≤ K mod(Γ)

for each family Γ of curves in D.

12. 1-quasiconformal mappings. f is a 1-quasiconformal mapping if and only if it is

conformal, i.e. a homeomorphism which is analytic as a function of a complex variable in

D \ {∞, f−1(∞)}.

13. Composition and inverse. If f : D → D′ is K-quasiconformal and g : D′ → D′′ is

K ′-quasiconformal, then gf = g◦f is KK ′-quasiconformal and f−1 is K-quasiconformal.

14. Extension theorem. If f : D → D′ is quasiconformal and if D and D′ are Jordan

domains, then f has a homeomorphic extension which maps D onto D′.

15. Removable sets. Suppose that E ⊂ D is closed and contained in a countable union

of rectifiable curves. If f : D → D′ is a homeomorphism which is K-quasiconformal in

each component of D \ E, then f is K-quasiconformal in D.

B. Quasidisks

1. Definition. A domain D is a K-quasidisk if it is the image of an open disk or half

plane under a K-quasiconformal self mapping of R
2
. D is a quasidisk if it is a K-quasidisk

for some K.

2. Remark. If D is a K-quasidisk, then ∂D is the image of a circle or line under a self

homeomorphism of R
2

which is differentiable a.e. Thus ∂D is a Jordan curve. Moreover

∂D is a circle or line whenever K = 1. Does ∂D have any nice analytic properties when

1 < K <∞? For example, is it locally rectifiable?

3. Example (Gehring-Väisälä [28]). We describe here an elementary example which

shows that from the standpoint of euclidean geometry, the boundary of a quasidisk can

be quite wild.

We say that a square is oriented if its sides are parallel to the coordinate axes and let

Q and Q′ denote the open squares

Q = Q′ = {z = x+ iy : |x| < 1, |y| < 1}.

Next set

z1 =
3

4
, z2 =

1

4
, z3 = −1

4
, z4 = −3

4
and

w1 =
1 + i

2
, w2 =

−1 + i

2
, w3 =

1− i
2

, w4 =
−1− i

2
,

and fix 0 < r < 1/2 and 0 < s < 1. Finally for j = 1, 2, 3, 4 let Qj denote the open

oriented square with center zj and side length r and Q′j the open oriented square with
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center wj and side length s. Then we can choose a piecewise linear homeomorphism

f0 : Q \
4⋃
j=1

Qj → Q′ \
4⋃
j=1

Q′j

such that f0 is the identity on ∂Q and and such that f0 is of the form ajz + bj , aj > 0

on ∂Qj with f0(∂Qj) = ∂Q′j . Then f0 is K-quasiconformal in Q \
⋃
j Qj .

Next for each j choose oriented squares Qj,k in Qj and Q′j,k in Q′j in the same way

as the squares Qj and Q′j were chosen in Q and Q′, respectively. Then by scaling we can

extend f0 to obtain a piecewise linear homeomorphism

f1 : Q \
4⋃

j,k=1

Qj,k → Q′ \
4⋃

j,k=1

Q′j,k

which is K-quasiconformal in Q \
⋃
j,kQj,k.

Continuing in this way, we obtain a homeomorphism f : Q\E → Q′ \E′ where E and

E′ are Cantor sets. Then f can be extended by continuity to give a K-quasiconformal

mapping which maps Q onto Q′ and is the identity on ∂Q.

Set f(z) = z in R
2 \Q. Then f is a K-quasiconformal self mapping of R

2
which maps

the upper half plane H = {z = x + iy : y > 0} onto a quasidisk D whose boundary ∂D

is not locally rectifiable. In fact for each 1 < a < 2 we can choose 0 < s = s(a) < 1 so

that dim(∂D) > a where dim denotes Hausdorff dimension.

4. Remark. We can use the analytic properties of quasiconformal mappings to show

that m(∂D) = 0 whenever D is a K-quasidisk, where m denotes plane measure. In fact

a recent result due to Astala [5] shows that

dim(∂D) ≤ 2K

K + 1
.

5. Plan of remaining lectures. Though quasidisks can be quite unruly domains, they

occur very naturally in surprisingly many different branches of analysis and geometry. We

consider here twenty six different properties of quasidisks which generalize corresponding

properties of euclidean disks and which characterize the class of quasidisks. We then

indicate how to establish a few of these properties. See also [19] and [21].

C. Characteristic properties of quasidisks

1. Notation. We will assume from now on that D is a simply connected proper sub-

domain of R2 and that D∗ is the exterior of D,

D∗ = R
2 \D.

Next for z0 ∈ R2 and 0 < r <∞ we let

B(z0, r) = {z ∈ R2 : |z − z0| < r}, B = B(0, 1).

2. Categories of properties. The characteristic properties of a quasidisk D which we

will discuss here fall into the following five categories.

a. Geometric properties.

i. Reflection in ∂D.
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ii. Inequalities.

iii. Local connectivity properties.

iv. Decomposition property.

b. Conformal invariants.

i. Relations between hyperbolic and euclidean geometry in D.

ii. Properties of harmonic measure in D.

iii. Relation between conjugate quadrilaterals in D and D∗.

iv. Extremal length of curve families in D and R
2
.

c. Injectivity criteria.

i. Analytic functions.

ii. Locally quasiconformal mappings.

iii. Local quasi-isometries.

d. Extension and continuity.

i. Functions of bounded mean oscillation.

ii. Functions with bounded Dirichlet integral.

iii. Quasiconformal mappings.

iv. Quasi-isometries.

v. Bloch functions.

e. Miscellaneous properties.

i. Homogeneity of D and of ∂D.

ii. Limit set of a quasiconformal group.

iii. Relation between Dirichlet integrals in D and D∗.

iv. Quasiconformal equivalence of R
3 \D and B3.

3. Remark. A number of the properties for quasidisks which we discuss below can be

used to characterize euclidean disks or half planes. We will indicate when this is the case.

See also [31].

II. GEOMETRIC PROPERTIES

A. Reflection property

1. Quasi-isometries. Suppose that E,E′ ⊂ R2
. We say that f : E → E′ is an L-quasi-

isometry if

1

L
|z1 − z2| ≤ |f(z1)− f(z2)| ≤ L |z1 − z2| for z1, z2 ∈ E \ {∞}

and f(∞) =∞ if ∞ ∈ E.

2. Remark. If D is a half plane, then there exists a 1-quasi-isometry of R
2

which maps

D onto its exterior D∗ and is the identity on ∂D.

3. Reflection property. D has this property if there exists an L-quasi-isometry of R
2

which maps D onto D∗ and is the identity on ∂D.
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4. Theorem (Ahlfors [3]). If D is unbounded, then D is a quasidisk if and only if it

has the reflection property.

5. Remark. D is a half plane if and only if it has the reflection property with L = 1.

B. Inequalities

1. Remark. If D is a disk or half plane, then for each pair of points z1, z2 ∈ ∂D \{∞},

min
j=1,2

dia(γj) ≤ |z1 − z2|

where dia denotes the euclidean diameter and γ1, γ2 are the components of ∂D \{z1, z2}.

2. Two point inequality. D satisfies this inequality if D is a Jordan domain and there

exists a constant a ≥ 1 such that for each pair of points z1, z2 ∈ ∂D \ {∞},

min
j=1,2

dia(γj) ≤ a |z1 − z2|

where γ1, γ2 are the components of ∂D \ {z1, z2}.

3. Theorem (Ahlfors [3]). D is a quasidisk if and only if it satisfies the two point

inequality.

