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CHARGE TRANSFER SCATTERING
IN A CONSTANT ELECTRIC FIELD

BY

LECH ZIELINSKI (PARIS)

We prove the asymptotic completeness of the quantum scattering for a
Stark Hamiltonian with a time dependent interaction potential, created by
N classical particles moving in a constant electric field.

1. Introduction. We consider a model describing the quantum dy-
namics of a light particle (such as an electron) in collisions with some heavy
particles (such as some ions) obeying the laws of classical dynamics. Thus
only the light particle is considered a quantum particle, while the heavy par-
ticles follow some classical trajectories R 3 t — x%(t) € R%. If V} denotes
the quantum interaction potential between the quantum particle and the
kth classical particle, the total quantum time-dependent interaction V'(t) is
the operator of multiplication by

(1.1) Vit,e)= Y Vile —xx(t),

1<k<N
and the total time-dependent Hamiltonian H(t) is a self-adjoint operator in
L*(RY),
(1.2) H(t)=Hy+ V(t,x),
where Hy denotes the free motion Hamiltonian. The subject of scattering
theory is to describe the large time behaviour of the evolution propagator
{U(t,t0) }+>t, of H(t), that is, the family of unitary operators in L?(R%)
satisfying

d
(1.3) z%U(t,to)w =H(t)U(t, to)p, Ulto,to)e = ¢,

for ¢ from the domain of Hy.
The first papers describing such a model considered the case of linear
classical trajectories and Hy the Laplace operator [10,25,26]. The papers
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38 L. ZIELINSKI

[7, 29] deal with classical trajectories which are only asymptotically lin-
ear and the papers [30, 31, 32| deal with the dispersive case when Hj is
a more general elliptic operator. We note that all these papers consider
the hypothesis that different classical trajectories have different asymp-
totic velocities lim;_,o X} (¢), which implies the separation of trajectories:
Ixk(t) — xx ()| > et with ¢ > 0 if k # K.

The aim of this paper is to consider the situation arising in the presence
of a constant electric field E € R%\ {0}, when the free motion Hamiltonian
for a particle of mass m > 0 and charge ¢ # 0 has the form

2

p
ho(x,p) = om qE - x

and the Hamilton equations p(t) = qF, ©(t) = p(t)/m have the solutions of
the form
_ _ 9k
p(t) = ¢Et+mu, xz(t) = %t + vt 4+ w,

where v = p(0)/m € R? and w = z(0) € R? Thus the above solutions
of the Hamilton equations describe the motion that is free in the directions
orthogonal to the constant field E and uniformly accelerated in the direction
parallel to F.

We shall consider only the simplest situation when different classical
trajectories have different asymptotic accelerations lim;_, x} (t). More pre-
cisely we begin by assuming the following separation condition: there exist
constants Tp, ¢ > 0, such that for ¢ > Tp,

(1.4) IXe(t) — xw(t)| > ct® if1<k<Kk <N.

Let my, g be the mass and the charge of the kth classical particle and
assume that x(¢) = (x1(t),...,xn(t)) is a solution of the Newton equations

15 mxi®=aE- DY VW) - xe (1),
k'ef{1,....N}\{k}
where the classical interaction potentials Vj, s satisfy the decay condition
(1.6) |VVir ()] < Colz| 170 for |z| > C
with Cy, ug > 0.
It is clear that (1.4)—(1.6) imply

(1.7) X[(t) = 2z + O(t~20410))  with 2, = 22

my,
as t— 00, L.e. zi=(qr/my)E =lim;_, x7(t) is the asymptotic acceleration
of the trajectory xj. Since (1.7) means that 4 (x} (t) — zxt) = O(t272H0),
the limit

v = lim (x5 (t) — 2xt)

t—o00
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exists and introducing X by the relation

(1.8) Xk (t) = 22,t% + gt + Xk (2),

we have

(1.9)  X{(t)=0@"2720),  X,(t) =0t "2) ast— oco.

The Hamiltonian of the free motion for a quantum particle of mass mg >
0 and charge gg # 0 has the form

p2
1.10 Hy=— —qF-
( ) 0 2m0 q0 €,

where p = (p1,...,pd) = (—i0y,, ..., —i04,).
For quantum interactions Vj, we assume that for some constants C, C, gg
> 0,

(1.11a) Vie(z)(1 + p*) 7120 is a compact operator in L?*(R%),
(1.11b)  |8°Vi(z)| < C  for |- E| > C and |a| < 2,

and Vi = Vkl + V7 with real valued functions Vkl, V)2, such that for some
w >0 we have

(1.11c)  |08Vi(z)| < C(1 + |z])~rlel for x € R? and |a| <1,
(1.11d) |02V (2)| < C(1 4 |z|)~#Hel=D/2 for |2. E| > C
and |a] < 1.

THEOREM 1. Let U(t,ty) be defined by (1.3) with H(t) given by (1.1),
(1.2), (1.10). For k=0,1,...,N, let z, = qxE/my, be such that z # zp if
0 <k <k’ <N. Assume that the trajectories xi(t) have the form (1.8) with
Xk(t) satisfying (1.9) for some g > 0. If Vi = VI + V¢ satisfy (1.11a-d)
for some >0, g9 > 0, then the limit

Ato)d = Jim U1, to)*e #0150 with

1.12 t
(1.12) S(t) = S dr Z Vkl(%zm'? — xx(7)),

1 1<k<N

exists in the norm of L*(R%) for every ¢ € L%(RY). Moreover, the asymp-
totic completeness holds, i.e. the wave operator §2(ty) defined by (1.12) is
unitary.

We recall the result of I. M. Sigal [20] (cf. also [3, 4, 5]) which guarantees
the absence of eigenvalues for 2-body Stark Hamiltonians Hy = Ho + Vi ().
This allows us to neglect bound states and the asymptotic completeness
formulated in Theorem 1 implies that for every ¢ € L2(R%) there exists ¢ €
L2(R%) such that ¢ = 2(to). Thus U(t,tg)p—e Ho=5My 5 0ast — oo,
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which means that the asymptotic behaviour of U(t,tg)¢ is asymptotically
the same as for the free evolution (modulo a phase factor e=*5(®)).

We note that the approach used in the proof below comes from recent
developments of scattering theory of N-body systems ([6, 8, 21]). We also
mention the references [9, 12, 15-17, 19, 23, 24, 27, 28, 33] concerning Stark
scattering in the 2-body case and [1, 2, 13, 14, 18, 22] in the N-body case.

In Section 2 we begin by describing in Lemma 2.1 asymptotic concentra-
tion of the free evolution trajectories e ~*Ho( on classical Stark trajectories.
Then it is easy to prove the existence of the wave operator {2(tg) given by
(1.12). Clearly f2(to) is an isometric injection and in order to prove the
asymptotic completeness it suffices to prove the existence of the limit

(1.12) Qto)*e = lim " THEOU (L 40)0

for every ¢ € L?(R%). Indeed, if £2(to)* given by (1.12) exists, then applying
the chain rule we get £2(¢9){2(to)*¢ = p, that is, £2(to) is surjective and hence
unitary.

