C OLLOQUIUM MATHEMATICUM
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">VOL. 79</td>
<td style="text-align: right; border-right: none !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">1999</td>
<td style="text-align: right; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">NO. 1</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| VOL. 79 | 1999 | NO. 1 |
| :--- | ---: | ---: |</table-markdown></div>

ON FULL SUSLIN TREES

BY
SAHARON SHELAH
(JERUSALEM, NEW BRUNSWICK, N.J., and MADISON, WISC.)
0. Introduction. In the present paper we answer a combinatorial question of Kunen listed in Arnie Miller's Problem List. We force, e.g. for the first strongly inaccessible Mahlo cardinal λ, a full (see 1.1(2)) λ-Suslin tree and we remark that the existence of such trees follows from $\mathbf{V}=\mathbf{L}$ (if λ is Mahlo strongly inaccessible). This answers [Mi91, Problem 15.13].

Our notation is rather standard and compatible with those of classical textbooks on Set Theory. However, in forcing considerations, we keep the older tradition that
a stronger condition is the larger one.

We will keep the following conventions concerning use of symbols.
Notation 0.1. (1) λ, μ will denote cardinal numbers and $\alpha, \beta, \gamma, \delta, \xi, \zeta$ will be used to denote ordinals.
(2) Sequences (not necessarily finite) of ordinals are denoted by ν, η, ϱ (with possible indices).
(3) The length of a sequence η is $\lg (\eta)$.
(4) For a sequence η and an ordinal $\alpha \leq \lg (\eta), \eta \upharpoonright \alpha$ is the restriction of the sequence η to α (so $\lg (\eta \upharpoonright \alpha)=\alpha$). If a sequence ν is a proper initial segment of a sequence η then we write $\nu \triangleleft \eta$ (and $\nu \unlhd \eta$ has the obvious meaning).
(5) A tilde indicates that we are dealing with a name for an object in forcing extension (like $\underset{\sim}{x}$).

1. Full λ-Suslin trees. A subset T of ${ }^{\alpha>} 2$ is an α-tree whenever (α is a limit ordinal and) the following three conditions are satisfied:
$\bullet\rangle \in T$, if $\nu \triangleleft \eta \in T$ then $\nu \in T$,

- $\eta \in T$ implies $\eta\ulcorner\langle 0\rangle, \eta\ulcorner\langle 1\rangle \in T$, and

1991 Mathematics Subject Classification: 03E05, 03E35.
We thank the NSF for partially supporting this research under grant \#144-EF67. Publication No 624.

- for every $\eta \in T$ and $\beta<\alpha$ such that $\lg (\eta) \leq \beta$ there is $\nu \in T$ such that $\eta \unlhd \nu$ and $\lg (\eta)=\beta$.

A λ-Suslin tree is a λ-tree $T \subseteq{ }^{\lambda>} 2$ in which every antichain is of size less than λ.

Definition 1.1. (1) For a tree $T \subseteq{ }^{\alpha>} 2$ and an ordinal $\beta \leq \alpha$ we let

$$
T_{[\beta]}:=T \cap{ }^{\beta} 2 \quad \text { and } \quad T_{[<\beta]}:=T \cap^{\beta>} 2 .
$$

If $\delta \leq \alpha$ is limit then we define

$$
\lim _{\delta} T_{[<\delta]}:=\left\{\eta \in^{\delta} 2:(\forall \beta<\delta)(\eta \upharpoonright \beta \in T)\right\} .
$$

(2) An α-tree T is full if for every limit ordinal $\delta<\alpha$ the set $\lim _{\delta}\left(T_{[<\delta]}\right) \backslash$ $T_{[\delta]}$ has at most one element.
(3) An α-tree $T \subseteq{ }^{\alpha>} 2$ has true height α if for every $\eta \in T$ there is $\nu \in{ }^{\alpha} 2$ such that

$$
\eta \triangleleft \nu \quad \text { and } \quad(\forall \beta<\alpha)(\nu \upharpoonright \beta \in T) .
$$

We will show that the existence of full λ-Suslin trees is consistent assuming the cardinal λ satisfies the following hypothesis.

Hypothesis 1.2. (a) λ is a strongly inaccessible (Mahlo) cardinal,
(b) $S \subseteq\{\mu<\lambda: \mu$ is a strongly inaccessible cardinal $\}$ is a stationary set,
(c) $S_{0} \subseteq \lambda$ is a set of limit ordinals,
(d) for every cardinal $\mu \in S, \diamond_{S_{0} \cap \mu}$ holds true.