4. Remark. Suppose that D is a Jordan domain with ∞ ∈ ∂D. Then D satisfies the

two point inequality if and only if there exists a constant b ≥ 1 such that each ordered

triple of points z1, z2, z3 ∈ ∂D \ {∞} satisfy the reversed triangle inequality

|z1 − z2|+ |z2 − z3| ≤ b |z1 − z3|,

in which case
|z1 − z2|
|z1 − z3|

+
|z2 − z3|
|z1 − z3|

≤ b.

When ∞ 6∈ ∂D, the ratios on the left hand side of the above inequality must be replaced

by cross ratios and we are led to the following alternative Möbius invariant formulation

of the two point inequality.

5. Reversed triangle inequality. D satisfies this if D is a Jordan domain and there

exists a constant b ≥ 1 such that

|z1 − z2||z3 − z4|+ |z2 − z3||z4 − z1| ≤ b |z1 − z3||z2 − z4|

for each ordered quadruple of points z1, z2, z3, z4 ∈ ∂D \ {∞}.

6. Lemma. D satisfies the reversed triangle inequality if and only if it satisfies the two

point inequality.

7. Proof. Suppose that D satisfies the two point inequality with constant a and choose

z1, z2, z3, z4 ∈ ∂D \ {∞}. By relabeling if necessary we may assume that

|z1 − z3| ≤ |z2 − z4|.

Let γ2 and γ4 denote the components of ∂D\{z1, z3} which contain z2 and z4, respectively.

Again by relabeling we may assume that

dia(γ2) ≤ dia(γ4).
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Then

|z1 − z2| ≤ dia(γ2) ≤ a |z1 − z3|, |z2 − z3| ≤ dia(γ2) ≤ a |z1 − z3|
whence

|z3 − z4| ≤ |z2 − z3|+ |z2 − z4| ≤ (a+ 1)|z2 − z4|
and

|z4 − z1| ≤ |z1 − z2|+ |z2 − z4| ≤ (a+ 1)|z2 − z4|.
Thus

|z1 − z2||z3 − z4|+ |z2 − z3||z4 − z1| ≤ b |z1 − z3||z2 − z4|
and D satisfies the reversed triangle inequality with constant b = 2a(a+ 1).

Suppose next that D satisfies the reversed triangle inequality with constant b, fix

z1, z3 ∈ ∂D \ {∞} and let γ2 and γ4 denote the components of ∂D \ {z1, z3}. If

min
j=2,4

dia(γj) > 2b |z1 − z3|,

then we can choose z2 ∈ γ2 and z4 ∈ γ4 such that

|z1 − z2| > b |z1 − z3| and |z1 − z4| > b |z1 − z3|,

in which case

b |z1 − z3||z2 − z4| ≤ b |z1 − z3|(|z2 − z3|+ |z3 − z4|)
= b |z1 − z3||z3 − z4|+ b |z1 − z3||z2 − z3|
< |z1 − z2||z3 − z4|+ |z2 − z3||z4 − z1|,

a contradiction. Hence D satisfies the two point inequality with constant 2b.

8. Corollary. D is a quasidisk if and only if it satisfies the reversed triangle inequality.

9. Remark (Ahlfors [1]). D is a disk or half plane if and only if it satisfies the reversed

triangle inequality with b = 1.

C. Local connectivity properties

1. Linear local connectivity. A set E ⊂ R2
has this property if there exists a constant

c ≥ 1 such that for each z0 ∈ R2 and each r > 0

a. points in E ∩B(z0, r) can be joined in E ∩B(z0, cr),

b. points in E \B(z0, r) can be joined in E \B(z0, r/c).

Here joined means lie in a component of the specific set.

2. Remark. A set E ⊂ R2 is locally connected in the usual sense at each z0 ∈ R2 if for

each s > 0 there exists r, 0 < r < s, such that points in E ∩ B(z0, r) can be joined in

E ∩B(z0, s). The property of linear local connectivity requires that, in addition,

a. the constant r is a fixed linear multiple of s and hence is independent of the

point z0,

b. the image of E under each Möbius transformation φ has the same property with

c replaced by g(c) where g(1) = 1. (Walker [65]).
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Hence the property of being 1-linearly locally connected is invariant with respect to

Möbius transformations.

3. Theorem (Gehring [17]).D is a quasidisk if and only if it is linearly locally connected.

4. Theorem (Langmeyer [39]). D is a disk or half plane if and only if it is linearly

locally connected with c = 1.

5. Remark. If D is a disk or half plane, then ∂D is linearly locally connected with

c = 1.

6. Lemma. D satisfies the two point inequality if and only if ∂D is linearly locally

connected.

7. Theorem (Walker [65]). D is a quasidisk if and only if ∂D is linearly locally con-

nected.

D. Decomposition property

1. Remark. D is a disk or half plane if and only if for each z1, z2 ∈ D there exists a

disk D′ with z1, z2 ∈ D′ ⊂ D.

2. Decomposition property. D is quasiconformally decomposable if there exists a

constant K ≥ 1 such that for each z1, z2 ∈ D there exists a K-quasidisk D′ with

z1, z2 ∈ D′ ⊂ D.

3. Theorem (Gehring-Osgood [26]). D is a quasidisk if and only if it is quasiconformally

decomposable.

III. CONFORMAL INVARIANTS

A. Conformal invariants in a Jordan domain

1. Configurations. A Jordan domain D together with a finite number of points

z1, . . . , zm ∈ D and w1, . . . , wn ∈ ∂D is said to be a configuration Σ. To determine if

Σ is conformally equivalent to a second configuration Σ′ consisting of a Jordan domain

D′ together with points z′1, . . . , z
′
m ∈ D′ and w′1, . . . , w

′
n ∈ ∂D′, it is sufficient to consider

the case where D = D′ = B. In this case Σ and Σ′ are each determined by 2m + n real

numbers. Since B has conformal self maps which carry an interior and a boundary point

or three boundary points onto any other such pair or triple of points, the conformal type

of Σ is determined by N = 2m+n−3 real numbers. The three cases when N = 1 together

with a natural corresponding conformal invariant are as follows. See Ahlfors [4].

a. Two interior points z1, z2. The conformal invariant is the hyperbolic distance

hD(z1, z2) between z1 and z2.

b. One interior point z1 and two boundary points w1, w2. The conformal invariant

is the harmonic measure ω(z1, α;D) where α is the boundary arc with endpoints

w1, w2.

c. Four boundary points w1, . . . , w4. The conformal invariant is the modulus of the

quadrilateral Q = D with vertices at w1, . . . , w4.
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We describe here how each of these invariants can be used to characterize the class of

quasidisks.

B. Hyperbolic geometry

1. Hyperbolic metric in B. The hyperbolic metric in the unit disk B is defined by

ρB(z) =
2

1− |z|2

for z ∈ B. Next for each z1, z2 ∈ B the hyperbolic distance between these points is given

by

hB(z1, z2) = inf
α

∫
α

ρB(z)|dz|,

where the infimum is taken over all rectifiable curves α which join z1 and z2 in B. Then

there exists a unique arc α such that

hB(z1, z2) =

∫
α

ρB(z)|dz|.

The arc α lies in the circular crosscut β of B which passes through z1, z2 and is orthogonal

to ∂B. We call α the hyperbolic segment joining z1 and z2 and β the hyperbolic line which

contains α. It is not difficult to show that

hB(z1, z2) = log

(
|1− z̄1z2|+ |z1 − z2|
|1− z̄1z2| − |z1 − z2|

)
.

