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ON RESIDUALLY FINITE GROUPS AND
THEIR GENERALIZATIONS

BY

ANDRZEJ S T R O J N O W S K I (WARSZAWA)

The paper is concerned with the class of groups satisfying the finite
embedding (FE) property. This is a generalization of residually finite groups.
In [2] it was asked whether there exist FE-groups which are not residually
finite. Here we present such examples. To do this, we construct a family
of three-generator soluble FE-groups with torsion-free abelian factors. We
study necessary and sufficient conditions for groups from this class to be
residually finite. This answers the questions asked in [1] and [2].

1. The construction of the group G(φ). Let φ be a map from
Z into Z \ {0}. We define G(φ) to be the group generated by elements
{xi}i∈Z ∪ {yj}j∈Z ∪ {z} with the following relations:

[xi, xj ] = [yi, yj ] = 1, z−1xiz = xi−1, z
−1yjz = yj−1, y

−1
j xiyj = x

φ(i−j)
i .

It is obvious that the group G(φ) is generated by three elements x = x0,
y = y0 and z.

Let us start with a lemma describing the abelian subgroups of G(φ).

Lemma 1.1. Let H be a normal subgroup of a group G and let h ∈ H
be an element of infinite order. Assume we are given a set S consisting of
integers s such that h is conjugate to hs ∈ G. For each s ∈ S we choose
an element ys ∈ G such that y−1s hys = hs. Let Y denote the subgroup of
G generated by the set {ys}s∈S and let C be the multiplicative semigroup
generated by S. Then:

(i) There exists a subgroup A of H such that h ∈ A and A is isomorphic
to the additive group of ZC−1.

(ii) For any y in Y there exist a and b in C such that y−1hay = hb.

(iii) For any a and b in C there exists y in Y such that y−1hay = hb.

(iv) If Y is abelian then the subgroup A of H generated by {y−1hy :
y ∈ Y } is isomorphic to the additive group of ZC−1.
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P r o o f. (i) Let c1, c2, c3, . . . be the list of all elements of C. By in-
duction we can construct a sequence h0, h1, h2, . . . of elements of H such
that h0 = h, hcnn = hn−1 and each hn is conjugate in G to h. The sub-
group A = 〈h0, h1, h2, . . .〉 of H is clearly isomorphic to the additive group of
ZC−1.

(ii) We proceed by induction on the length of the word y written in the
letters ys.

If y = ys we set a = s and b = s2, if y = y−1s we set a = s2 and b = s.

Let y = ysz or y = y−1s z where z is an element of Y of smaller length.
By induction, there exist a and b in C such that z−1haz = hb. Now we have
y−1hay = hbs or y−1hasy = hb.

(iii) There exist g and x in Y such that g−1hg = ha and x−1hx = hb.
Therefore, (g−1x)−1hag−1x = hb.

(iv) By (i), it is sufficient to prove that for all y ∈ Y the element y−1hy
belongs to the subgroup A = 〈h0, h1, h2, . . .〉. Take some y ∈ Y . By (ii),
there exist cn and ct in C such that y−1hcny = hct . By (i), there exists
z ∈ Y such that z−1hz = hn. Since Y is abelian and h = h

cncn−1...c1
n , we get

y−1hcnn y =
(
y−1z−1hzy

)cn
= z−1y−1hcnyz = z−1hctz = hctn .

Hence,

y−1hy = (y−1hcnn y)cn−1...c2c1 = hctcn−1...c1
n ∈ A.

Notation. Similarly to Lemma 1.1, for the group G(φ) we will denote
by C the subsemigroup of Z generated by imφ.

Proposition 1.2. Every element of the group G(φ) can be uniquely
written as a finite product ∏

i∈Z
x
α(i)
i ·

∏
j∈Z

y
β(j)
j · zt,

where t ∈ Z and α(i) ∈ ZC−1, β(j) ∈ Z for all integers i, j.