Further in this section we will assume that λ, S_{0} and S are as above and we may forget to repeat these assumptions.

Let us recall that the diamond principle $\diamond_{S_{0} \cap \mu}$ postulates the existence of a sequence $\bar{\nu}=\left\langle\nu_{\delta}: \delta \in S_{0} \cap \mu\right\rangle$ (called $a \diamond_{S_{0} \cap \mu}$-sequence) such that $\nu_{\delta} \in{ }^{\delta} 2$ (for $\delta \in S_{0} \cap \mu$) and
$\left(\forall \nu \in{ }^{\mu} 2\right)$ [the set $\left\{\delta \in S_{0} \cap \mu: \nu\left\lceil\delta=\nu_{\delta}\right\}\right.$ is stationary in $\left.\mu\right]$.
Now we introduce a forcing notion \mathbb{Q} and its relative \mathbb{Q}^{*} which will be used in our proof.

Definition 1.3. (1) A condition in \mathbb{Q} is a tree $T \subseteq{ }^{\alpha>} 2$ of a true height $\alpha=\alpha(T)<\lambda$ (see $1.1(3)$; so α is a limit ordinal) such that $\left\|\lim _{\delta}\left(T_{[<\delta]}\right) \backslash T_{[\delta]}\right\| \leq 1$ for every limit ordinal $\delta<\alpha$; the order on \mathbb{Q} is defined by $T_{1} \leq T_{2}$ if and only if $T_{1}=T_{2} \cap^{\alpha\left(T_{1}\right)>} 2$ (so it is the end-extension order).
(2) For a condition $T \in \mathbb{Q}$ and a limit ordinal $\delta<\alpha(T)$, let $\eta_{\delta}(T)$ be the unique member of $\lim _{\delta}\left(T_{[<\delta]}\right) \backslash T_{[\delta]}$ if there is one, otherwise $\eta_{\delta}(T)$ is not defined.
(3) Let $T \in \mathbb{Q}$. A function $f: T \rightarrow \lim _{\alpha(T)}(T)$ is called a witness for T if $(\forall \eta \in T)(\eta \triangleleft f(\eta))$.
(4) A condition in \mathbb{Q}^{*} is a pair (T, f) such that $T \in \mathbb{Q}$ and $f: T \rightarrow$ $\lim _{\alpha(T)}(T)$ is a witness for T; the order on \mathbb{Q}^{*} is defined by $\left(T_{1}, f_{1}\right) \leq\left(T_{2}, f_{2}\right)$ if and only if $T_{1} \leq_{\mathbb{Q}} T_{2}$ and $\left(\forall \eta \in T_{1}\right)\left(f_{1}(\eta) \unlhd f_{2}(\eta)\right)$.

Proposition 1.4. (1) If $\left(T_{1}, f_{1}\right) \in \mathbb{Q}^{*}, T_{1} \leq_{\mathbb{Q}} T_{2}$ and
(*) either $\eta_{\alpha\left(T_{1}\right)}\left(T_{2}\right)$ is not defined or it does not belong to $\operatorname{rang}\left(f_{1}\right)$
then there is $f_{2}: T_{2} \rightarrow \lim _{\alpha\left(T_{2}\right)}\left(T_{2}\right)$ such that $\left(T_{1}, f_{1}\right) \leq\left(T_{2}, f_{2}\right) \in \mathbb{Q}^{*}$.
(2) For every $T \in \mathbb{Q}$ there is a witness f for T.

Proof. Should be clear.
Proposition 1.5. (1) The forcing notion \mathbb{Q}^{*} is $(<\lambda)$-complete, in fact any increasing chain of length $<\lambda$ has the least upper bound in \mathbb{Q}^{*}.
(2) The forcing notion \mathbb{Q} is strategically γ-complete for each $\gamma<\lambda$.
(3) Forcing with \mathbb{Q} adds no new sequences of length $<\lambda$. Since $\|\mathbb{Q}\|=\lambda$, forcing with \mathbb{Q} preserves cardinal numbers, cofinalities and cardinal arithmetic.