2. Hyperbolic metric in D. We define the hyperbolic metric in D by

ρD(z) = ρB(g(z))|g′(z)|,

where g is any conformal mapping of D onto B. It follows from the Schwarz lemma that

ρD is independent of the choice of g. Next we define the hyperbolic distance between

z1, z2 ∈ D by

hD(z1, z2) = inf
α

∫
α

ρD(z)|dz|,

where the infimum is taken over all rectifiable curves α which join z1 and z2 in D. Again

there is a unique hyperbolic segment α in D for which

hD(z1, z2) =

∫
α

ρD(z)|dz|.

Then hD(z1, z2) = hB(g(z1), g(z2)) and g preserves the class of hyperbolic segments in

D and B. Finally from the Schwarz lemma and the Koebe distortion theorem it follows

that
1

2 dist(z, ∂D)
≤ ρD(z) ≤ 2

dist(z, ∂D)

for z ∈ D, where dist(z, ∂D) denotes the euclidean distance from z to ∂D.

3. Remark. We indicate here how a quasidisk D can be characterized in three different

ways by comparing the euclidean and hyperbolic geometries in D.

a. The first bounds the hyperbolic distance between points in D in terms of the

euclidean distance between the points and their distances from ∂D.
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b. The second describes the euclidean length and position of hyperbolic segments in

D.

c. The third states that up to a constant factor c, the endpoints of each hyperbolic

segment in D minimize and maximize the euclidean distance between points of

the segment and points not in D.

The first characterization makes use of the function

jD(z1, z2) = log

(
|z1 − z2|

dist(z1, ∂D)
+ 1

)(
|z1 − z2|

dist(z2, ∂D)
+ 1

)
.

4. Lemma. jD is a metric in D.

5. Proof. It suffices to show that

l = jD(z1, z3) ≤ jD(z1, z2) + jD(z2, z3) = r

for z1, z2, z3 ∈ D. For convenience of notation let di = dist(zi, ∂D), i = 1, 2, 3. Then from

the euclidean triangle inequality and the inequalities

d2 ≤ |z1 − z2|+ d1, d2 ≤ |z2 − z3|+ d3

we obtain

exp(r) =
|z1 − z2|+ d1

d1

|z1 − z2|+ d2
d2

|z2 − z3|+ d2
d2

|z2 − z3|+ d3
d3

≥ |z1 − z2|+ d1
d1

|z1 − z3|+ d3
|z2 − z3|+ d3

|z1 − z3|+ d1
|z1 − z2|+ d1

|z2 − z3|+ d3
d3

=
|z1 − z3|+ d1

d1

|z1 − z3|+ d3
d3

= exp(l).

6. Remark. The following two results indicate how jD is related to the hyperbolic

metric hD.

7. Lemma (Gehring-Palka [27]). If z1, z2 ∈ D, then jD(z1, z2) ≤ 4 hD(z1, z2).

8. Proof. Let α be the hyperbolic segment joining z1 and z2 in D. Then

2 ρD(z) ≥ 1

dist(z, ∂D)
≥ 1

dist(z1, ∂D) + |z − z1|
for z ∈ α

and thus

2 hD(z1, z2) ≥
∫
α

d |z − z1|
dist(z1, ∂D) + |z − z1|

≥ log

(
|z1 − z2|

dist(z1, ∂D)
+ 1

)
.

Similarly

2 hD(z1, z2) ≥ log

(
|z1 − z2|

dist(z2, ∂D)
+ 1

)
and adding these two inequalities gives the desired conclusion.

9. Lemma. If D is a disk or half plane, then

hD(z1, z2) ≤ jD(z1, z2) for z1, z2 ∈ D.

10. Proof. Since each half plane can be written as the increasing union of disks, it is

sufficient to consider the case where D is a disk. Next since hD and jD are both invariant
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with respect to similarity mappings, we may further assume that D = B. In this case,

hD(z1, z2) = log

(
|1− z̄1z2|+ |z1 − z2|
|1− z̄1z2| − |z1 − z2|

)
= log

(n
d

)
.

Then

n = |1− |z2|2 − z2(z̄1 − z̄2)|+ |z1 − z2| ≤ 1− |z2|2 + (1 + |z2|)|z1 − z2|
whence

n ≤ (1− |z2|2)

(
|z1 − z2|

dist(z2, ∂D)
+ 1

)
.

Similarly

n ≤ (1− |z1|2)

(
|z1 − z2|

dist(z1, ∂D)
+ 1

)
.

Next

nd = |1− z̄1z2|2 − |z1 − z2|2 = (1− |z1|2)(1− |z2|2)

and thus
n

d
=
n2

nd
≤
(
|z1 − z2|

dist(z1, ∂D)
+ 1

)(
|z1 − z2|

dist(z2, ∂D)
+ 1

)
.

11. Remark. The conclusion of this lemma holds with equality whenever D is a disk

and z1, z2 lie on a diameter and are separated by the center of D.

12. Hyperbolic bound property. D has this property if there exists a constant c ≥ 1

such that

hD(z1, z2) ≤ c jD(z1, z2) for z1, z2 ∈ D.

13. Theorem (Jones [35], Gehring-Hag [23]). D is a quasidisk if and only if it has the

hyperbolic bound property.

14. Conjecture. D is a disk if and only if it is bounded and has the hyperbolic bound

property with c = 1.

15. Remark. The above conjecture is true if, in addition, for each z ∈ ∂D there exists

a disk D′ = D′(z) ⊂ D with z ∈ ∂D′. See Gehring-Hag [23].

16. Remark. The second way of characterizing a quasidisk D in terms of euclidean

properties of its hyperbolic segments is motivated by the following observation.

17. Lemma. If D is a disk or half plane, then for each hyperbolic segment α joining

z1, z2 ∈ D and each z ∈ α,

a. l(α) ≤ π
2 |z1 − z2|,

b. minj=1,2 l(αj) ≤ π
2 dist(z, ∂D)

where α1, α2 are the components of α \ {z} and l denotes euclidean length.

18. Remark. The constant π
2 cannot be replaced by a smaller number in either of these

inequalities.

19. Hyperbolic segment property. D has this property if there exists a constant c ≥ 1

such that for each hyperbolic segment α joining z1, z2 ∈ D and each z ∈ α,

a. l(α) ≤ c |z1 − z2|,
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b. minj=1,2 l(αj) ≤ c dist(z, ∂D),

where α1, α2 are the components of α \ {z}.

20. Theorem (Gehring-Osgood [26]).D is a quasidisk if and only if it has the hyperbolic

segment property.

21. Uniform domain. D is uniform if there exists a constant c ≥ 1 such that each

z1, z2 ∈ D can be joined by an arc α ⊂ D where

a. l(α) ≤ c |z1 − z2|,
b. minj=1,2 l(αj) ≤ c dist(z, ∂D)

for each z ∈ α, where α1, α2 are the components of α \ {z}.

22. Theorem (Martio-Sarvas [45]). D is a quasidisk if and only if it is a uniform domain.

23. Remark. The third way to characterize quasidisks in terms of the euclidean prop-

erties of their hyperbolic segments is suggested by the following result.

