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CHARGE TRANSFER SCATTERING
IN A CONSTANT ELECTRIC FIELD

BY

LECH Z IEL I Ń SK I (PARIS)

We prove the asymptotic completeness of the quantum scattering for a
Stark Hamiltonian with a time dependent interaction potential, created by
N classical particles moving in a constant electric field.

1. Introduction. We consider a model describing the quantum dy-
namics of a light particle (such as an electron) in collisions with some heavy
particles (such as some ions) obeying the laws of classical dynamics. Thus
only the light particle is considered a quantum particle, while the heavy par-
ticles follow some classical trajectories R ∋ t 7→ χk(t) ∈ R

d. If Vk denotes
the quantum interaction potential between the quantum particle and the
kth classical particle, the total quantum time-dependent interaction V (t) is
the operator of multiplication by

(1.1) V (t, x) =
∑

1≤k≤N

Vk(x− χk(t)),

and the total time-dependent Hamiltonian H(t) is a self-adjoint operator in
L2(Rd),

(1.2) H(t) = H0 + V (t, x),

where H0 denotes the free motion Hamiltonian. The subject of scattering
theory is to describe the large time behaviour of the evolution propagator
{U(t, t0)}t≥t0 of H(t), that is, the family of unitary operators in L2(Rd)
satisfying

(1.3) i
d

dt
U(t, t0)ϕ = H(t)U(t, t0)ϕ, U(t0, t0)ϕ = ϕ,

for ϕ from the domain of H0.
The first papers describing such a model considered the case of linear

classical trajectories and H0 the Laplace operator [10, 25, 26]. The papers
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[7, 29] deal with classical trajectories which are only asymptotically lin-
ear and the papers [30, 31, 32] deal with the dispersive case when H0 is
a more general elliptic operator. We note that all these papers consider
the hypothesis that different classical trajectories have different asymp-
totic velocities limt→∞ χ′

k(t), which implies the separation of trajectories:
|χk(t)− χk′(t)| ≥ ct with c > 0 if k 6= k′.

The aim of this paper is to consider the situation arising in the presence
of a constant electric field E ∈ R

d \ {0}, when the free motion Hamiltonian
for a particle of mass m > 0 and charge q 6= 0 has the form

h0(x, p) =
p2

2m
− qE · x

and the Hamilton equations ṗ(t) = qE, ẋ(t) = p(t)/m have the solutions of
the form

p(t) = qEt+mυ, x(t) =
qE

2m
t2 + υt+ ω,

where υ = p(0)/m ∈ R
d and ω = x(0) ∈ R

d. Thus the above solutions
of the Hamilton equations describe the motion that is free in the directions
orthogonal to the constant field E and uniformly accelerated in the direction
parallel to E.

We shall consider only the simplest situation when different classical
trajectories have different asymptotic accelerations limt→∞ χ′′

k(t). More pre-
cisely we begin by assuming the following separation condition: there exist
constants T0, c > 0, such that for t ≥ T0,

(1.4) |χk(t)− χk′(t)| ≥ ct2 if 1 ≤ k < k′ ≤ N.

Let mk, qk be the mass and the charge of the kth classical particle and
assume that χ(t) = (χ1(t), . . . , χN (t)) is a solution of the Newton equations

(1.5) mkχ
′′
k(t) = qkE −

∑

k′∈{1,...,N}\{k}

∇Vk,k′(χk(t)− χk′(t)),

where the classical interaction potentials Vk,k′ satisfy the decay condition

(1.6) |∇Vk,k′(x)| ≤ C0|x|
−1−µ0 for |x| ≥ C0

with C0, µ0 > 0.
It is clear that (1.4)–(1.6) imply

(1.7) χ′′
k(t) = zk +O(t−2(1+µ0)) with zk =

qk
mk

E

as t→∞, i.e. zk=(qk/mk)E=limt→∞ χ′′
k(t) is the asymptotic acceleration

of the trajectory χk. Since (1.7) means that d
dt(χ

′
k(t) − zkt) = O(t−2−2µ0),

the limit

υk = lim
t→∞

(χ′
k(t)− zkt)
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exists and introducing χ̃k by the relation

(1.8) χk(t) =
1
2zkt

2 + υkt+ χ̃k(t),

we have

(1.9) χ̃′′
k(t) = O(t−2−2µ0), χ̃′

k(t) = O(t−1−2µ0) as t→ ∞.