Proof. (1) It is straightforward: suppose that $\left\langle\left(T_{\zeta}, f_{\zeta}\right): \zeta<\xi\right\rangle$ is an increasing sequence of elements of \mathbb{Q}^{*}. Clearly we may assume that $\xi<\lambda$ is a limit ordinal and $\zeta_{1}<\zeta_{2}<\xi \Rightarrow \alpha\left(T_{\zeta_{1}}\right)<\alpha\left(T_{\zeta_{2}}\right)$. Let $T_{\xi}=\bigcup_{\zeta<\xi} T_{\zeta}$ and $\alpha=\sup _{\zeta<\xi} \alpha\left(T_{\zeta}\right)$. Clearly, the union is increasing and T_{ξ} is a full α-tree. For $\eta \in T_{\xi}$ let $\zeta_{0}(\eta)$ be the first $\zeta<\xi$ such that $\eta \in T_{\zeta}$ and let $f_{\xi}(\eta)=\bigcup\left\{f_{\zeta}(\eta): \zeta_{0}(\eta) \leq \zeta<\xi\right\}$. By the definition of the order on \mathbb{Q}^{*} we see that the sequence $\left\langle f_{\zeta}(\eta): \zeta_{0}(\eta) \leq \zeta<\xi\right\rangle$ is \triangleleft-increasing and hence $f_{\xi}(\eta) \in \lim _{\alpha}\left(T_{\xi}\right)$. Plainly, the function f_{ξ} witnesses that T_{ξ} has true height α, and thus $\left(T_{\xi}, f_{\xi}\right) \in \mathbb{Q}^{*}$. It should be clear that $\left(T_{\xi}, f_{\xi}\right)$ is the least upper bound of the sequence $\left\langle\left(T_{\zeta}, f_{\zeta}\right): \zeta<\xi\right\rangle$.
(2) For our purpose it is enough to show that for each ordinal $\gamma<\lambda$ and a condition $T \in \mathbb{Q}$ the second player has a winning strategy in the following game $\mathcal{G}_{\gamma}(T, \mathbb{Q})$. (Also we can let Player I choose T_{ξ} for ξ odd.)

The game lasts γ moves and during a play the players, called I and II, choose successively open dense subsets \mathcal{D}_{ξ} of \mathbb{Q} and conditions $T_{\xi} \in \mathbb{Q}$. At stage $\xi<\gamma$ of the game, Player I chooses an open dense subset \mathcal{D}_{ξ} of \mathbb{Q} and Player II answers playing a condition $T_{\xi} \in \mathbb{Q}$ such that

$$
T \leq_{\mathbb{Q}} T_{\xi}, \quad(\forall \zeta<\xi)\left(T_{\zeta} \leq_{\mathbb{Q}} T_{\xi}\right), \quad \text { and } \quad T_{\xi} \in \mathcal{D}_{\xi}
$$

The second player wins if he always has legal moves during the play.
Let us describe the winning strategy for Player II. At each stage $\xi<\gamma$ of the game he plays a condition T_{ξ} and writes down a function f_{ξ} such that $\left(T_{\xi}, f_{\xi}\right) \in \mathbb{Q}^{*}$. Moreover, he keeps an extra obligation that $\left(T_{\zeta}, f_{\zeta}\right) \leq_{\mathbb{Q}^{*}}$ $\left(T_{\xi}, f_{\xi}\right)$ for each $\zeta<\xi<\gamma$.

So arriving at a non-limit stage of the game he takes the condition $\left(T_{\zeta}, f_{\zeta}\right)$ he constructed before (or just (T, f), where f is a witness for T,
if this is the first move; by $1.4(2)$ we can always find a witness). Then he chooses $T_{\zeta}^{*} \geq_{\mathbb{Q}} T_{\zeta}$ such that $\alpha\left(T_{\zeta}^{*}\right)=\alpha\left(T_{\zeta}\right)+\omega$ and $\left(T_{\zeta}^{*}\right)_{\left[\alpha\left(T_{\zeta}\right)\right]}=$ $\lim _{\alpha\left(T_{\zeta}\right)}\left(T_{\zeta}\right)$. Thus $\eta_{\alpha\left(T_{\zeta}\right)}\left(T_{\zeta}^{*}\right)$ is not defined. Now Player II takes $T_{\zeta+1} \geq_{\mathbb{Q}}$ T_{ζ}^{*} from the open dense set $\mathcal{D}_{\zeta+1}$ played by his opponent at this stage. Clearly $\eta_{\alpha\left(T_{\zeta}\right)}\left(T_{\zeta+1}\right)$ is not defined, so Player II may use $1.4(1)$ to choose $f_{\zeta+1}$ such that $\left(T_{\zeta}, f_{\zeta}\right) \leq_{\mathbb{Q}^{*}}\left(T_{\zeta+1}, f_{\zeta+1}\right) \in \mathbb{Q}^{*}$.