24. Lemma (Gehring-Hag [22]). If D is a disk or half plane and if α is a hyperbolic

segment joining z1, z2 ∈ D, then

1√
2

min
j=1,2

|zj − w| ≤ |z − w| ≤
√

2 max
j=1,2

|zj − w|

for each z ∈ α and w 6∈ D. The constant
√

2 cannot be replaced by a smaller number in

either of these inequalities.

25. Geodesic min-max property. D has this property if there exists a constant c ≥ 1

such that for each hyperbolic segment α joining z1, z2 ∈ D,

1

c
min
j=1,2

|zj − w| ≤ |z − w| ≤ c max
j=1,2

|zj − w| for each z ∈ α and w 6∈ D.

26. Theorem (Gehring-Hag [22]). D is a quasidisk if and only if it has the geodesic

min-max property.

C. Harmonic measure

1. Harmonic measure in B. The harmonic measure of an open arc α ⊂ ∂B in B is

defined by

ω(z) = ω(z, α;B) =

∫
α

P (z, ζ)|dζ|

where P (z, ζ) is the Poisson kernel

P (z, ζ) =
1

2π

1− |z|2

|z − ζ|2
.

Then ω(z) is the unique function which is bounded and harmonic in B with boundary

values 1 in α and 0 in ∂B \ α. Note that

ω(0) = ω(0, α;B) =
l(α)

2π
.



24 F. W. GEHRING

2. Harmonic measure in D. Suppose that D ⊂ R
2

is a Jordan domain and that g

is a conformal mapping of D onto B. Then g has an extension which maps D homeo-

morphically onto B. We define the harmonic measure of an open arc α ⊂ ∂D in D

by

ω(z) = ω(z, α;D) = ω(g(z), g(α);B).

Then ω(z) is independent of the choice of the mapping g.

3. Remark. The harmonic measure ω(z, α;D) is a conformally invariant measure of a

curvilinear angle subtended by the arc α ⊂ ∂D at the point z ∈ D. We give here two

ways of describing quasidisks in terms of this measure. The first of these is based on the

following observation.

4. Lemma. If D is a disk or half plane, then there exist points z0 ∈ D and z∗0 ∈ D∗
such that if α, β are adjacent open arcs in ∂D with

ω(z0, α;D) = ω(z0, β;D),

then

ω(z∗0 , α;D∗) = ω(z∗0 , β;D∗).

5. Proof. Suppose that D is a disk. By performing a preliminary similarity mapping

we may assume that D = B. Then g(z) = 1/z maps B∗ conformally onto B and

ω(∞, α;B∗) = ω(0, g(α);B) =
l(g(α))

2π
=
l(α)

2π
= ω(0, α;B)

for each open arc α ⊂ ∂B∗ = ∂B. This yields the desired result with z0 = 0 and z∗0 =∞.

The case where D is a half plane follows similarly.

6. Harmonic symmetry property. D has this property if D is a Jordan domain and if

there exist points z0 ∈ D, z∗0 ∈ D∗ and a constant c ≥ 1 such that if α, β are adjacent

open arcs in ∂D with

ω(z0, α;D) = ω(z0, β;D),

then

ω(z∗0 , α;D∗) ≤ c ω(z∗0 , β;D∗).

7. Theorem (Krzyż [38]). D is a quasidisk if and only if it has the harmonic symmetry

property.

8. Remark. D is a disk or half plane if and only if it has the harmonic symmetry

property with c = 1.

9. Complement of an arc. Suppose that β is a closed arc with endpoints z1 and z2.

Then G = R
2 \ β is a simply connected domain and there exists a conformal mapping g

which maps G onto the right half plane H. Next since G is locally connected at z1 and

z2, g has a continuous injective extension in G ∪ {z1, z2} [64] and we may choose g so

that g(z1) = 0 and g(z2) =∞. Let

b(z, β) = max
j=1,2

ω(g(z), αj ;H) =
2

π
| arg(g(z))|,
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where α1 and α2 are the positive and negative halves of the imaginary axis. Then

b(z, β)→ 1 if and only if z → β \ {z1, z2}. Hence the function b(z, β) is a conformally in-

variant measure of the position of the point z ∈ G with respect to the interior of β which

attains its minimum 0 on the preimage of the positive real axis under g. The following

observation suggests how this function may be used to characterize quasidisks.

10. Remark. If β is a closed subarc of a Jordan curve C ⊂ R2
, then the function b(z, β)

measures how much the open arc γ = C \β bends towards β when measured with respect

to harmonic measure in R
2 \ β. In particular, if C is a circle or line, then for each closed

arc β ⊂ C,

b(z, β) = 0 for z ∈ γ = C \ β.

11. Harmonic bending property. D has this property if D is a Jordan domain and

there exists a constant 0 ≤ c < 1 such that for each closed arc β ⊂ ∂D,

b(z, β) ≤ c for z ∈ γ = ∂D \ β.

12. Theorem (Fernández-Hamilton-Heinonen [14]). D is a quasidisk if and only if it

has the harmonic bending property.

13. Remark (Fernández-Hamilton-Heinonen [14]). D is a disk or half plane if and only

if it has the harmonic bending property with c = 0.

D. Quadrilaterals

1. Modulus of a quadrilateral. A quadrilateral Q = G(z1, z2, z3, z4) consists of a Jor-

dan domain G ⊂ R
2

together with four positively oriented vertices z1, z2, z3, z4 ∈ ∂G

which divide ∂G into four sides. Then Q can be mapped conformally onto a rectangle

R = R(0,m,m+ i, i) so that the vertices and sides of Q and R correspond and the mod-

ulus of Q is given by mod(Q) = m. If G∗ is the exterior of G, then Q∗ = G∗(z4, z3, z2, z1)

is also a quadrilateral, the conjugate of the quadrilateral Q.

2. Remark. If D is a disk or half plane and if Q and Q∗ are conjugate quadrilaterals

in D and D∗ with mod(Q) = 1, then mod(Q∗) = 1.

3. Conjugate quadrilateral inequality. D has this property if D is Jordan and there

exists a constant c ≥ 1 such that if Q and Q∗ are conjugate quadrilaterals in D and D∗

with mod(Q) = 1, then mod(Q∗) ≤ c.

4. Theorem (Lehto-Virtanen [43], Pfluger [53]). D is a quasidisk if and only if it satisfies

the conjugate quadrilateral inequality.

5. Lemma. D is a disk or half plane if and only if it satisfies the conjugate quadrilateral

inequality with c = 1.

E. Extremal distance

1. Remark. Suppose that Γ is a family of curves. We observed earlier that mod(Γ) is a

conformally invariant measure of Γ which is large if the curves in Γ are short and plentiful

and small if the curves are long or scarce. We now use this quantity to compare distances

between two continua E,F ⊂ D, as measured by the moduli of the families of curves
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which join them in D and in R
2
, respectively. This leads to another characterization for

quasidisks.

2. Extremal distance. Given continua E,F ⊂ D we let ΓD and Γ denote the families

of all curves which join E and F in D and R
2
, respectively. We then call

δD(E,F ) = mod(ΓD) and δ(E,F ) = mod(Γ)

the extremal distances between E and F in D and R
2
, respectively. Since ΓD ⊂ Γ, it

follows that δD(E,F ) ≤ δ(E,F ).

3. Extremal distance property. D has this property if there exists a constant c ≥ 2

such that

δ(E,F ) ≤ c δD(E,F ) for all continua E,F ⊂ D.

The existence of such a constant c implies that D is not bent around part of its exterior

D∗ so that the euclidean distance between E and F in D is substantially larger than the

distance in R
2
. This property cannot hold for any domain D with c < 2. See Yang [66].