To begin the proof of the existence of (1.12") we assume for simplicity
V¥ = 0 and introduce the auxiliary observable 7,. This observable is used
in Proposition 3.2 to introduce an energy cut-off, similarly to the “boosted
Hamiltonian” of Graf [7]. However, instead of Enss approach used in Graf
[7], our next step is based on the existence of the wave operators (2(t)
of Proposition 3.7 (similar to the Deift—-Simon operators of the N-body
theory developed in Graf [8]). Then Proposition 3.7 allows us to localize
and “distinguish” interactions of different classical charges, reducing the
problem to the 2-body problem when the number of classical charges is
N =1.

The situation N = 1 is studied in Section 4 using the ideas of the Mourre
estimate. More precisely, knowing that zg-p is the conjugate operator for H
(i.e. we have the positive commutator [iHy, 29 - p] = 221), we find the propa-
gation estimate of Proposition 4.3 using a suitable cut-off g; (2o -p/t) instead
of zp - p. Finally, in Section 5 we sketch the idea allowing one to modify the
observable 7; in order to recover all the previous results in the case of inter-
action potentials with singularities, V}? # 0.

2. Preliminary estimates. For U C R C5°(U) is the set of smooth
functions with compact support in . We write a; = O(f(t)) if there is a

constant C' > 0 such that |la;|| < Cf(t), where || - | is the norm of L?(R9)
or the norm of bounded operators B(L?(R%)). The analogous notation will
be used when a; = (a},...,a}) assuming ||a;|| = (||a}|®> + ... + ||ad||?)'/2.

Moreover, a; = b;+O(f(t)) means a; —by = O(f(t)). For Z C R, 1z denotes
the characteristic function of Z on R.
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Assume that Vj is a real function satisfying
(2.1) 0102V (t, )| < Ct=2r=2lel=n for || +n < 1,
and denote by Uy(t,tg) the evolution propagator of the Hamiltonian
(2.2) Hy(t) = Ho + Vo (t, x),

where Hj is given by (1.10). By rescaling we may assume further on that
moy = 1.

Let y; = (yi,...,yd), wy = (w},...,w) be systems of d commuting
self-adjoint operators,
2z
(2.3) Yt = 2 20, Wy = % - 20.
LEMMA 2.1. Let Ug(t, to), ys, wy be as above and ¢ € C§°(RY). Then
(2.4) w, U (t,to)e = O1t™Y),  5Uo(t, t)p = O(t™1)

and for every £ > 0 and j = 1,...,d one has l[moo[(\yg])Uo(t,tg)cp =
o(t=1).
Proof. Define Uy(t,to) = UP, f(t) = UP*pUyp and g(t) = UX*zUL .
Then
F(t) = UL [iHo (), p)UL ¢ = 20 + Ot 21 H1),
g'(t) = U [iHo(t), 2]U7'e = f()
t

— f(to) + | /() dr = tzop + O(L),

to
hence w, Ul = t71UP (f(t) — zotp) = O(t~1). Moreover,
t
g9(t) = g(to) + S g (1) dr = $zt%0 + O(2),

to

and (z—320t?)Ulp = UP(g(t)— 3 20t%¢) = O(t) implies the second estimate

(2.4). Finally, using £21j;o0((JA[) < A* and the second estimate (2.4) we
obtain

(5 Lo (19 VU0, U 0) < ((07)°UP0, UPg) = |57 UPe|* = O(t ™). m
Note that (1.9) implies the existence of

(2.5) Hm X (t) = wy o with X(t) = wy + O(t=2),

hence

(2.5)  Xp(t) =zt + ok +OE1720), xg(t) = 22t + vt + O(1).

By rotation of the coordinate system we may assume further on that £ =
(E1,0,...,0) with By € R\ {0}, hence z; = (2{,0,...,0) with 2}, =
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E1q/my. Further, we set

(2.6) 7= fmin{|z} — 25| : 0< k <k < N}

Fix J% € C5°(] — 47;47[) such that 0 < J° <1, J° =1 on [-27;27], define
JO=1-J° and let
(2.7) Vor(t,2) = JO(4xy /t? — 220) V(2 — xu (1))

= J°(2y; — 22) Vi (z — xa (1))

where we have set z; = 2} — z}. Then we have

PROPOSITION 2.2. Let V = Zlgng Vok, where Vo, is given by (2.7).
Then (2.1) holds and for every ¢ € L2(R%) the following limits exist:
Q(to)* = lim e HoH SO 17 (4 10,
— 00

(2.8) B . .
Q(to)p = lim Uo(t,to)"e 0500,

Proof. Since xx(t) = 321t2 + O(t) there is Ty such that for ¢t > T, we
have

JO(day /1% —22}) # 0 = |[day /1?2 — 22} > 27
= |z — xr(t)| > ‘:cl — %zitﬂ — %zktg — Xk(t)|
> 12 — Ot > Lrt?
and applying (1.11) we find
(29) |z —xi()] > 37 = [(0°V{)(z — xu(t))] < Ct=2@+leDif o] < 1.
We conclude that Vj satisfies (2.1) noting that

ail (T4 /12 — 221)) = O(t™2), %(50(4:61/752 —2:)) =0,

Since C5°(R%) is dense in L2(R?), to obtain the existence of £2(to)*¢ it
suffices to consider ¢ € C§°(R?) and to check that
d . .
(2.10) %(eltHOMS(t)Uo(t’to)(P)

= SO (1) — Vo(t,2)) ot o) = O,
However, for 1 < k < N we have |2} — 23| > 167, hence J(2z{ —22}) =1
and
(211)  Vo(t,320t®) = > JO(22) — 22) Vi (320t — x(t)) = S'().
1<k<N

Thus we may write

Volt,z) — S'(t) = Vo(t,x) — Vo (t, 220t?) = v - (. — 320t2) = 34 - 20
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with
1
e = dOVLVo(t, (1 - 0)a + L0z0t?)
0
and (2.1) implies t2y; = O(t~2#). Therefore
(2.12) 105" (t) — Vo (t, 2))Uo (¢, to)ell = ||3t%7 - yeUo(t, to) |

< Ct™ ||y, Uo (¢, to) ¢

and by (2.4) the right hand side of (2.12) is O(t~172#), i.e. (2.10) follows.
We may use Vy(t,z) = 0 in Lemma 2.1, hence it is clear that e~ %o

satisfies the same estimates as Uy(t,to), and we obtain the existence of the

second limit (2.8) as above with e~%o and Uy(t,to) interchanged. m

Proof of the existence of £2(tg). Using the chain rule and the existence
of (2.8), we note that it suffices to prove the existence of lim;_,~ U(t,%0)*
x Uy (t, o), where as before we may assume ¢ € C§°(R9). Let J € C$°(R9)
be such that J(z) =1 for |z| < 7, J(z) =0 for |x| > 27,0 < J < 1. Then
Lemma 2.1 implies
11 = 1) (y)Uo(t, to)ell < 1 frsoer(lye)Un(t, to)e ]| = O(t™1),

ie.

lim U(t, to)*J(yt)Uo(t, to)(p = lim U(t, to)*Uo(t, to)(p

t—o0 t—o0

and it suffices to show that

(213) (U1 TV (t 1))