P r o o f. By Lemma 1.1(iv), the subgroup Xi = 〈yjxiy−1j : j ∈ Z〉 is

isomorphic to the additive group of ZC−1. Now it is sufficient to use the fact
that z−1Xiz = Xi−1.

Let X be the normal subgroup of G(φ) generated by x = x0 and let Y
be the normal subgroup of G(φ) generated by x = x0 and y = y0. These
definitions yield:

Corollary 1.3. There exist normal subgroups X and Y of G(φ) such
that X is isomorphic to the infinite product of the additive group ZC−1, and
Y/X, G(φ)/Y are free abelian groups.
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2. Residually finite groups. In this section we describe some condi-
tions for the group G(φ) to be residually finite.

Definition. We will say that a group G is approximated by finite p-
groups if for every 1 6= g ∈ G there exists a normal subgroup H of G such
that g 6∈ H and the index of H in G is pn for some n.

Clearly, if G is approximated by finite p-groups then G is approximated
by finite groups and so G is a residually finite group.

Consider the following two simple examples.

Example 2.1. Let φ(i) = 1 for all i. Then G(φ) is approximated by
finite p-groups for any prime p. This is clear since G(φ) is a wreath product
of the free abelian group generated by x and y by the infinite cyclic group
generated by z.

Example 2.2. Let φ be a map onto the set of all primes. Then G(φ)
contains subgroups isomorphic to the additive group of rational numbers so
it is not residually finite.

This example was described by P. Hall in [5], Theorem 2. He proved
that this is a minimal example (in the sense of minimal soluble rank) of a
soluble group which is not residually finite. Moreover, this group contains a
maximal subgroup of infinite index. See also [9], Theorem 9.58.

Lemma 2.3. Let H be the normal subgroup of G(φ) generated by zn and
ym. Then H consists of finite products∏

i∈Z
x
α(i)
i ·

∏
j∈Z

y
β(j)
j · znt,

where α(i) ∈ ZC−1 and
∑
i∈Z α(in+ k) belongs to the ideal J(n,m) of ZC−1

generated by the integers φ(j)− φ(j − n) and φ(j)m − 1 for all j. Moreover ,
β(j) ∈ Z and

∑
j∈Z β(jn+ k) ∈ mZ for all integers k.

P r o o f. We have zn ∈ H so H contains also

xix
−1
i+n = xiz

nx−1i z−n and yjy
−1
j+n = yjz

ny−1j z−n,

for all integers i and j. Consequently, H contains

x
φ(j)−φ(j−n)
i = x

φ(j)
i yi−jy

−1
i−j+nx

−φ(j)
i yi−j+ny

−1
i−j

and
x
φ(j)m−1
i = x−1i y−mi−j xiy

m
i−j .

Let k ∈ J(n,m). Then there exists an integer c ∈ C such that ck is a
sum of integers of the form φ(j) − φ(j − n) or φ(j)m − 1. Then xcki is a

product of x
φ(j)−φ(j−n)
i , x

φ(j)m−1
i and their inverses. By Lemma 1.1, there

exists y ∈ Y such that y−1xiy = xci . This yields xki ∈ H. Using elements of

the form xix
−1
i+n, we can prove that a finite product

∏
i∈Z x

α(i)
i belongs to
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H, where α(i) ∈ ZC−1 and
∑
i∈Z α(in + k) belongs to the ideal J(n,m) of

ZC−1. Similarly we can prove that for all integers k, the product
∏
j∈Z y

β(j)
j

belongs to H, where
∏
j∈Z β(jn+ k) ∈ mZ. To end the proof, one can easily

check that the subgroup defined above is stable under conjugations by x, y
and z.

Theorem 2.4. Let φ be a map from Z into Z \ {0}. Let C be the mul-
tiplicative semigroup generated by the image of φ. Then the group G(φ) is
residually finite if and only if for any positive integer N there exist integers
m > N, n > N and t > N such that t 6∈ C and the ideal J(n,m) of ZC−1
generated by the set {φ(j) − φ(j − n), φ(j)m − 1 : j ∈ Z} is contained in
tZC−1.