4. Theorem (Gehring-Martio [25]). D is a quasidisk if and only if it has the extremal

distance property.

5. Theorem (Yang [66]). D is a disk or half plane if and only if it has the extremal

distance property with c = 2.

6. Remark. The following is an attractive application of the above characterization

for quasidisks.

7. Theorem (Fernández-Heinonen-Martio [15]). Suppose that f : G→ G′ is a confor-

mal mapping and that G′ is a quasidisk. If D ⊂ G is a quasidisk, then so is D′ = f(D).

8. Proof. Choose continua E′, F ′ ⊂ D′, let E = f−1(E′), F = f−1(F ′) and let c, c′ be

the extremal distance constants for D,G′. Then by the above theorem and the conformal

invariance of extremal distance,

δ(E′, F ′) ≤ c′ δG′(E′, F ′) = c′ δG(E,F ) ≤ c′ δ(E,F ) ≤ cc′ δD(E,F ) = cc′ δD′(E
′, F ′).

Thus D′ has the extremal distance property with constant cc′.

9. Subinvariance principle. Suppose that f : G→ G′ is conformal where G′ is a disk.

According to this principle, if E ⊂ G is nice, then so is E′ = f(E). Here are two examples.

a. Invariance of quasidisks. If E is a quasidisk, then so is E′.

b. Level set problem. If E = G ∩ L where L is a line, then l(E′) ≤ 2 l(∂G′).

For this second example, see Hayman-Wu [32] and Øyma [50], [51].

IV. INJECTIVITY CRITERIA

A. Injectivity of analytic functions

1. Remark. Suppose that f is analytic in D. Then f is locally injective in D if and

only if f ′ 6= 0 in D. We consider here two different criteria for the global injectivity of f

involving
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a. the Schwarzian derivative Sf ,

b. the pre-Schwarzian or logarithmic derivative f ′′/f ′,

for the case where D is a disk of half plane. We then show how they can be used to

characterize quasidisks.

2. Schwarzian derivative. The Schwarzian derivative of a function f , analytic and

locally injective in D, is given by

Sf =

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

.

Then Sf = 0 in D if and only if f is a Möbius transformation in which case f is injective

in D. The following result shows that the size of the Schwarzian relative to the hyperbolic

metric is related to the global injectivity of an analytic function.

3. Theorem (Lehto [41],[42]). If f is analytic and injective in D, then

|Sf | ≤ 3 ρ2D in D.

The constant 3 is sharp.

4. Schwarzian radius of injectivity σ(D). For each D we let σ(D) denote the supremum

of the constants a ≥ 0 such that f is injective in D whenever f is analytic with f ′ 6= 0

and

|Sf | ≤ a ρ2D in D.

Then σ(D) ≤ 1
2 for all domains D. See Lehtinen [40].

5. Theorem (Ahlfors [3], Gehring [17]). D is a quasidisk if and only if σ(D) > 0.

6. Theorem (Nehari [48], Lehtinen [40]). D is a disk or half plane if and only if

σ(D) = 1
2 .

7. Remark. Thus D is a quasidisk if and only if there exists a constant a > 0 such

that f analytic in D is injective whenever

|Sf | ρ−2D ≤ a in D.

We consider next analogues of the above results for the pre-Schwarzian derivative.

8. Pre-Schwarzian derivative (Bers). For f analytic with f ′ 6= 0 we call

Tf =
f ′′

f ′

the pre-Schwarzian or logarithmic derivative of f . Then Tf = 0 in D if and only if f is a

similarity mapping in which case it is injective.

9. Theorem (Osgood [49]). If f is analytic and injective in D, then

|Tf | ≤ 4 ρD in D.

The constant 4 is sharp.

10. Pre-Schwarzian radius of injectivity τ(D). We let τ(D) denote the supremum of

the constants b ≥ 0 such that f is injective in D whenever f is analytic with f ′ 6= 0 and

|Tf | ≤ b ρD in D.
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Then τ(D) ≤ 1
2 for all domains D. See Stowe [60].

11. Theorem (Astala-Gehring [6]). D is a quasidisk if and only if τ(D) > 0.

12. Theorem (Becker-Pommerenke [7], [8]). If D is a disk or half plane, then τ(D) = 1
2 .

13. Remark (Stowe [60]). The converse of Theorem 12 does not hold; there exists a

domain D with τ(D) = 1
2 which is not a disk or half plane.

14. Values of σ(D) and τ(D). Though the constants σ(D) and τ(D) reflect the ge-

ometry of D, little is known about their values except for the following special cases.

a. If D is an angular sector of angle kπ where 0 < k ≤ 2, then σ(D) = 1
2 min(k2,

2k − k2).

b. If D is a regular n-sided polygon, then σ(D) = 1
2

(
n−2
n

)2
.

c. If D is a rectangle with side ratio c ∈ [1, 1.523 . . .], then σ(D) = 1
8 .

See Calvis [12], Lehtinen [40], Lehto [41] and Miller-Van Wieren [47].

B. Injectivity of locally quasiconformal mappings

1. BMO norm. Suppose that u is locally integrable in D. Then the BMO norm of u

is given by

‖u‖BMO(D) = sup
B0

1

m(B0)

∫
B0

|u− uB0
|dm,

where the supremum is taken over all disks B0 with B0 ⊂ D and

uB0
=

1

m(B0)

∫
B0

u dm.

2. Remark. The following observation suggests how this norm is related to the hyper-

bolic metric.

3. Lemma. If B0 is a disk in D with center z0, then

1

m(B0)

∫
B0

hD(z, z0)dm ≤ 2.

4. Proof. The left hand side of the above inequality is an integral average of a function

which is invariant with respect to conformal mappings. Hence this term is invariant with

respect to similarity mappings and we may assume that B0 is the unit disk B. Then∫
B

hD(z, 0)dm ≤
∫
B

hB(z, 0)dm =

∫
B

log

(
1 + |z|
1− |z|

)
dm = 2 m(B).

5. Lemma. If u is harmonic in D, then

1

2
‖u‖BMO(D) ≤ sup

D
|grad u| ρ−1D ≤ 6 ‖u‖BMO(D).

6. Proof. It suffices to show for each disk B0 = B(z0, d) with B0 ⊂ D that

|grad u(z0)| 2d ≤ 6

m(B0)

∫
B0

|u(z)− u(z0)|dm,

whence

|grad u(z0)| ρD(z0)−1 ≤ |grad u(z0)| 2dist(z0, ∂D) ≤ 6 ‖u‖BMO(D)
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by III.B.2, and that

1

m(B0)

∫
B0

|u(z)− u(z0)|dm ≤ 2 sup
D
|grad u| ρ−1D .

If 0 < r < d, then we obtain

|grad u(z0)| πr2 ≤
∫ 2π

0

|u(reiθ + z0)− u(z0)|rdθ

from differentiating the Poisson integral and

|grad u(z0)| 2d ≤ 6

m(B0)

∫ d

0

|grad u(z0)|πr2dr

≤ 6

m(B0)

∫
B0

|u(z)− u(z0)|dm ≤ 6 ‖u‖BMO(D)

since u(z0) = uB0 .

Next if α is a hyperbolic geodesic joining z0 to z in D, then

|u(z)− u(z0)| ≤ c
∫
α

ρD|dz| = c hD(z, z0),

where c = supD |grad u| ρ−1D , and

1

m(B0)

∫
B0

|u(z)− u(z0)|dm ≤ c

m(B0)

∫
B0

hD(z, z0)dm ≤ 2c

by Lemma IV.B.3.