= Ut t0)" (D, T () + i () (V (1,2) = Vot 2))Uo b, to)p
= 0(t™1 ) + 07,

where D, by = [ias, by] + %bt denotes the Heisenberg derivative.
However, a simple calculation gives

@14)  DuJd)=; S %) wi - u)+ 06
1<j<d

and using (2.4) we obtain (Dg,J(y:))Uo(t, to)p = O(t2).
Next for 1 < k < N we have

T2y = 2%) # 0= lyp — %l <27
= |yt > |Ze] — 27 = |2} — 25| — 27 > 147 = J(y;) = 0,
hence J(y;)J°(2y} — 2%x) = J(y;) and

Jy)(V=Vo)t,x) = > Ty’ 2y — 22) Vi (x — xk(t))-
1<k<N
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If T§ is as at the beginning of the proof of Proposition 2.2, then for ¢ > Tj
we have
T2y} —22,) # 0= |z — x,(t)]| > 3782 = [ViE(x — xi (1)) S Ct7172. u
Until the end of Section 4 we assume that V7 = 0, that is, Vj, = Vkl. We
now introduce

2 2 2
1/p1  2x; 1/ 2% 1 p=
o_1(p 1 . 1 2
(2.15) 77t_2<zt t2> +4<t2 ZO) *3 Z 2zt
2<j<d
V(t,x)
2

(2.16)  me =17 +

LEMMA 2.3. If 19, n; are given by (2.15)—(2.16) and D is defined as below
(2.13), then Dy yne = Dy, ng + 1 with

(2.17) =2 (V(t’x)> - [z’V(t,x), w].

T\ 3
Proof. A simple transformation of the expression (2.15) gives

0 1<ﬁ_2w+ﬁ>

"=a\n 3 Iz

1 x% z(l)xl 1,92 1 pJQ-
+—<4—— +(ZO) +§ Z t_2+I

_lp_% $1P1+p1$1+<1‘ 1‘4>5'3%

242 13

2lx 22 1 p?
—‘;21+(Z)+§Z I 41
2<j<d

1<1 2 1 > vipr+ e | 37 | (%)°
N P T

=plat B T Tyt

Therefore we may express 79 in the following way:

H, T +p1x 3?2 23)?
Ho T1p1TP1 1+_1+(0)

1
t2 t3 t4 4 *

(2.15") nd =

and compute

V(t, ) H(t) x1p1+pixy 323
0 ) 1
Dy@ne = Du) (Ut + 12 > =Dr < 2 13 + 4

H
= Dr <—(t)> - [iV(t,w), g i ;pm}

_ T1p1 4P n ﬁ
t3 tt
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d <H0 N V(t,x)) B [z’V(t,x), T1p1 —i—plxl]

Tat\ 12 £3
T1p1 +prr1 | 33
+'EU¥O<'— ————gg————'+'?z—
H, x + p1x 3x2
:DHO<t_20> +DH0<_ %4‘?41) +Tt:DH077?+7at- [ ]

LEMMA 2.4. If r; is given by (2.17) then ry = O(t~2).
Proof. First note that

d

E(t—QV(ze, r)) =t720,V(t,x) — 2t 3V (t,x) = t 720,V (t, ) + O(t™?).
Thus setting x}, (t) = (x5 (t), X () € R x R4~ and using X (t) = O(1), we
have

+0o@t™)

Py 0,V (1) — [mt,x), &]

= D Vil - ><z«(t))<2ﬂ - xi(o) +0(1).

1<k<N t
But 221/t — xi(t) = (2/t)(z1 — xL(t)) + O(1) by (2.5') and we complete the
proof noting that 9, Vi.(z — xx(t)) (21 — x4(t)) = O(1). =

PROPOSITION 2.5. If 1, is given by (2.16) and D as below (2.13), then

3 D1 211 2 p? _9
(2.18) D=~ 7— ) ~ > 5+ 0.
2<j<d

Proof. By Lemmas 2.3 and 2.4 it suffices to check that
2

92.19 D 0 _ 3 P1 21’1 2 pj
(2.19) Hoﬁt——g PR _Zt_g'
2<;j<d

Now we note that formally
(2.20) Do, (b:bt) = (D4, )bt + (b Dy, by).
If a; and b, are self-adjoint, then

(220/) ]D)at (bt)2 = bt(Datbt) + (Datbt)bt = 2bt(Datbt) + hC,

where m; + he = 2(m; +mj) denotes the Hermitian symmetrization of the

operator my. In particular, using

(2.21) Dy we = — —t

9
=, Dpoys = ;(wi — )
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[where wy, y; are given by (2.3)], we obtain

1 1 1

1P (W) = Sy Dy +he = Sy (wi = yp) + he,
(w; —y1)Day (wy — ;) + he

1
= ;(wi —y1)(2yf — 3wy) + he.

1
EDu, (]~ )?

Introducing wi- = (w?2,...,wl) = (p2/t,...,pa/t) we may express (2.15) in

the form

= 3wl —yi)* + 5 ) + slwi P+ 1
and it is clear that 1D g, |wi"|? = —1|w;|?
pute

. To complete the proof we com-

1 1
5D (wf —yi)* + 1 DH, (yi)?

1 1
= 2w —y)Qyy = 3wy) + S (wy —yp)y; + he
—l(wl— (3 1—3w1)—|—hc——§(w1— 2 .
-\ Y )\9Y; t =\ Ye) -

3. Propagation estimates. We denote by G(H) the set of operator-
valued functions t — M (t) € B(L*(R?)) satisfying

T
(3.1) | dtRe(M 1)U (t,t0)p, Ult,to)) < Clle]?

for all ¢ € L2(R?), all T > 1 and for some constant C' > 0.
Sometimes we write M (t) € G(H(t)) instead of M € G(H). We note that

(3.2) if M(t) = O(t ') with e > 0,then M € G(H),
(3.3) if (M € G(H) and M(t) < M(t) for all t > 1), then M € G(H).
If D4y M (t) is well defined, then writing U(t,)p = ¢; we have

T T

S dt((DH(t)M(t))<Pt7<Pt) = S dt%(M(t)SOtaﬁPt) = [(M(t)QOtaﬂPt)]lT

and if M(t) = O(1), then Dy M(t) € G(H (1)).
Note that n? > I and n; = n? + O(t™2), hence for n > 1, t > Ty, Ty =
(1+n¢/n)~ ! is well defined and satisfies 0 < 7,, ; < I. Introducing

1_ ~
(3'5) MO(t) = ;nn,t(?)(wg - yt1)2 + ‘th‘Q)nn,h

(3.4)
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we find that Proposition 2.5 gives
(3.6) nD (1) 7n,e = ~Tn,t (D) 0e)TIn,t = Mo(t) + O(E2).
It is clear that (3.4), (3.2) and (3.6) give
COROLLARY 3.1. If My is given by (3.5), then My € G(H).
PROPOSITION 3.2. For every ¢ € L*(R?) we have
lim_ sup (7 — 7. )U (6 to)ol] = 0.

n%ootZTO
Proof. First we set U(t,tp)p = ¢ and note that 0 < A < 1 =
(1 —X%)% <4(1 — \), hence
(I — ﬁi,t)‘PtHz = ((I - ﬁ?z,t)z%a@t) < 4((I - ﬁmt)(ﬁh‘Pt)'

It remains to note that 7, 7,01, — @71, as n — oo, and —nDy)n, <
—My(t) + Ct=2 < Ct~? allows us to estimate

T T
[((I - ﬁn,t)cpt,ﬂpt)]%) = — S dt (D g ) Tn,e)Pe, 0r) < S dtthg/n <C/n. =
T() TO

Further on in this section we assume n > 1 fixed and write simply
Mt = Tt As below (2.20"), M (t)+hc denotes the symmetrization 1 (M (t)+
M(t)*).