At a limit stage ξ of the game, the second player may take the least upper bound $\left(T_{\xi}^{\prime}, f_{\xi}^{\prime}\right) \in \mathbb{Q}^{*}$ of the sequence $\left\langle\left(T_{\zeta}, f_{\zeta}\right): \zeta<\xi\right\rangle$ (exists by (1)) and then apply the procedure described above.
(3) Follows from (2) above.

Definition 1.6. Let $\underset{\sim}{\mathbf{T}}$ be the canonical \mathbb{Q}-name for a generic tree added by forcing with \mathbb{Q} :

$$
\Vdash_{\mathbb{Q}} \underset{\sim}{\mathbf{T}}=\bigcup\left\{T: T \in{\underset{\sim}{Q}}_{\mathbb{Q}}\right\} .
$$

It should be clear that $\underset{\sim}{\mathbf{T}}$ is (forced to be) a full λ-tree. The main point is to show that it is λ-Suslin and this is done in the following theorem.

Theorem 1.7. $\vdash_{\mathbb{Q}}$ " $\underset{\sim}{\mathbf{T}}$ is a λ-Suslin tree".
Proof. Suppose that $\underset{\sim}{A}$ is a \mathbb{Q}-name such that

$$
\Vdash_{\mathbb{Q}} " \underset{\sim}{A} \subseteq \underset{\sim}{\mathbf{T}} \text { is an antichain", }
$$

and let T_{0} be a condition in \mathbb{Q}. We will show that there are $\mu<\lambda$ and a condition $T^{*} \in \mathbb{Q}$ stronger than T_{0} such that $T^{*} \Vdash_{\mathbb{Q}}$ " $\underset{\sim}{A} \subseteq \underset{\sim}{\mathbf{T}}[<\mu]$ " (and thus it forces that the size of $\underset{\sim}{A}$ is less than λ).

Let $\underset{\sim}{\mathbf{A}}$ be a \mathbb{Q}-name such that

$$
\Vdash_{\mathbb{Q}} " \underset{\sim}{\mathbf{A}}=\{\eta \in \underset{\sim}{\mathbf{T}}:(\exists \nu \in \underset{\sim}{A})(\nu \unlhd \eta) \text { or } \neg(\exists \nu \in \underset{\sim}{A})(\eta \unlhd \nu)\} \text { ". }
$$

Clearly, $\Vdash_{\mathbb{Q}}$ " $\underset{\sim}{\mathbf{A}} \subseteq \underset{\sim}{\mathbf{T}}$ is dense open".
Let χ be a sufficiently large regular cardinal $\left(\beth_{7}\left(\lambda^{+}\right)^{+}\right.$is enough $)$.
Claim 1.7.1. There are $\mu \in S$ and $\mathfrak{B} \prec\left(\mathcal{H}(\chi), \in,<_{\chi}^{*}\right)$ such that:
(a) $\underset{\sim}{A}, \underset{\sim}{\mathbf{A}}, S, S_{0}, \mathbb{Q}, \mathbb{Q}^{*}, T_{0} \in \mathfrak{B}$,
(b) $\|\mathfrak{B}\|=\mu$ and ${ }^{\mu>} \mathfrak{B} \subseteq \mathfrak{B}$,
(c) $\mathfrak{B} \cap \lambda=\mu$.