7. Corollary (Astala-Gehring [6]). If f is analytic with f ′ 6= 0 in D, then

1

4
‖ log(Jf )‖BMO(D) ≤ sup

D
|Tf | ρ−1D ≤ 3 ‖ log(Jf )‖BMO(D).

8. Remark. The above Corollary shows that the BMO-norm of log(Jf ) is a natural

alternative for the pre-Schwarzian derivative Tf when considering injectivity results for

locally conformal mappings. Moreover the following quasiconformal analogue of the The-

orems of Lehto and Osgood above suggests that this norm offers a way to extend results

on the injectivity of analytic functions to the class of locally quasiconformal mappings.

9. Theorem (Reimann [55]). If f is K-quasiconformal in D with f(D) ⊂ R2, then

‖ log(Jf )‖BMO(D) ≤ m

where m = m(K) <∞.

10. Locally quasiconformal mappings. f is locally K-quasiconformal in D if each point

of D has a neighborhood in which f is K-quasiconformal.

11. Theorem (Astala-Gehring [6]). Suppose that D is a disk or half plane. Then for

each 1 ≤ K < 2 there exists a constant c = c(K) > 0 with the following property. If f is

locally K-quasiconformal in D with f(D) ⊂ R2 and

‖ log(Jf )‖BMO(D) ≤ c,

then f is injective in D. The constant 2 is sharp, i.e., no such constant c exists if K ≥ 2.



30 F. W. GEHRING

12. Quasiconformal injectivity property. D has this property if for some K > 1 there

exists a constant c > 0 such that f is injective whenever f is locally K-quasiconformal

in D with f(D) ⊂ R2 and

‖ log(Jf )‖BMO(D) ≤ c.

13. Theorem (Astala-Gehring [6]). D is a quasidisk if and only if it has the quasicon-

formal injectivity property.

14. Remark. If f is conformal in D with f(D) ⊂ R2, then we see from Lemma 5 that

the function

u = log(Jf ) = 2 Re(log(f ′))

is harmonic and has finite BMO-norm in D. When do these properties characterize

the Jacobian of a conformal mapping? The answer yields still another description of a

quasidisk.

15. Theorem (Astala-Gehring [6]). D is a quasidisk if and only if there exists a constant

c > 0 such that each function u which is harmonic in D with ‖u‖BMO(D) ≤ c can be

written in the form u = log(Jf ) where f is conformal in D with f(D) ⊂ R2.

C. Injectivity of local quasi-isometries

1. Local quasi-isometries. We say that f is a local L-quasi-isometry in E ⊂ R2 if each

point of E has a neighborhood U such that

1

L
|z1 − z2| ≤ |f(z1)− f(z2)| ≤ L|z1 − z2| for z1, z2 ∈ E ∩ U .

2. Remark. Suppose that f is a local L-quasi-isometry in D. The following results

show that whether or not f is injective in D depends on L and D.

3. Lemma. If f is a local 1-quasi-isometric in D, then f is injective in D.

4. Example. For each L > 1

f(z) =
|z|
L

exp(iL2 arg(z)), | arg(z)| < π

is a local L-quasi-isometry in D = R2 \ {z = −x : 0 ≤ x <∞} which is not injective.

5. Theorem (John [34]). If D is a disk or half plane and if f is a local L-quasi-isometry

in D with L ≤ 21/4, then f is injective in D.

6. Proof. Suppose otherwise. Because f is a local homeomorphism, we can choose a

disk U with U ⊂ D and points z1, z2 ∈ ∂U such that f is injective in U with f(z1) = f(z2).

Let α be the circular arc in U which is orthogonal to ∂U at z1 and z2 and let E

denote the component of U \ α whose image E′ = f(E) is enclosed by α′ = f(α). Then

l(α′) ≤ L l(α)

because f is a local L-quasi-isometry. Next the fact that f is injective in U implies that

f−1 is a local L-quasi-isometry in U ′ = f(U). Hence

m(E) ≤ L2 m(E′).
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Finally by the isoperimetric inequality,

m(E′) ≤ l(α′)2

4π

and from elementary geometry we obtain

l(α)2

2π
< m(E) ≤ L2 m(E′) ≤ L2 l(α

′)2

4π
≤ L4 l(α)2

4π

whence L4 > 2, a contradiction.

7. Remark. The constant 21/4 in Theorem 3 is not sharp. It is conjectured that 21/2

is the right bound, a constant which would be sharp. The problem of determining the

sharp bound has been open for the past 35 years. See, for example, Gevirtz [29].

8. Rigid domain. We let L(D) denote the supremum of the numbers d ≥ 1 such that

f is injective whenever f is a local L-quasi-isometry in D with L ≤ d. We say that D is

rigid if L(D) > 1.

9. Theorem (Gehring [18], Martio-Sarvas [45]). D is a quasidisk if and only if it is

rigid.

10. Theorem (Gehring [18]). If D is a quasidisk and if f is a local L-quasi-isometry in

D with L < L(D), then f is injective in D and has an M -quasi-isometric extension to

R
2

where M depends only on L and L(D).

11. Sketch of proof. Let D′ = f(D) and suppose that g is a local L′-quasi-isometry in

D′ with

1 ≤ L′ < L(D)

L
.

Then h = gf is a local LL′-quasi-isometry in D with LL′ < L(D). Thus h is injective in

D, g is injective in D′,

L(D′) ≥ L(D)

L
> 1

and D′ is a quasidisk. Next the fact that D and D′ are uniform allows one to show that

f is an L′′-quasi-isometry in D and hence has a homeomorphic extension f∗ : D → D′.

If D is unbounded, then so is D′ and the quasidisk reflection property implies that

f∗ has an M -quasi-isometric extension to R
2
. If D is bounded, then we can choose an

auxiliary Möbius transformation φ so that φ(D) and φ(D′) are unbounded and complete

the proof as above.

12. Physical interpretation. Think of D as an elastic plane body, let f denote the

deformation of D under a force field and let

Lf (z) = lim sup
h→0

max

(
|f(z + h)− f(z)|

|h|
,

|h|
|f(z + h)− f(z)|

)
denote the strain in D at the point z caused by the force field. Then f is a local quasi-

isometry if and only if Lf (z) is bounded and L(D) is the supremum of the allowable

strains before D collapses. The above theorem says that if

sup
z∈D

L(z) < L(D),
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then the shape of the deformed body f(D) is roughly the same as that of the original

body D.

13. Remark. It would be interesting to know what sort of analogue for the above result

holds in higher dimensions.

V. EXTENSION AND CONTINUITY

A. Extension of functions with bounded mean oscillation

1. The class BMO. Suppose that u is locally integrable in a domain G ⊂ R2. We say

that u has bounded mean oscillation or is in BMO(G) if

‖u‖BMO(G) = sup
B0

1

m(B0)

∫
B0

|u− uB0 |dm <∞,

where as in IV.B.1 the supremum is taken over all disks B0 with B0 ⊂ G and

uB0
=

1

m(B0)

∫
B0

u dm.

2. Example. Functions with bounded mean oscillation arise very naturally in many

parts of analysis. For example if z1 ∈ D, then the hyperbolic distance u(z) = hD(z, z1)

is in BMO(D) with ‖u‖BMO(D) ≤ 4.