LEMMA 3.3. Let Jy € C°(R). Then My, € G(H) if

1. -
(3.7) My(t) = ;Wt(yg —wi)Jo(ys )i + he.

Proof. Let J € C*°(R) be such that the derivative J" = —.Jy, and set
My o(t) = e (3 )i
Then DH(t)Ml,U = M171 + MLQ with
My (t) = Doy (y2))ie = 2Mi () + O(t™7),
M, 5(t) = 277t!](yt1)DH(t)77t + he.

From (3.4) we have Dy My o € G(H) and it is clear that in order to show
M, € G(H) it suffices to check that —M; 5 € G(H).
Noting that

wiy =0(1),  y7e=0(1), (w; —yi)i=O0(1),
it is easy to estimate the commutators
nlih, wi'] = —i[ny + O(t7%), wi ], = O(t™?),
i, wy —yp] = el +O™?),y; — wy i
=T [1()% y —wi]ie +O(t™%) = O(t™?),
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e, J(yp )] = =Telnes I (ye))ie = Ot ).
Using (2.18) to express Dy 7y in My o(t) it is easy to see that the above
commutator estimates allow us to write

2_ ~ —
—Mio(t) = S (Bw; =y )ar(w; — yp) + wyawi )i+ O(?)
with a; = —n~YJ(y})7m: + he, and it is clear that the inequality a; < CT
implies
(3.8) —M; 5(t) < 2CMy(t) + Ct ™2

where My is given by (3.5). By Lemma 3.3 the right hand side of (3.8)
belongs to G(H) and consequently —M; o € G(H). m

PROPOSITION 3.4. Let Jy € C(R\ {Z1,...,2n}) where z;, = 2} — 2.
Then My € G(H) if
1_ ~
(3.9) M (t) = — oy )i i

Proof. If M; is given by (3.7), then M; € G(H) and My = 3M; + Mj
with
1. -
M;(t) = ;nt(?)wg — ng)Jg(yg)nt + he.

Thus it remains to show that M3 € G(H). But for 1 <k < N, z, € supp Jy
and

Jo(yp) # 0= ly; — 2| = 221 /82 = 23] > ¢ >0
= |z —xx(t)] = |21 — $242| = C't > $ct? = C't
implies
[iV (L, 2), w1 Jo(yi) = =0V (£, 2) Jo(y)t = Ot ™).
Therefore introducing
M3o(t) = T(y; —wy)Jo(ye)e + he,
we find that DH(t)M3,U = M371 + M372 + M373 with
M3 1 (t) = (D (y; —wi)Joly)me = Ms(t) + O(t™?),
Mso(t) = M (yt — wi) (D) Jo(yi) e + he,
M3 3(t) = 20 (y; — wy)Jo(y D ()7t + he.
As before, (3.4) gives Dy ) M3 € G(H) and M3 € G(H) follows if we know
that —M3 9, —Ms 3 € G(H). To show —Ms5 3 € G(H) we note that we may

replace Mj o by M3 3 in (3.8) using a; = n~ ' Jo(y})(w} — yt)ie + he < CI
to express —Ms 3 similarly to —M; 5. Also

9 N _
—Mja(t) = — ;m(ytl —wi) oy )y — w4+ Ot ™?)
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< CMy(t)+Ct™2 € G(H(t)). m

We keep the notations J°, 2y, Vo, Vo, Ho(t), Ug(t, to) introduced in Sec-
tion 2. Moreover, for 1 < k < N we denote by Ux(t,tg) the evolution
propagator of the Hamiltonian

Hy(t) = Hy + V*(t,z) with
(3.10) VRt z) = Vi(z — xu(t) + Z Vorr (L, x).
kre{l,...N}\{k}
COROLLARY 3.5. If My, Ms, Hy are as above, then My, My € G(Hy,).
Proof. Define 5} by using V*(t,z) instead of V(¢,z) in (2.16). As
before we obtain
1._ -
My (8) = Zi1; 3wy = yi)* + [wi )77} € G(H(1))
with 7F = (1 +nf/n)~'. We recall that |9]02 Vow: (t, )| < Ct—2#=2lel=n for
|a] +n < 1, and reasoning as in the proof of Proposition 3.4 we find
1._ ~
My (t) = St Jo(yi Jyi i € G(H(1))
for Jo € C°(R\ {Z1,...,2n}). However, n; = nF + O(t~2) implies
(wi =)+ i) [ —175) = (wi =)+ |wi )77 (e —nt )77 /0 = O(t™2),
hence
M;(t) = Mj(t) + O(t™%) € G(H(t)), j=0,2.m

The following well known lemma is the basic tool allowing us to obtain
the existence of wave operators (we give its proof in the Appendix):

LEMMA 3.6. Let U(t,to) and ﬁ(t,tg) be the evolution propagators of
H(t) = Ho+ V(t) and H(t) = Ho + V(t) respectively. Assume that for
M(t) € B(L*(R%)) we may define Dy, M(t) as bounded operators with

V(t) - V(#)M(Et) =0t %) and
o TO - VM0 =06")
Dy, M(t) =M(t)+ Ot " ~°)

where £ > 0, and that there exists My € G(H)NG(H) satisfying the estimates
(3.11)  —My(t) < M(t) < My(t) and Mo(t) >0 for allt> 1.

If o € L2(RY) and 2, = Ul(t,to)*M(t)U(t,to), then the limit lim;_, o 240
exists.

PROPOSITION 3.7. Set J(y}) =1— D ol<k<N JO(y! — Z1)? and define
Qo(t, to) = Uo(t, to)* T (y;)U (¢ to),

(3.12) RO
Qk’(tatO) = Uk’(t7t0) J (yt - Zk)U(t7t0) fOT’ k= 17 s 7N'
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Then for every ¢ € L?>(R%), k=0,1,..., N, the following limits exist:
(3.12") 2 (to)p = tlgglo 2 (t, t0) .
Proof. Consider first the case k = 0. By Proposition 3.2 it suffices to
show that
Jim Uy (t,t0)" T (yy )il U (£, to)sp
exists for every n > 1. Further on n is fixed, we write 7; = 1, + and we apply

Lemma 3.6 with H(t) = Ho(t) and M(t) = J(y})72.
We begin by noting that the first condition of (3.11) follows from

(3.13) (H(t)—Hot)T(yi) = > Iy} —22)Vi(x — xu(t) T (y}) = 0.