Proof. First construct inductively an increasing continuous sequence $\left\langle\mathfrak{B}_{\xi}: \xi<\lambda\right\rangle$ of elementary submodels of $\left(\mathcal{H}(\chi), \in,<_{\chi}^{*}\right)$ such that $\underset{\sim}{A}, \underset{\sim}{\mathbf{A}}, S$, $S_{0}, \mathbb{Q}, \mathbb{Q}^{*}, T_{0} \in \mathfrak{B}_{0}$ and for every $\xi<\lambda$,

$$
\left\|\mathfrak{B}_{\xi}\right\|=\mu_{\xi}<\lambda, \quad \mathfrak{B}_{\xi} \cap \lambda \in \lambda, \quad \text { and } \quad \mu_{\xi} \geq \mathfrak{B}_{\xi} \subseteq \mathfrak{B}_{\xi+1}
$$

Note that for a club E of λ, for every $\mu \in S \cap E$ we have

$$
\left\|\mathfrak{B}_{\mu}\right\|=\mu, \quad{ }^{\mu>} \mathfrak{B}_{\mu} \subseteq \mathfrak{B}_{\mu}, \quad \text { and } \quad \mathfrak{B}_{\mu} \cap \lambda=\mu
$$

Choose $\mu \in S \cap E$ and let $\mathfrak{B}=\mathfrak{B}_{\mu}$.

Let $\mu \in S$ and $\mathfrak{B} \prec\left(\mathcal{H}(\chi), \in,<_{\chi}^{*}\right)$ be given by 1.7.1. We know that $\diamond_{S_{0} \cap \mu}$ holds, so fix a $\diamond_{S_{0} \cap \mu}$-sequence $\bar{\nu}=\left\langle\nu_{\delta}: \delta \in S_{0} \cap \mu\right\rangle$.

Let
$\underset{\sim}{\mathcal{I}}:=\left\{T \in \mathbb{Q}: T\right.$ is incompatible (in \mathbb{Q}) with T_{0} or:
$T \geq T_{0}$ and T decides the value of $\underset{\sim}{\mathbf{A}} \cap^{\alpha(T)>} 2$ and $\left.(\forall \eta \in T)(\exists \varrho \in T)\left(\eta \unlhd \varrho \& T \Vdash_{\mathbb{Q}} \varrho \in \underset{\sim}{\mathbf{A}}\right)\right\}$.
Claim 1.7.2. $\underset{\sim}{\mathcal{I}}$ is a dense subset of \mathbb{Q}.
Proof. Should be clear (remember 1.5(2)).
Now we choose by induction on $\xi<\mu$ a continuous increasing sequence $\left\langle\left(T_{\xi}, f_{\xi}\right): \xi<\mu\right\rangle \subseteq \mathbb{Q}^{*} \cap \mathfrak{B}$.

Step: $i=0 . T_{0}$ is already chosen and it belongs to $\mathbb{Q} \cap \mathfrak{B}$. We take any f_{0} such that $\left(T_{0}, f_{0}\right) \in \mathbb{Q}^{*} \cap \mathfrak{B}$ (exists by $\left.1.4(2)\right)$.

Step: limit ξ. Since ${ }^{\mu>} \mathfrak{B} \subseteq \mathfrak{B}$, the sequence $\left\langle\left(T_{\zeta}, f_{\zeta}\right): \zeta<\xi\right\rangle$ is in \mathfrak{B}. By $1.5(1)$ it has the least upper bound $\left(T_{\xi}, f_{\xi}\right)$ (which belongs to \mathfrak{B}).

Step: $\xi=\zeta+1$. First we take the (unique) tree T_{ξ}^{*} of true height $\alpha\left(T_{\xi}^{*}\right)=$ $\alpha\left(T_{\zeta}\right)+\omega$ such that $T_{\xi}^{*} \cap^{\alpha\left(T_{\zeta}\right)>} 2=T_{\zeta}$ and: if $\alpha\left(T_{\zeta}\right) \in S_{0}$ and $\nu_{\alpha\left(T_{\zeta}\right)} \notin$ $\operatorname{rang}\left(f_{\zeta}\right)$ then $\left(T_{\xi}^{*}\right)_{\left[\alpha\left(T_{\zeta}\right)\right]}=\lim _{\alpha\left(T_{\zeta}\right)}\left(T_{\zeta}\right) \backslash\left\{\nu_{\alpha\left(T_{\zeta}\right)}\right\}$, otherwise $\left(T_{\xi}^{*}\right)_{\left[\alpha\left(T_{\zeta}\right)\right]}=$ $\lim _{\alpha\left(T_{\zeta}\right)}\left(T_{\zeta}\right)$.