3. Proof. If B0 is any disk with center z0 and B0 ⊂ D, then

|uB0
− u(z0)| ≤ 1

m(B0)

∫
B0

|hD(z, z1)− hD(z0, z1)| dm

≤ 1

m(B0)

∫
B0

hD(z, z0) dm ≤ 2

whence

1

m(B0)

∫
B0

|u(z)− uB0 | dm ≤
1

m(B0)

∫
B0

(|u(z)− u(z0)|+ 2) dm ≤ 4

by Lemma IV.B.3.

4. Remark. If v ∈ BMO(R2) and if u is the restriction of v to D, then u ∈ BMO(D)

with

‖u‖BMO(D) ≤ ‖v‖BMO(R2).

The converse is not true. For example, if u(z) = hD(z, 1) where

D = {z = x+ iy : 0 < x <∞, |y| < 1},

then u is in BMO(D) but u has no BMO-extension to R2.

5. Theorem (Reimann-Rychener [56]). If D is a disk or half plane and if u ∈ BMO(D),

then u has an extension v ∈ BMO(R2) with

‖v‖BMO(R2) ≤ c ‖u‖BMO(D)

where c ≥ 1 is an absolute constant.
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6. BMO extension domain. D is such a domain if there exists a constant c ≥ 1 such

that each u ∈ BMO(D) has an extension v ∈ BMO(R2) with

‖v‖BMO(R2) ≤ c ‖u‖BMO(D).

7. Theorem (Jones [35]). D is a quasidisk if and only if it is a BMO-extension domain.

B. Extension of functions with bounded Dirichlet integral

1. The class L2
1. Suppose that u is locally integrable in a domain G ⊂ R2. We say

that u has a bounded Dirichlet integral or is in L2
1(G) if u is ACL in G with

EG(u) =

∫
G

|grad u|2 dm <∞.

2. Remark. If D is a disk or half space and if u ∈ L2
1(D), then u has an extension

v ∈ L2
1(R2) with

ER2(v) ≤ 2 ED(u).

3. L2
1 extension domain. D is such a domain if there exists a constant c ≥ 1 such that

each function u ∈ L2
1(D) has an extension v ∈ L2

1(R2) with

ER2(v) ≤ c ED(u).

4. Theorem (Gol’dstein-Vodop’janov [30], Jones [36]). D is a quasidisk if and only if

it is an L2
1-extension domain.

C. Extension of quasiconformal mappings

1. Remark. If D is a disk or half plane, then each K-quasiconformal self mapping f

of D can be extended by reflection to yield a K-quasiconformal self mapping g of R
2
.

2. Quasiconformal extension domain. D is such a domain if there exists a constant

c ≥ 1 such that each K-quasiconformal self mapping f of D has a cK-quasiconformal

extension g to R
2
.

3. Lemma. D is a disk or half plane if and only if it is a quasiconformal extension

domain with c = 1.

4. Theorem (Rickman [57]). D is a quasidisk if and only if it is a quasiconformal

extension domain.

D. Extension of quasi-isometries

1. Schoenflies theorem. Suppose that D is a disk, that C = ∂D and that f : C → C ′

is a homeomorphism. Then C ′ is the boundary of a Jordan domain D′. A well known

theorem of Schoenflies asserts that f has a homeomorphic extension g to D which maps

D onto D′. What is the analogue of this result for quasi-isometries?

2. Quasi-isometric extension property. We say D has this property if D is a Jordan

domain with C = ∂D and if there exists a constant c ≥ 1 such that each L-quasi-isometry

f : C → C ′ has a cL-quasi-isometric extension g : D → D′.
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3. Example. For each L > 1 there exists a bounded Jordan domain D with C = ∂D

and an L-quasi-isometry f on C which has no M -quasi-isometric extension to D for any

constant M <∞.

4. Proof. Fix L > 1 and let

D = {z = x+ iy : |x| < 1, a(|x|1/2 − 1) < y < 1}

where a = (L− 1)/2L. Then D has an outward directed cusp with tip at z = −ia and

f(x+ iy) = x+ i|y|

is L-quasi-isometric on C = ∂D. Next if g is an M -quasi-isometric extension of f to D

and if

α = α(t) = {z = x+ iy ∈ D : y = t}
for −a < t < 0, then g(α) ⊂ D and

M ≥ l(g(α))

l(α)
≥ a2

a+ t
→∞

as t→ −a, a contradiction.

5. Theorem (Gehring [20], Tukia [63]). If D is bounded, then D is a quasidisk if and

only if it has the quasi-isometric extension property.

6. Remark. The necessity also holds in the above theorem when D is unbounded.

However the sufficiency fails in this case. For example, the half strip

D = {z = x+ iy : 0 < x <∞, |y| < 1}

has the quasi-isometric extension property but D is not a quasidisk since it does not

satisfy the two point inequality in II.B.2.

E. Continuity of Bloch functions

1. Bloch functions. A function f analytic in D is said be a Bloch function or is in

B(D) if

‖f‖B(D) = sup
D
|f ′(z)| ρD(z)−1 <∞.

2. Example. Bloch functions play an important role in complex analysis. For example,

if g is conformal in D, then f = log(g′) is in B(D) with ‖f‖B(D) ≤ 4. See also, for

example, Bonk [10] and Liu-Minda [44].

3. Remark. If f is in B(D) where D is a disk or half plane, then

|f(z1)− f(z2)| ≤ ‖f‖B(D) jD(z1, z2) for z1, z2 ∈ D,

where jD is the metric defined in III.B.3. This continuity property for Bloch functions

holds precisely when D is a quasidisk.

4. Theorem (Langmeyer [39]). D is a quasidisk if and only if there exists a constant c

such that

|f(z1)− f(z2)| ≤ c ‖f‖B(D) jD(z1, z2) for f in B(D) and z1, z2 ∈ D.



CHARACTERIZATIONS OF QUASIDISKS 35

VI. MISCELLANEOUS PROPERTIES

A. Homogeneity properties

1. Homogeneous sets. A set E ⊂ R
2

is homogeneous with respect to a family F of

mappings if for each z1, z2 ∈ E there exists an f ∈ F such that

f(E) = E, f(z1) = z2.

2. Remark. If D is a disk or half plane, then D and ∂D are both homogeneous with

respect to the family of Möbius transformations of R
2
.

3. Class QC(K). This is the family of all K-quasiconformal self mappings of R
2
.

Hence QC(1) is simply the family of Möbius transformations in R
2
.

4. Theorem (Brechner-Erkama [13], [11]). D is a quasidisk if and only if ∂D is homo-

geneous with respect to the family QC(K) for some fixed K.

5. Theorem (Sarvas [58]). D is a quasidisk if and only if D is a Jordan domain which

is homogeneous with respect to the family QC(K) for some fixed K.

6. Example (Palka [52]). There exists a domain D which is not a quasidisk but which is

homogeneous with respect to the family QC(K) for a fixed K > 1; hence the hypothesis

that D be a Jordan domain is necessary in the above theorem. On the other hand, the

following result shows that this hypothesis is not necessary when K = 1.

7. Theorem (Kimel’fel’d [37]). D is a disk or half plane if and only if it is homogeneous

with respect to the family QC(1).

B. Limit set of a quasiconformal group

1. Limit set of a group of homeomorphisms. Suppose that G is a group of self homeo-

morphisms g of R
2
, i.e. a family which is closed under composition and taking inverses.

We say that w0 is in the limit set L(G) of G if there exist distinct gj ∈ G and a point

z0 ∈ R
2

such that w0 = limj→∞ gj(z0).