P r o o f. ⇒ Suppose G(φ) is residually finite. Take an integer N > 0.
Then there exists a normal subgroup H of G(φ) such that zi, yi and xi do
not belong to H for i ≤ N . Let n, m and t be the smallest positive integers
such that H contains zn, ym and xt. By Lemma 2.3, H contains xj for all
j ∈ J(n,m). Hence J(n,m) ⊂ tZC−1.

⇐ Fix a positive integer N . Let m,n, t > N be integers such that t 6∈ C
and J(n,m) ⊂ tZC−1. Let HN be the normal subgroup generated by zn, ym

and xt. Then by Lemma 2.3, the subgroup HN consists of finite products∏
i∈Z

x
α(i)
i ·

∏
j∈Z

y
β(j)
j · zns,

where α(i) ∈ ZC−1,
∑
i∈Z α(in+k) ∈ tZC−1, β(j) ∈ Z and

∑
j∈Z β(jn+k) ∈

mZ for all integers k. This subgroup has a finite index equal to nmntn. It is
clear that the intersection of the subgroups HN over all positive integers N
is trivial. Hence G(φ) is residually finite.

Theorem 2.5. Let φ : Z → Z \ {0} be periodic with period n (that is,
φ(n+ i) = φ(i) for all i ∈ Z). Then G(φ) is residually finite.

P r o o f. Suppose p is a prime with does not divide any of φ(1), . . . , φ(n)
where n is the period of φ. Let Gp be the normal subgroup of G(φ) generated
by znp, yp−1 and xp. Since p divides φ(i)p−1 − 1 for all i, by Lemma 2.3 the
group Gp consists of elements of the form∏

i∈Z
x
α(i)
i ·

∏
j∈Z

y
β(j)
j · zpn,

where
∑
k∈Z α(i+ pk) ∈ pZC−1 for all i and

∑
k∈Z β(j + pk) ∈ (p− 1)Z for

all j. One can easily check that the index of Gp in G(φ) is np(p − 1)nppnp.
It is clear that the intersection of all subgroups Gp, for p prime not dividing
any of φ(1), . . . , φ(n), is trivial.
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Theorem 2.6. Let p be a prime. Then G(φ) is approximated by finite p-
groups if and only if p 6∈ C and for any positive integer N there exist integers
m > N, n > N and t > N such that the ideal J(pn, pm) is contained in
ptZC−1.

P r o o f. ⇒ Suppose G(φ) is approximated by finite p-groups. Let N > 0
be an integer. Then there exists a normal subgroup H of G(φ) such that
G(φ)/H is a finite p-group and zi, yi and xi do not belong to H for i ≤ pN .
Let n, m and t be the smallest positive integers such that H contains zn, ym

and xt. By Lemma 2.3, H contains xj for all j ∈ J(n,m). Hence J(n,m) ⊂
tZC−1. Furthermore, n, m and t are some powers of p since the index of H
is a power of p.

⇐ Let HN be a normal subgroup of G(φ) defined in the following way:
Let m,n, t > N be integers such that J(pn, pm) ⊂ ptZC−1. Let HN be the

normal subgroup generated by zp
n

, yp
m

and xp
t

. Then by Lemma 2.3, HN

consists of finite products∏
i∈Z

x
α(i)
i ·

∏
j∈Z

y
β(j)
j · zsp

n

,

where α(i) ∈ ZC−1,
∑
i∈Z α(in+k) ∈ pZC−1, β(j) ∈ Z and

∑
j∈Z β(jn+

k) ∈ pmZ for all integers k. This subgroup has a finite index equal to
pn+mp

n+tpn . It is clear that the intersection of all subgroups HN over all
positive integers N is trivial. Hence G(φ) is residually finite.

Theorem 2.7. Let m > 1. Let φ : Z → Z be defined by φ(i) = im + 1.
Then G(φ) is approximated by finite p-groups if and only if the prime p divides
m.