1<k<N
To check (3.13) we note that JO(y! —Zx) # 0 = |y} —Zx| < 47 and for k' # k
we have |2y —Zi/| = |24 —2},| > 167, hence J°(y} —2;) # 0= J(y} —Zp) =0

for k' # k. Thus it is clear that J(2y; — 22) # 0 = |y; — Zx| < 27 =
Typ —2) =1=J(y) =1-1(y; —%)* =0.
Next we find that ]D)HOM = M1 + Mg with

(314) N(t) = (D, )T = S} — )T (i + he + O(72),

(315) Ma(t) = 27T (5 Doy + he + O ~2).

Next for k =1,..., N, we have |y} | < 27 = |y} — Z| > 147 = JO(2y} —
22),) = 0. Therefore J =1 on [~27;27] and 0 ¢ supp J' allows us to define
Jo € C(R\ {Z1, ..., 2n}) satisfying Jo(A\)A = J'(A)? and to estimate
(316) & (wy —yp) ' (yp) + he < 2(wy — ;) +2Jo(y; )y

= +M; < 4My + 4M,

with My, My given by (3.5), (3.9). Then similarly to the proof of Lemma
3.3 we find :I:]\?g(f) < O My(t) + Ct=2, hence it is clear that the hypotheses
of Lemma 3.6 hold with My = CoMy + 4M, € G(H) N G(H},) by Corollary
3.1, 3.5 and Proposition 3.4.

In the case k = 1,..., N, we apply Lemma 3.6 with f[(t) = Hy(t) and

M(t) = J(y})n?, where J(A) = J°(\ — Z;). As before we have
(3.17)  (H(t) — Hi(1))J ()

= oo I - 2@V — xw ()T (y}) = 0.
k'e{l,...,N}\{k}

Indeed, J(yi) # 0 = |y} — Zx| < 47 = |y} — 2| > 27 for k' # k =
JO(2y} — 2zp) = 0 for k' # k. We complete the proof noting that J = 0 on
[—27;27] and (3.14)—(3.16) still hold if J is replaced by J. m
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4. Asymptotic completeness. In order to obtain the asymptotic
completeness it remains to prove

PROPOSITION 4.1. If k=1,...,N and ¢ € L?>(R%), then
Jim JO(yi = Z1)Uk(t, to)p = 0.
—00

Indeed, using Propositions 2.2, 3.7 and 4.1, we can see that via the chain
rule,

e tHOHISOT (1, 1)p = e tHoTiS() (j(ytl) + > Iy - gk)z)U(ltﬂfo)tﬂ
1<k<N
_ eitHo+iS(t)U0(t’ to)Qo(t, to)tp

+ Y SO0yl — Z) Uk (t o) 2(t to) @
1<k<N

converges to £2o(to)* 20 (to)p, i.e. the limit (1.12') exists.
Before starting the proof of Proposition 4.1 we introduce more notation.
We set

(4.1) Hoi, = $p* + Zpa1, Hy, = Hop, + Vi(z — wy),
where k =1,..., N and wy, is as in (2.5). We define

(4.2) Xp(t) = Szut® +urt,  XR(E) = 2t + vy,
(4.3) Hy(t) = Hop, + Vi (t, )

with

Vi(t,z) = V(2 4+ x3(1))
= Vk(x — ik(t)) + Z Vowr: (t, T+ %Zktg + ’Ukt).
ke{l,...NY\{k}
It is easy to see that V. (t, T+ %zth —i—vkt) satisfies estimates (2.1) similarly
to Vor'. The following lemma allows us to compare Hj and H, k(t).
LEMMA 4.2. (a) We have Vi(x — Xi(t)) = Vi(x — wi) + O(t=2#0) and
d _ - - 1-
V(@ = X)) = —Xi(t) - VVi(z = Xe(1)) = O™ 7).
(b) If h e Cg°(R) then h(Hy(t)) = h(Hj) + O(t~210) + O(t~2") and
~ d ~ L L
D k(1)) = S h(F(D) = O(~20) + O ~-%).
() If g,h € C§°(R) then [h(Hy), g(@)] = O(t™1).
We note that our assumptions VVj = VV}! = O(1) and (1.9) give imme-
diately the indicated estimate of 4V}, (z — X1, (t)), while the first estimate of
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Lemma 4.2(a) follows by integration. The proof of estimates in (b) and (c)
is given in the Appendix.

PROPOSITION 4.3. Let g € C§°(]—2|z|; 3|2k|[) and h € C§°(R). Then

(14) VIa(t) = h(EL(0))g()?(FL (1)) € G (1),
where we have set Wy = p1/t.

Proof. Let n € N be such that h € C§°(]—n;n[). Since (M, (t)p, @) =
t=Y|g(ws)h(Hy(t))pl||?, it is clear that My, p,(t) < 2Mp, (t) + 2M, (1).
Thus it suffices to show that for every A € [—n;n| there is 6 > 0 such that
My (t) € G(Hg(t)) with h € C§°(JA — 5; A+ 6[), |h] < 1.

Let g1 € C*°(R) satisfy ¢j = —g? and set

My (t) = Zeh(Hy (1)) g1 (@) h(H (1))
Let € = min{1, 2410, 2u}. Then Lemma 4.2 allows us to write
Dy o Molt) = Zh(HL(0) (D, 91 (8)h(HL (1) + O()
= Zxh(Hy) (D g1 (@:))h(Hy) + O™ ).

We now show that choosing § > 0 small enough we have

Hi(t)

(4.5) Zih(Hp)[iVi (@ —wp), g1 (@) h(Hy) > —%h(ﬁk)g(@t)gh(ﬁk)—CtQ.

Using (1.11b) and the standard pseudo-differential expansion [(A.1) of Ap-
pendix with n = 2 and then with n = 1] we find the following expression of
the commutator:

(L6) (Vi =), 01 (@)] = = 100, Vele — wn)gh (@) + O(™2)

_ %g@t)am Vi — wi)g(@) + Ot ),

and since Hj, has no eigenvalues (cf. [20]), 1r—25;3+20] (I;'k) — 0 strongly as

0 — 0. As Oy, Va(® — wi)1[_p;p) (Hy) is compact, for 6 > 0 small enough we
have

(4.7) Zuh(Hi )0, Vi(@ — wi)h(Hy) > — 322
if h e Cg°(JA—28; A+26[), 0 < h < 1. Using h such that h = hh and Lemma
4.2(c) we obtain (4.5) from (4.6)—(4.7). Next we note that Dy, g1(w;) =

—t71 (2, + W) gy (wy) = t7H(Zk + we)g(wy)? and since A € suppg = |\ <
312k = Zi(2K + ) > 122, it is clear that

(4.8) Zeh(Hy,) (D, g1 (@) h(Hy) > %%h(ﬁk)g(@t)%(ﬁk)-
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Let My, Ms denote the left hand sides of (4.5) and (4.8). Then (4.4) follows
from

Zj%]\Ajh(f) < (My+ My)(t)+ Ct e
=D~ My(t) + Ot '7°) € G(Hi(t)). m

1
8
Hi(t)
Proof of Proposition 4.1. STEP 1. Introduce

Gi(t) = 1Pk (1) =iw XL (D) gip Xk (1) yhere

~

4.9
(4.9) Bu(t) = | dr (20 X2(T) + $X0)2).