Let $T_{\xi} \in \mathbb{Q} \cap \mathcal{I}$ be strictly above T_{ξ}^{*} (exists by 1.7.2). Clearly we may choose such T_{ξ} in $\widetilde{\mathfrak{B}}$. Now we have to define f_{ξ}. We do it by 1.4 , but additionally we require that

$$
\text { if } \quad \eta \in T_{\xi} \quad \text { then } \quad\left(\exists \varrho \in T_{\xi}\right)\left(\varrho \triangleleft f_{\xi}(\eta) \& T \vdash_{\mathbb{Q}} " \varrho \in \underset{\sim}{\mathbf{A}} "\right) \text {. }
$$

Plainly the additional requirement causes no problems (remember the definition of $\underset{\sim}{\mathcal{I}}$ and the choice of T_{ξ}) and the choice can be done in \mathfrak{B}.

There are no difficulties in carrying out the induction. Finally we let

$$
T_{\mu}:=\bigcup_{\xi<\mu} T_{\xi} \quad \text { and } \quad f_{\mu}=\bigcup_{\xi<\mu} f_{\xi}
$$

By the choice of \mathfrak{B} and μ we are sure that T_{μ} is a μ-tree. It follows from $1.5(1)$ that $\left(T_{\mu}, f_{\mu}\right) \in \mathbb{Q}^{*}$, so in particular the tree T_{μ} has enough μ branches (and belongs to \mathbb{Q}).

Claim 1.7.3. For every $\varrho \in \lim _{\mu}\left(T_{\mu}\right)$ there is $\xi<\mu$ such that

$$
\left(\exists \beta<\alpha\left(T_{\xi+1}\right)\right)\left(T_{\xi+1} \Vdash_{\mathbb{Q}} " \varrho \varrho \beta \in \underset{\sim}{\mathbf{A}} "\right) .
$$

Proof. Fix $\varrho \in \lim _{\mu}\left(T_{\mu}\right)$ and let

$$
S_{\nu}^{*}:=\left\{\delta \in S_{0} \cap \mu: \alpha\left(T_{\delta}\right)=\delta \text { and } \nu_{\delta}=\varrho \upharpoonright \delta\right\}
$$

Plainly, the set S_{ν}^{*} is stationary in μ (remember the choice of $\bar{\nu}$). By the
definition of the T_{ξ} 's (and by $\varrho \in \lim _{\mu}\left(T_{\mu}\right)$) we conclude that for every $\delta \in S_{\nu}^{*}$,

$$
\text { if } \eta_{\delta}\left(T_{\delta+1}\right) \text { is defined then } \varrho \upharpoonright \delta \neq \eta_{\delta}\left(T_{\mu}\right)=\eta_{\delta}\left(T_{\delta+1}\right)
$$

But $\varrho \mid \delta=\nu_{\delta}$ (as $\delta \in S_{\nu}^{*}$). So look at the inductive definition: necessarily for some $\varrho_{\delta}^{*} \in T_{\delta}$ we have $\nu_{\delta}=f_{\delta}\left(\varrho_{\delta}^{*}\right)$, i.e. $\varrho \mid \delta=f_{\delta}\left(\varrho_{\delta}^{*}\right)$. Now, $\varrho_{\delta}^{*} \in T_{\delta}=\bigcup_{\xi<\delta} T_{\xi}$ and hence for some $\xi(\delta)<\delta$, we have $\varrho_{\delta}^{*} \in T_{\xi(\delta)}$. By Fodor's lemma we find $\xi^{*}<\mu$ such that the set

$$
S_{\nu}^{\prime}:=\left\{\delta \in S_{\nu}^{*}: \xi(\delta)=\xi^{*}\right\}
$$

is stationary in μ. Consequently, we find ϱ^{*} such that the set

$$
S_{\nu}^{+}:=\left\{\delta \in S_{\nu}^{\prime}: \varrho^{*}=\varrho_{\delta}^{*}\right\}
$$

is stationary (in μ). But the sequence $\left\langle f_{\xi}\left(\varrho^{*}\right): \xi^{*} \leq \xi<\mu\right\rangle$ is \unlhd-increasing, and hence the sequence ϱ is its limit. Now we easily obtain the claim using the inductive definition of the $\left(T_{\xi}, f_{\xi}\right.$)'s.