P r o o f.⇒ Suppose that p does not divide m. Then there exists an integer
i such that p divides im + 1. Hence p ∈ C and consequently G(φ) is not
approximated by finite p-groups.

⇐ Suppose p divides m. Let n be a positive integer. Then the ideal
J(pn, pn) is generated by

φ(j)− φ(j − pn) = jm+ 1− (j − pn)m− 1 = pnm

and by

φ(j)p
n

− 1 = (jm+ 1)p
n

− 1.

One can easily show by induction on n that all these elements belong to pnZ.
This yields J(pn, pn) ⊂ pnZC−1. By Theorem 2.6, G(φ) is approximated by
finite p-groups.

Now we show that the residual finiteness of G(φ) does not depend on the
semigroup C.
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Example 2.8. Let m > 0 be an integer and let φ(i) = m for all i. Then
G(φ) is approximated by finite p-groups for all primes p relatively prime to m.

Example 2.9. Let φ(i) = 1 for i 6= 0 and φ(0) = m, where m > 1 is an
integer. Then G(φ) is not residually finite.

P r o o f. Suppose H is a normal subgroup of G(φ) of a finite index. Then
H contains zn for some n. This yields

y0y
−1
n = y0z

ny−10 z−n ∈ H.

Consequently, H contains

xm−10 = x
φ(0)−φ(n)
0 = x

φ(0)
0 y0y

−1
n x

−φ(0)
0 y−1n y0.

Hence G(φ) is not residually finite.

3. Groups with the finite embedding property

Definition. Following [3], we will say that a group G is a Finite Em-
bedding group (FE-group) if for every finite subset X of G there exists an
injection Ψ of X into a finite group H such that if x, y and xy are in X then

Ψ(xy) = Ψ(x)Ψ(y).

Theorem 3.1 ([3], Proposition 1.2). All residually finite groups are FE-
groups.

Theorem 3.2. Every finitely related FE-group G is residually finite.

P r o o f. Let G be a FE-group generated by a set S with relations r1, . . .
. . . , rn. Then G = F (S)/R where F (S) is the free group generated by S
and R is the normal subgroup of F (S) generated by the set of relations. Let
φ : F (S) → G be the canonical projection. Let v 6= 1 be an element of G
and w ∈ F (S) be such that φ(w) = v. Let X be the set of all subwords
of w, r1, . . . , rn including the empty word. By definition, there exists an
injection Ψ of φ(X) into a finite group H such that if x, y and xy are in φ(X)
then

Ψ(xy) = Ψ(x)Ψ(y).

Let Λ : F (S)→ H be the group homomorphism given by

Λ(s) =

{
Ψ(φ(s)) if s ∈ X ∩ S,

1 if s ∈ S \X.

We arrive at a commutative diagram of group morphisms:

F (S) H

G

φ

��

Λ //

Ψ

z
z
z
z
z
z
z

<<
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By the properties of Ψ , the set {r1, . . . , rn} of relations is contained in kerΛ.
Hence we can extend Ψ to a group homomorphism λ : G → H. Since Ψ is
an injection, λ(v) 6= 1. Furthermore, kerλ is a subgroup of G of finite index.

Proposition 3.3. Let G be a group such that for every finite subset X
of G there exists an injection Ψ of X into a residually finite group Γ such
that if x, y and xy are in X then Ψ(xy) = Ψ(x)Ψ(y). Then G is a FE-group.

P r o o f. Let X, Ψ and Γ be as in the assumptions. Since Ψ(X) is a
finite subset of Γ , there exists an injection τ of Ψ(X) into a finite group H
such that if x, y and xy are in X then τ(Ψ(xy)) = τ(Ψ(x))τ(Ψ(y)). Now
τ ◦ Ψ : X → H is the required injection.

The aim of this section is to prove that G(φ) is a FE-group for every φ.
This gives us a series of not residually finite FE-groups.

Theorem 3.4. The group G(φ) satisfies the FE condition for all func-
tions φ.