Since e~ X2 (p = (p+ Xg(t))efim-xi(t) and e? Xy = (z + X%(t))eip-xi(t)’
we compute

Gr(t) = (=20 X0(1) = 3XQ(O? — 2 -z + (p + X2(1) - XU(L))iGx (1),
iGL(OHL() = (2(p+ X0()2 — 20 - (& + X2(6) + VE(t, 2 + X0(1))iG(D)
(Hi(t) + p- X2(t) + 3XQ(6)? — 21 - & — 20 - X2(t))iG (1)

Thus we have

L (Golt to) Cr(OU(E o))

dt
= Uk(t,t0)" (G (1) + iHi (1) G () — iGr (1) Hi (t)) Ur (¢, to) = 0,
which implies
(4.10) Ui(t,to) = Gru(®)Us(t, t0)Gr(to) ™ .
We write §; = 21 /t%. Then
Gr(t)T%(yy — Zk) = J° (e + 20 /)G (t) = J° () Gr(t) + O(t™T)

and using (4.10) we obtain
(411)  dim [|7%(y; — Z)Uk(t, to)ol| = lim 17° (@) Uk (¢, o) Gk (to) -

STEP 2. It suffices to show that for every h € C§°(R) we have
(4.12) lim inf |70 Ge) h(Hi(8))2e]l = 0
where we have set &; = Uy (t, to) G (to) .

Indeed, note first that (4.11) is the limit of the norms of ¢(t) = Uy(¢,0)*
x JO(yt — Zi)Ui(t,t0)e and that o(t) converges in L?(R%), by a reasoning

analogous to the proof of Proposition 3.7. Thus the limits (4.11) exist and
we may replace them by lim inf.



54 L. ZIELINSKI

However, taking hy € C3°(R) such that hg = 1 in a neighbourhood of 0,
0 < hg <1, we have ho(Hy(Tp)/n)p — ¢ as n — oo and by Lemma 4.2(b),
T
(1 = ho(Hy(8)/n))*@e, 2u))7, = | dt (D, o (I = ho(Hi(t)/n))* 51, 5r)
To
T ~
| dtCptm2minlinol iy < C, /m,

To

IN

which implies

lim sup [|(7 — ho(Hx(t)/n)) @ = 0.

n—0o0 t>To

STEP 3. Instead of (4.12) it suffices to show that M (t) € G(Hy(t)) with
(4.13) M(t) = Th(EL(0)T° G (1),
Indeed, (M (t)@¢, pt) € L([to; 00|, dt) implies
0 = liminf t(M(t)3;, 3,) = liminf |7 () h(H (1)) 8.
STEP 4. To complete the proof of Proposition 4.1 it suffices to prove
LEMMA 4.4. Let g € C§°(]-3|Z; 2|2|[) be such that g = 1 on
[—%]%L%]f{k” Then
(4.14) (1 = g)(@) T (Go)h(H () = Ot ™).
Indeed, if g, M, Mh are as before, then Lemma 4.4 and Proposition 4.3
give
M(t) = L h(F()(8).1° @) g h(Ax (1)) + O ~?)

< My(t) + Ct™2 € G(Hp(t)). m
Proof (of Lemma 4.4). We set J = J% and g =1 —g. Then (4.14)
follows if we show
(4.14') (=i + Hy) ™ T @)g (@) () (i + Hi) ™' < Ct2,
Wiiting 5(3)? = GO)(N = 12)5(N) we have § € ST (R) = 7(3:),5()
(1 + |@t|) O(t=?) (cf. Appendix), and J(7;) # 0 = || < 47 < i|5;€| =
—Z1y < zk allows us to estimate

J(G0)g(@e) (@7 — 128)g(we) J (3e)
= §(@)J (G:) (@F — 127) T (@) g (@) + O(t~?)
< g(we)J () (W7 + Zeye)J (9e)g(we) + Ct 2
< g(we)J (9e) 2t~ HowJ (9)g(we) + Ct .
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Since [y¢, g(wy)] and [ﬁ?,J( )] (w;) are O(t~3), we obtain (4.14’) noting
tTﬁmﬂM()@+M) = J@)F@) Horli + H)~* + O(~) =
O(). =

5. Interaction potentials with singularities. Let C be as in (1.11Db)
and 6 € C§°(R) be such that 0(x1) =1 for |z1| < C/|E|. Then

(5.1) IVi(2)8(z1)ell < 5Ip*0(x1)ell + Cllell < 3l Howll + Cllo]

and Vi (x)(1 — 6)(z1) is bounded. Therefore Hy + Vi (x) is well defined as a
self-adjoint operator on the domain of Hy and the operators Ho(Hg + Vi (x)
+4)7L, (Ho+Vi(x))(Ho+i) ! are bounded. The analogous assertion clearly
holds if Vi (x) is replaced by Vi(x — xk(t)) or by V(¢t,x) (using constants
locally bounded with respect to t).

Further on 8 > 0 is fixed small enough. Following [7] or [9] we may state

LEMMA 5.1. There exist functions ul € C*(R), j = 1,...,d, such that
fort > 1 one has

(5.2a)  ul\) =xXL(t)/t — 25 forNe€[Z —t P E + 177,

(5.2b)  wuif(A\) =X for\¢ U 2 —2t77: 2, + 2677,
1<k<N

(5.2c)  wl(\) =XL(t) forXe[XLt)—tFxi@)+t7, j>2,

(5.2d)  wl(\) = fome[—éﬂ B-C—t B]
\ U @ =27 xd @ 270, =2
1<k<N

(5.2¢) MWMz%ﬂW=O.MMQ€JzZ

‘%m»kcwﬁ,mwmz&
(5.2f)
)™ ()] =

where X, (t) = (X5 (t), ..., X%(t)) and C is fived large enough.

We write a; = O(b,) if by > I for t > Tj) and b;l/Qatb;1/2 = O(1). Note
that a; = O(b;) holds if we have a;b; ' = O(1) and b; *a; =O(1). Further, we

dci)\ ()\)‘ <Ot V8 for NeR, n>1,

denote v, = (z2,...,2q), Ui = z./t, ui (J) = (u2(xa/t), ..., ul(zq/t)),
ui (W) = (u) (@2/t), ..., (uf) (za/1)),
(5.3) = Qlwt 2 — i (i) - wit [t + he+ CLT

with C'; > 0 large enough and
(5.3") 77t = (Wg —ug(y}))? + %(ytl)z
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PROPOSITION 5.2. Let 0y = 0 +ni- +V (t)/t2. If ¢ > 0 is small enough,
then