It follows from the definition of $\underset{\sim}{\mathbf{A}}$ and 1.7.3 that

$$
T_{\mu} \Vdash_{\mathbb{Q}} " \underset{\sim}{A} \subseteq T_{\mu} "
$$

(remember that $\underset{\sim}{A}$ is a name for an antichain of $\underset{\sim}{\mathbf{T}}$), and hence

$$
T_{\mu} \Vdash_{\mathbb{Q}} "\|\underset{\sim}{A}\|<\lambda ",
$$

finishing the proof of the theorem.
Definition 1.8. A λ-tree T is S_{0}-full, where $S_{0} \subseteq \lambda$, if for every limit $\delta<\lambda$,

- if $\delta \in \lambda \backslash S_{0}$ then $T_{[\delta]}=\lim _{\delta}(T)$,
- if $\delta \in S_{0}$ then $\left\|T_{[\delta]} \backslash \lim _{\delta}(T)\right\| \leq 1$.

Corollary 1.9. Assuming Hypothesis 1.2:
(1) The forcing notion \mathbb{Q} preserves cardinal numbers, cofinalities and cardinal arithmetic.
(2) $\Vdash_{\mathbb{Q}}{ }^{\text {"T }} \underset{\sim}{\subseteq} \subseteq{ }^{\lambda>} 2$ is a λ-Suslin tree which is full and even $S_{0}-$ full". [So, in $\mathbf{V}^{\mathbb{Q}}$, in particular we have: for every $\alpha<\beta<\mu$, for all $\eta \in T \cap{ }^{\alpha} 2$ there is $\nu \in T \cap^{\beta} 2$ such that $\eta \triangleleft \nu$, and for a limit ordinal $\delta<\lambda, \lim _{\delta}\left(T_{[<\delta]}\right) \backslash T_{[\delta]}$ is either empty or has a unique element (and then $\delta \in S_{0}$).]

Proof. By 1.5 and 1.7.
Of course, we do not need to force.
Definition 1.10. Let $S_{0}, S \subseteq \lambda$. A sequence $\left\langle\left(C_{\alpha}, \nu_{\alpha}\right): \alpha<\lambda\right.$ limit \rangle is called a squared diamond sequence for $\left(S, S_{0}\right)$ if for each limit ordinal $\alpha<\lambda$,
(i) C_{α} is a club of α disjoint from S,
(ii) $\nu_{\alpha} \in{ }^{\alpha} 2$,
(iii) if $\beta \in \operatorname{acc}\left(C_{\alpha}\right)$ then $C_{\beta}=C_{\alpha} \cap \beta$ and $\nu_{\beta} \triangleleft \nu_{\alpha}$,
(iv) if $\mu \in S$ then $\left\langle\nu_{\alpha}: \alpha \in C_{\mu} \cap S_{0}\right\rangle$ is a diamond sequence.

Proposition 1.11. Assume (in addition to 1.2)
(e) there exists a squared diamond sequence for $\left(S, S_{0}\right)$.

Then there is a λ-Suslin tree $T \subseteq{ }^{\lambda>} 2$ which is S_{0}-full.
Proof. Look carefully at the proof of 1.7.
Corollary 1.12. Assume that $\mathbf{V}=\mathbf{L}$ and λ is Mahlo strongly inaccessible. Then there is a full λ-Suslin tree.

Proof. Let $S \subseteq\{\mu<\lambda: \mu$ is strongly inaccessible $\}$ be a stationary non-reflecting set. By Beller and Litman [BeLi80], there is a square $\left\langle C_{\delta}\right.$: $\delta<\lambda$ limit \rangle such that $C_{\delta} \cap S=\emptyset$ for each limit $\delta<\lambda$. As in Abraham, Shelah and Solovay [AShS 221, §1] we can also have the squared diamond sequence.

REFERENCES

[AShS 221] U. Abraham, S. Shelah and R. M. Solovay, Squares with diamonds and Souslin trees with special squares, Fund. Math. 127 (1987), 133-162.
[BeLi80] A. Beller and A. Litman, A strengthening of Jensen's \square principles, J. Symbolic Logic 45 (1980), 251-264.
[Mi91] A. Miller, Arnie Miller's problem list, in: H. Judah (ed.), Set Theory of the Reals, Israel Math. Conf. Proc., Bar-Ilan University, 1993, 645-654.

Institute of Mathematics
The Hebrew University of Jerusalem
91904 Jerusalem, Israel
Department of Mathematics
Rutgers University
New Brunswick, New Jersey 08854
U.S.A.

Mathematics Department University of Wisconsin-Madison Madison, Wisconsin 53706
U.S.A.