P r o o f. Let φ : Z → Z \ {0} and let X be a finite subset of G(φ). Then
there exists a positive integer n such that all elements of X can be written
as products

n∏
i=−n

x
α(i)
i ·

n∏
j=−n

y
β(j)
j · zt,

where for all i and j we have α(i) ∈ ZC−1, β(j) ∈ Z and −n ≤ t ≤ n. The
multiplication in X looks as follows:

n∏
i=−n

x
α(i)
i ·

n∏
j=−n

y
β(j)
j · zt ·

n∏
i=−n

x
δ(i)
i ·

n∏
j=−n

y
γ(j)
j · zk

=

n∏
i=−n

x
α(i)
i ·

n∏
j=−n

y
β(j)
j ·

n∏
i=−n

x
δ(i)
i+t ·

n∏
j=−n

y
γ(j)
j+t · z

t+k

=

n+t∏
i=−n

x
α(i)+δ(i−t)

∏n

j=−n
φ(j+t−i)β(j)

i ·
n+t∏
j=−n

y
β(j)+γ(j−t)
j · zt+k.

Let ψ : Z→ Z \ {0} be a periodic function with period 6n+ 2 defined by

ψ(i) =

{
φ(i) for −3n ≤ i ≤ 3n,

M for i = 3n+ 1,

where M is an integer so large that every element of X can be considered
as an element of G(φ). Let λ : X → G(ψ) be the injection given by

λ
( n∏
i=−n

x
α(i)
i ·

n∏
j=−n

y
β(j)
j · zt

)
=

n∏
i=−n

x
α(i)
i ·

n∏
j=−n

y
β(j)
j · zt
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It is clear that λ(ab) = λ(a)λ(b) for a, b ∈ X. Since by Theorem 2.5, G(ψ)
is residually finite, it is a FE-group by Proposition 3.3.

Corollary 3.5. There exists a finitely generated FE-group which is not
locally residually finite.

P r o o f. Let φ be a function from Z onto the set of all primes. Then
G(φ) is generated by 3 elements, it is not residually finite since it contains
subgroups isomorphic to the additive group of Q and by Theorem 3.3, it is
a FE-group.

4. Idempotents. One of the famous open problems in group theory is
the following one formulated by Kaplansky [6]:

Conjecture. The group algebra k[G] of a torsion free group G over a
field has no nontrivial idempotents.

Formanek [4] gave a partial answer to this conjecture in the case when
K is a field of characteristic 0 and for groups satisfying the following non-
divisibility condition:

(∗) For each 1 6= g ∈ G there are infinitely many primes p such that g

is not conjugate to any of gp, gp
2

, gp
3

, . . .

Zalesskĭı and Mikhalev [8] studied idempotents in group algebras of po-
sitive characteristic p and formulated the following condition:

(Dp) For any g ∈ G, if g is conjugate to gp
N

for some integer N > 0 then
g has finite order.

In [1] Bass reformulated the condition (∗) follows:

(D) Suppose H is a finitely generated subgroup of G, g ∈ G, N is an
integer > 0 and for all but finitely many primes p, g is conjugate in

H to gp
N

. Then g has finite order.

He proved that linear groups satisfy condition (D) and the torsion free
linear groups satisfy Kaplansky’s Conjecture. He also proved that the (D)-
groups satisfy the following conjecture:

Bass’ Strong Conjecture [1]. Let P be a finitely generated projec-
tive module over the integral group ring Z[G]. Then rp(g)=0 for g 6=1, where
rp is the trace map.

Strojnowski [10] proved Bass’ Strong Conjecture for groups satisfying the
following condition:

(WD) Suppose H is a finitely generated subgroup of G, g ∈ H, N is an

integer > 0 and for all primes p, g is conjugate to gp
N

. Then g = 1.
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In this paper we give a series of examples to show how these conditions
differ.

Theorem 4.1. (i) G(φ) satisfies condition (Dp) if and only if the group
CC−1 does not contain any power of the prime p.