(w)* <CQf +m7)"  Jor 0<60<1,
( e — (0 + ) =tV (1) = Ot~ () + i),
(5.4c) Dy = D () + ) + O™, %),
1 : , , L
(5.4d)  Dagni = —7 > wl L+ @) (a;/0)w] + 000",
2<j<d
1 -
(5.40)  Dimya? = 7 (w0} —y)(1 4+ 2l () wf — ) + O~ n}").
Proof. By interpolation it suffices to prove (5.4a) for 6 = 1. As ui (y;-)
is bounded, we have |wi|? < Onit. Then using u;(y})? = (y})? + O(t=9)
we may estimate
(5:5) (wi)* = (wy — g (y))” +ug (yp)? + 2(w; — g () (i) + he
< 2(wi —uf(y))? + 2ul (y))? +1 <1200 + Ct=P.
Thus (5.4b) follows from (5.4a) by the estimate
t—2€—iXk(t)~pvk(x)6i)<k(t)-p < Ct_2(1 _|_p2)1—5 < Clt—2€(1 + |wt|2)1_6-
Next we note that
up (y) + 25 — X (0)/t # 0= |z — x3 ()] = 58°7°
= VVi(z — xx(t)) = Ot 7#C=9),
up () = X () £ 0= |z —xp ()] = 5t 7
= VVil(z — xx(t)) = O+ =9),
hence using the fact that x}(t)/t, xi (t), u} (ytl)nt_lm, ui (i) are O(1), we
obtain
. e 1/2
(5:6) 0, Vil = xi(0)(uy (1) + 25 — X (1)/1) = Ot "?),
(5.6) O Vie(w = xa (D) (ui (") = Xic (1) = O(t™).
Then reasoning as in the proof of Lemma 2.4 we can see that (5.6)—(5.6")

imply (5.4c).
Finally, we obtain (5.4d, e) calculating

- 1 - - _
Dguz (5) = zui’ ) (L — 5i) + O™,
—tDp,n; +Ot™%) = (w;)? = 2(y; — wy)uy’ (yi)w; — uf (yi)w;
+2(y) — wi)(u'uf)(y)) + (v —wi)y!
= (wf —y;)?
+2 1,1 1+2 1/)(1 1 1)+O(t75)
(wy — 1y, )( up' )y )(wy — yy -
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Now it is clear that Corollary 3.1 holds. However, 7, (n;)! 7% = O(n'~7¢)
and (3.6) holds if O(t=2) is replaced by O(n'=¢¢t=1=¢). Thus the proof of
Proposition 3.2 is valid if C'/n is replaced by Cn~¢. All the remaining proofs
of Section 3 are valid if O(t~2) is replaced by O(t~17¢). In Section 4 we use
(5.1) with Vi (z), Hy replaced by Vi(z — Xx(t)), Hox to conclude that Hy,

Hy(t) are self-adjoint on the domain of Hy and that
(5.7)  Hop(Hy, + )", Hop(Hy(t) +14) 77,
Hy,(Hop, +14) ™Y, Hy,(t)(Hox + 1) € B(L*(R?)).

The second inequality of (5.1) with Hy and ¢ replaced by Hox and (Hox +
i)"Y gives 0(x1)p? (Ho, + i)~ " € B(L*(R?)), hence

(5.8)  (How +1) " '[ip, 0(x1) Vi (z — Xu(1))](Hox +14) ™" = O(1).
Since VV (z) = [ip, V(z)] we obtain the following version of Lemma 4.2(a):

69 Vi - ) = 0+ |Hol)),

(5.9) Vi (2 = Xk(t) = Vi (& — wi) + O™ (I + [Hor|*))

and by (5.7) we may always replace Hoy by Hy or Hjy, (t). It is checked in the
Appendix that the assertions of Lemma 4.2(b), (c) still hold and moreover
one has

(5.10) (i + ) [(H), I (31)] = O(¢™).
We also note that
(511) B = (Hy +i) ‘[ip,0(x1)) V(@ — wi)](Hy + i)~
is compact on L?(R%).

In order to show that the assertion of Proposition 4.3 still holds it suffices
to fix A € [-n;n| and to find § > 0 such that for h € C§°(]A — 0; A + 4]),
|h| <1, one has

(512) A0V (@ — wi).g @)|h(H) < HE () + Ct2,

where we assume that gi(A) = — for [A| < 2[Z|, ie. g(A) =1 for [A] <
312k
3=kl
First of all we introduce g(\) = g1(A) + A and we check that
(5.13) 0(x1)g (W )h(Hy) = O(t™2).

Indeed, if #; € C§°(R) is such that #; = 1 on suppf, then the stan-
dard pseudo-differential expansion [cf. (A.1) of Appendix] gives 0(x1)g(w;)
x (1 —61)(x1) = O@t™N) for every N € N. To obtain (5.13) we note
that (1 + |p1|2)01(x1)h(Hy) = O(1) and (A) = 0 for |A| < 2|2k| implies
GN] < €A%, hence [g(wy)|(1+ [p1[*) " < ClpaPE2(1 + ;o)™ < G2,
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From (5.13) it is clear that modulo O(t~2) we may replace g;(w;) by
—w; in (5.12). Next we note that |z1| < 7t = J%(z1/t) = 1 and there is
To > 0 such that 0(z1) = 0(x1)J°(y;) for t > Ty. Writing h = hh with
h € C§°(JA — 20; A + 20[) and using (5.10) we have
(5.14) 1t~ h(H) TG0 lipy, 0(x1) Vi (2 — wi)] T (5 h(H )

= £t~ h(Hy,)J* (§) b1 (Hi) Bha (Hy ) J°(§:)h (H ) + O(t72),
where hy(A) = h(A\)(A + i) and B is the compact operator given by (5.11).
Thus for § small enough we may estimate (5.14) by

— L (a0 2@ @n ) + 0 )

< LIz My (8) + Ot 2,

where the cut-off g(w;) was introduced in view of (4.14).
Thus Propositions 4.3 and 4.1 still hold under the general hypotheses of
Section 1.

Appendix. Let J,n € C(R?) and n € N be such that J(®) € L>(R?)
for |a| = n and n(®) € LY(RY) for |a| > n. Then

(A1) J@mD)= 3 p@ (D)@ (@)l fal

lal<n—1

+0(, _ gmax Tl g0 o ge))-

In particular, we may apply (A.1) with n > m + d if J,n € S (R?),
where the notation f € S7*(RY) means that for any o € N¢ one has the
estimate |f(®)(z)| < Co(1 + |z|)™ ol

It is easy to check that applying formula (A.1) we obtain the commutator
estimates needed in the proof of Lemma 4.4.