2. Remark. If D is a disk or half plane, then there exists a finitely generated group

G of Möbius transformations or mappings in QC(1) with ∂D as its limit set. For if H is

the upper half plane, then the modular group

G = 〈g, h〉, where g(z) = z + 1, h(z) = −1/z,

has L(G) = ∂H. Next if f maps H conformally onto D, then the group

fGf−1 = 〈fgf−1, fhf−1〉

has ∂D = f(∂H) as its limit set.

3. Theorem (Maskit [46], Sullivan [61], Tukia [62]). D is a quasidisk if and only if

∂D is a Jordan curve which is the limit set of a finitely generated group of mappings in

QC(K) for some fixed K.
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C. Comparable Dirichlet integrals

1. Remark. If D is a disk or half plane and if u and u∗ are harmonic in D and D∗,

respectively, with continuous and equal boundary values, then∫
D

|grad u|2dm =

∫
D∗
|grad u∗|2dm.

2. Comparable Dirichlet integral property. D and D∗ have this property if they are

Jordan domains and there exists a constant c ≥ 1 such that

1

c

∫
D

|grad u|2dm ≤
∫
D∗
|grad u∗|2dm ≤ c

∫
D

|grad u|2dm

for each pair of functions u and u∗ which are harmonic in D and D∗, respectively, with

continuous and equal boundary values.

3. Theorem (Ahlfors [2], Springer [59]). D is a quasidisk if and only if D and D∗ have

the comparable Dirichlet integral property.

D. Quasiconformal equivalence of R
3 \D and B3

1. Linear dilatation of a homeomorphism in R
n

. Suppose that G and G′ are domains

in R
n

and that f : G→ G′ is a homeomorphism. For x ∈ G \ {∞, f−1(∞)} and 0 < r <

dist(x, ∂G) we let

lf (x, r) = min
|x−y|=r

|f(x)− f(y)|, Lf (x, r) = max
|x−y|=r

|f(x)− f(y)|

and call

Hf (x) = lim sup
r→0

Lf (x, r)

lf (x, r)

the linear dilatation of f at x.

2. Quasiconformal mappings in R
n

. A sense preserving homeomorphism f : G → G′

is a K-quasiconformal mapping where 1 ≤ K <∞ if

a. Hf is bounded in G \ {∞, f−1(∞)},
b. Hf ≤ K a. e. in G.

3. Remark. If D is a disk or half plane in R2, then G = R
3 \ D can be mapped

2-quasiconformally onto the unit ball B3 in R3.

4. Proof. Since D is a disk or half plane, we can choose a Möbius transformation

h : R
2 → R

2
which maps D onto the right half plane

D′ = {(x1, x2) ∈ R2 : 0 < x1 <∞, |x2| <∞}.

Then h has an extension h∗ which is a Möbius transformation in R
3

and which maps

G = R
3 \D onto G′ = R

3 \D′.
Next there exists a 2-quasiconformal mapping g∗ which unfolds G′ around the x2-axis

onto the upper half space

H3 = {(x1, x2, x3) ∈ R3 : |x1| <∞, |x2| <∞, 0 < x3 <∞}.

Finally there exists a second Möbius transformation f∗ in R
3

which carries H3 onto B3

and f∗g∗h∗ maps G 2-quasiconformally onto B3.
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5. Theorem (Gehring [16]). D is a quasidisk if and only if G = R
3 \D can be mapped

quasiconformally onto B3.

VII. TABLE OF IMPLICATIONS

A. Summary. We conclude with a sketch for establishing a few of the characteri-

zations which we have discussed earlier together with very brief comments on what is

involved in establishing each step.

B. First circle of implications

1. A quasidisk D has the hyperbolic segment property. This proof stems from an ar-

gument due to Jerison and Kenig [33]. Suppose that α is a hyperbolic segment in a

K-quasidisk D and that f is a conformal mapping of the upper half plane H normalized

so that the imaginary axis is mapped onto the hyperbolic line which contains α. Then f

has an extension g which is a K2-quasiconformal in R
2
. Standard distortion properties

for conformal and quasiconformal mappings plus integration then allow one to show that

α has the desired properties.

2. D is uniform if it has the hyperbolic segment property. This is an immediate con-

sequence of the definition of uniform domain.

4. A uniform domain is linearly locally connected. This is a relatively elementary

argument using only the properties involved in these two properties.

5. A linearly locally connected domain satisfies the two point inequality. If D is linearly

locally connected, then it is locally connected at each point of ∂D and hence Jordan. The

desired two point inequality then follows from the two inequalities in the definition of

linear local connectivity.

6. D is a quasidisk if it satisfies the two point inequality. This argument is due to

Ahlfors [3]. Suppose that f and f∗ are conformal mappings of D and D∗ onto the upper

and lower half planes H and H∗ normalized so that f−1(∞) = f∗−1(∞). Then the two

point condition implies that

φ = f∗(f−1) : ∂H → ∂H∗

is quasisymmetric. Hence by a theorem due to Beurling and Ahlfors [9], φ has a quasi-

conformal extension to R
2

and D is a quasidisk.

C. Second circle of implications

1. A quasidisk has the BMO extension property. This argument is due to Jones [35].

If D is a quasidisk, then there exists a quasiconformal self mapping f of R
2

which maps

D onto a disk or half plane D′ so that f(∞) =∞. Next u′ = u(f−1) is BMO in D′ by a

theorem due to Reimann [55], a simple construction yields a BMO extension v′ of v to

R2 and v = v′(f) is BMO in R2 again by Reimann’s theorem.

2. The BMO extension property implies the hyperbolic bound. This follows from set-

ting u(z) = hD(z, z0) where z, z0 ∈ D.
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3. The hyperbolic bound implies the segment property. This follows from a simplified

version, due to Gehring and Osgood [26], of an argument of Jones [35].

D. Third circle of implications

1. σ(D) > 0, τ(D) > 0 and L(D) > 1 if D is uniform. This argument is due to Martio

and Sarvas [45]. Suppose that D is uniform with constant c ≥ 1 and that f is analytic

and locally injective with

|Tf | ≤
1

4c2
ρD

in D. Then for each z1, z2 ∈ D, integration yields∣∣∣∣f(z1)− f(z2)

f ′(z0)
− (z1 − z2)

∣∣∣∣ < |z1 − z2|
where z0 is the midpoint of the curve α joining z1, z2 which corresponds to the fact that

D is uniform. Thus f is injective and

τ(D) ≥ 1

4c2
> 0.

This and the fact that

Sf = T ′f −
1

2
T 2
f

then allow one to conclude that

σ(D) ≥ 1

16c3
> 0.

The argument for local quasi-isometries is similar.

2. D is linearly locally connected if σ(D) > 0, τ(D) > 0 or L(D) > 1 . Suppose that

D is not linearly locally connected. Then for each a > 0 and b > 0 one can construct

explicitly functions f and g which are analytic and locally, but not globally, injective in

D such that

|Sf | ≤ a ρ2D and |Tg| ≤ b ρD
in D. See Gehring [17] and Astala-Gehring [6]. A similar construction yields for each

L > 1 a local L-quasi-isometry h in D which is not injective. See Gehring [18].

References

[1] L. V. Ahlfors, Complex analysis, McGraw-Hill 1979.
[2] L. V. Ahlfors, Remarks on the Neumann-Poincaré integral equation, Pacific J. Math. 2
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