(ii) G(φ) satisfies condition (D) if and only if for all integers N > 0 the
group CC−1 does not contain infinitely many elements of the set {pN : p is
a prime}.

(iii) G(φ) satisfies condition (WD) if and only if for any integer N > 0
there exists a prime number p such that pN does not belong to the group
CC−1.

P r o o f. Since the proofs of all parts are similar we only show (i). Let pn ∈
CC−1. Then by Lemma 1.1(iii), there exists an element g of the subgroup

generated by all ys such that g−1xg = xp
N

. Hence G(φ) does not satisfy
condition (Dp).

Conversely, if G(φ) does not satisfy (Dp) then there exists h ∈ G(φ) of
infinite order such that h is conjugate to its pnth power. Since the groups
G(φ)/Y and Y/X are free abelian, they do not contain the additive group

Z[1/p]. Hence by Lemma 1.1(i), h ∈ X. Let h =
∏b
i=a x

α(i)
i and let g =∏d

j=c y
β(j)
j · zt ∈ G(φ) be such that g−1hg = hpN . Then

hpN =

b∏
i=a

x
α(i)pn

i = z−t
( b∏
i=a

x
α(i)
∏d

j=c
φ(i−j)β(j)

i

)
zt.

Hence t = 0 and for all i, if α(i) 6= 0 then
∏d
j=c φ(i − j)β(j) = pn. Thus,

pn ∈ CC−1.

Example 4.2. Let φ be a map from the integers onto the set {pp : p is
a prime}. Then G(φ) satisfies conditions (D) and (WD) but does not satisfy
(∗) or (Dp) for any prime p.

Example 4.3. Let φ be a map from the integers onto {2p : p is an odd
prime}. Then G(φ) satisfies (WD), (D), (∗), and (Dp) for all primes p but is
not residually finite since it contains a subgroup isomorphic to the additive
group of all rational numbers.

Now we show that nondivisibility conditions are not stable under infinite
extensions by cyclic groups.

Example 4.4. Let H = G(φ) o 〈g〉 be the semidirect product of the
group G(φ) from Example 4.3 and the infinite cyclic group generated by g
such that gz = zg, gy = yg and g−1xg = x2. Then x is conjugate in H to xp

for all primes p. Hence the group H does not satisfy any of the conditions
(WD), (D), (∗) or (Dp).
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Proposition 4.5. The following classes of groups are closed under sub-
direct products:

(i) (Dp)-groups having at most p-torsion.
(ii) Torsion free (D)-groups.
(iii) (WD)-groups.

P r o o f. Since proofs of all parts are similar we only show (i). Let G ⊆∏
j∈J Gj be a subdirect product of (Dp)-groups with p-torsion only. Let g =

(gj), h = (hj) ∈ G be such that h−1gh = gp
N

. Then for each j, h−1j gjhj =

gp
N

j so gj = 1. Hence g = 1.

In [1] Bass wrote: “We do not know whether all residually finite groups
satisfy condition (D)”. The negative answer was given by Wilson [11]. Now
we present a new construction of such “bad” groups.

Theorem 4.6. Let m> 1. Let φ : Z→ Z be defined by φ(i) = im + 1.
Then G(φ) satisfies the condition (WD) but does not satisfy (D) or (∗).
Moreover , for each prime p the following conditions are equivalent :

(i) p divides m.
(ii) G(φ) is approximated by finite p-groups.
(iii) G(φ) satisfies condition (Dp).

P r o o f. The implication (i)⇒(ii) follows from Theorem 2.7.
(ii)⇒(iii) follows from Proposition 4.5.
(iii)⇒(i). Take a prime q such that q does not divide m. Since at least two

of the integers 1, q, q2, . . . , qm are congruent modulo m, m divides qm! − 1
so qm! has the form im+ 1. Hence G(φ) does not satisfy (Dq).

Furthermore, by Theorem 4.1(ii), qm! − 1 ∈ C for primes q > m implies
that G(φ) satisfies neither (D) nor (∗).
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