Proof of Lemma 3.6. Let o, € D(Hy), ¢ = U(t,tg)e and Q,Zt =
U(t,to)y. Then

t//

d
92010 — Qppl| = sup  [(2wp — v, )| < sup S dt ‘% (e, )|
llell<1 o<1 4
YeD(Hp) »eD(Ho)

i(fztso,w\ — (Da, M(E) + O )) o1, D)

dt
< A(Mo (), 00) > (Mo(t)dhe, )2 + Ct 5ol - 0]l
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and we obtain || 2y o—Q2p || — 0ast’,t” — oo estimating Si, dt |4 (2,0,1)]
by

[ Oh@enenar] [ [ b i ar] ™+ or=jel - v

t’ t’

Proof of Lemma 4.2. By (5.9)—(5.9"), for ( € C\ R we have
(C— Hy()™ = (¢ — Hy) ™" = (¢ — He(t) ™ (Hi(t) — Hi)(¢ — Hi) ™"

e 1 C
_O<t |Im<|2>’

6= B0)™ = (¢ = Bty (0 ) (¢ - Fu(o)

L4 [C?
=0t 1=
( [Im ¢
with € > 0. We complete the proof of part (b) by using a = H,, (t) ora= H,,
in the formula

(A2) hla) = 1§ 0R(O)(C — )~ dC A dT/(2),
where h € C§°(C) is an almost analytic extension satisfying |8€:7L(C)| <

Ci|Im ¢|* for every k € N and h = h on R (cf. [11]). To prove (c) we note
that

and (A.2) with a = H;, implies [h(H},), @] = O(t™1).
We complete the proof using an almost analytic extension of g, allowing
one to express g(w;) similarly to (A.2) and obtain the estimate

I[A(Hy), g(@)]|| < Cll[h(Hy), @] =
Proof of (5.10). Let J € C§°(R). Then
2J (U)W I (4r) = J(Ge)* 07 + w7 J(5e)? + [@7, T (§e)], T (Ge)]
= J(@)*w; +wiJ(3)? + O(t™°)
and for ¢ € C\ R we have
(€ — Hy) " T @)@t J (§) (¢ — He) ™
< (C— Hy) "I (@) (2t 2 Hop, — Z,52) T (5) (¢ — Hy,) ™!
C— Hy) 't 2T () Hox, + t 2 Hor J (§)* + O(1))(¢ — Hy,) ™!

1+
‘O<um<12>'

—~
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Hence @, J (5:)(¢C — Hy,) ™! = O(qu) and it remains to use (A.2) as

before noting that

(i + Hi)[(¢C — He) ™", T (G)]

= (i + Hy)(¢ — He) 72t @0, J% (5) + O(t72))(¢ — Hy) ™!
= O<t_lﬂ>. n

[Tm ¢

REFERENCES

T. Adachiand H. Tamura, Asymptotic completeness for long range many-particle
systems with Stark effect, J. Math. Sci. Univ. Tokyo 2 (1995), 77-116.

—, —, Asymptotic completeness for long range many-particle systems with Stark
effect. II, Comm. Math. Phys. 174 (1996), 537-559.

W. O. Amrein, A. Boutet de Monvel and V. Georgescu, L?-inequalities for
the Laplacian and unique continuation, Ann. Inst. Fourier (Grenoble) 31 (1981),
no. 3, 153-168.

—, —,—, Co-Groups, Commutator Methods and Spectral Theory of N-Body Hamil-
tonians, Birkh&user, 1996.

J. E. Avron and I. W. Herbst, Spectral and scattering theory for Schrédinger
operators related to Stark effect, Comm. Math. Phys. 52 (1977), 239-254.

J. Derezinski and C. Gérard, Asymptotic Completeness of N-Particle Systems,
Springer, 1996.

G. M. Graf, Phase space analysis of the charge transfer model, Helv. Phys. Acta
63 (1990), 107-138.

—, Asymptotic completeness for N-body short-range quantum systems: a new proof
Comm. Math. Phys. 123 (1990), 107-138.

—, A remark on long-range Stark scattering, Helv. Phys. Acta 64 (1991), 1167-1174.
G. A. Hagedorn, Asymptotic completeness for the impact parameter approximation
to the three particle scattering, Ann. Inst. H. Poincaré, Sect. A 36 (1982), 19-40.
B. Helffer et J. Sjostrand, Equation de Schrédinger avec champ magnétique et
équation de Harper, in: Lecture Notes in Phys. 345, Springer, 1989, 118-197.

I. W. Herbst, Unitary equivalence of Stark effect Hamiltonians, Math. Z. 155
(1977), 55-70.

I. W. Herbst, J. S. Mgller and E. Skibsted, Spectral analysis of N-body Stark
Hamiltonians, Comm. Math. Phys. 174 (1995), 261-294.

—, —, —, Asymptotic completeness for N-body Stark Hamiltonians, ibid. 174 (1996),
509-535.

A. Jensen, Scattering theory for Stark Hamiltonians, Proc. Indian Acad. Sci.
(Math. Sci.) 104 (1994), 599-651.

A. Jensen and T. Ozawa, Ezistence and non-existence results for wave operators
for perturbations of the Laplacian, Rev. Math. Phys. 5 (1993), 601-629.

A. Jensen and K. Yajima, On the long range scattering for Stark Hamiltonians,
J. Reine Angew. Math. 420 (1991), 179-193.

E. L. Korotyaev, On the scattering theory of several particles in an external elec-
tric field, Math. USSR-Sb. 60 (1988), 177-196.



CHARGE TRANSFER SCATTERING 61

(19]

33]

P. A. Perry, Scattering Theory by the Enss Method, Math. Rep. 1, Harwood, 1983,
1-347.

I. M. Sigal, Stark effect in multielectron systems: non-existence of bound states,
Comm. Math. Phys. 122 (1989), 1-22.

I. M. Sigal and A. Soffer, The N-particle scattering problem: asymptotic com-
pleteness for the short-range quantum systems, Ann. of Math. 125 (1987), 35-108.
H. Tamura, Scattering theory for N-particle systems with Stark effect: asymptotic
completeness, RIMS Kyoto Univ. 29 (1993), 869-884.

D. A. White, The Stark effect and long-range scattering in two Hilbert spaces,
Indiana Univ. Math. J. 39 (1990), 517-546.

—, Modified wave operators and Stark Hamiltonians, Duke Math. J. 68 (1992),
83-100.

U. Wiiller, Geometric methods in scattering theory of the charge transfer model,
ibid. 62 (1991), 273-313.

K. Yajima, A multi-channel scattering theory for some time dependent hamiltons-
ans, Charge Transfer Problem, Comm. Math. Phys. 75 (1980), 153-178.

—, Spectral and scattering theory for Schréodinger operators with Stark effect, J.
Fac. Sci. Univ. Tokyo Sect. IA 26 (1979), 377-390.

—, Spectral and scattering theory for Schrodinger operators with Stark effect, II,
ibid. 28 (1981), 1-15.

L. Zielinski, Complétude asymptotique pour un modeéle du transfert de charge,
Ann. Inst. H. Poincaré Phys. Théor. 58 (1993), 363-411.

—, Scattering for a dispersive charge transfer model, ibid. 65 (1997), 339-386.

—, Asymptotic completeness for multiparticle dispersive charge transfer model, J.
Funct. Anal. 150 (1997), 453-470.

—, Dispersive charge transfer model with long range interactions, J. Math. Anal.
Appl. 217 (1998), 43-71.

J. Zorbas, Scattering theory for Stark Hamiltonians involving long range potentials,
J. Math. Phys. 19 (1978), 577-580.

Institut de Mathématiques de Paris-Jussieu
UMR 9994

Université Paris 7 (D. Diderot)

2 Place Jussieu

75252 Paris Cedex 05, France

E-mail: zielinsk@math.jussieu.fr

Received 17 March 1997;
revised 12 May 1998