The Hamiltonian of the free motion for a quantum particle of mass m0 >
0 and charge q0 6= 0 has the form

(1.10) H0 =
p2

2m0
− q0E · x,

where p = (p1, . . . , pd) = (−i∂x1
, . . . ,−i∂xd

).

For quantum interactions Vk we assume that for some constants C, Ĉ, ε0
> 0,

Vk(x)(1 + p2)−1+ε0 is a compact operator in L2(Rd),(1.11a)

|∂αx Vk(x)| ≤ C for |x ·E| ≥ Ĉ and |α| ≤ 2,(1.11b)

and Vk = V lk + V sk with real valued functions V lk , V
s
k , such that for some

µ > 0 we have

|∂αxV
l
k(x)| ≤ C(1 + |x|)−µ−|α| for x ∈ R

d and |α| ≤ 1,(1.11c)

|∂αxV
s
k (x)| ≤ C(1 + |x|)−µ+(|α|−1)/2 for |x ·E| ≥ Ĉ(1.11d)

and |α| ≤ 1.

Theorem 1. Let U(t, t0) be defined by (1.3) with H(t) given by (1.1),
(1.2), (1.10). For k = 0, 1, . . . , N , let zk = qkE/mk be such that zk 6= zk′ if
0 ≤ k < k′ ≤ N . Assume that the trajectories χk(t) have the form (1.8) with
χ̃k(t) satisfying (1.9) for some µ0 > 0. If Vk = V lk + V sk satisfy (1.11a–d)
for some µ > 0, ε0 > 0, then the limit

(1.12)

Ω(t0)ψ = lim
t→∞

U(t, t0)
∗e−itH0−iS(t)ψ with

S(t) =

t\
1

dτ
∑

1≤k≤N

V lk
(
1
2
z0τ

2 − χk(τ)
)
,

exists in the norm of L2(Rd) for every ψ ∈ L2(Rd). Moreover , the asymp-
totic completeness holds, i.e. the wave operator Ω(t0) defined by (1.12) is
unitary.

We recall the result of I. M. Sigal [20] (cf. also [3, 4, 5]) which guarantees
the absence of eigenvalues for 2-body Stark Hamiltonians Hk = H0+Vk(x).
This allows us to neglect bound states and the asymptotic completeness
formulated in Theorem 1 implies that for every ϕ ∈ L2(Rd) there exists ψ ∈
L2(Rd) such that ϕ = Ω(t0)ψ. Thus U(t, t0)ϕ−e

−itH0−iS(t)ψ → 0 as t → ∞,
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which means that the asymptotic behaviour of U(t, t0)ϕ is asymptotically
the same as for the free evolution (modulo a phase factor e−iS(t)).

We note that the approach used in the proof below comes from recent
developments of scattering theory of N -body systems ([6, 8, 21]). We also
mention the references [9, 12, 15–17, 19, 23, 24, 27, 28, 33] concerning Stark
scattering in the 2-body case and [1, 2, 13, 14, 18, 22] in the N -body case.

In Section 2 we begin by describing in Lemma 2.1 asymptotic concentra-
tion of the free evolution trajectories e−itH0ϕ on classical Stark trajectories.
Then it is easy to prove the existence of the wave operator Ω(t0) given by
(1.12). Clearly Ω(t0) is an isometric injection and in order to prove the
asymptotic completeness it suffices to prove the existence of the limit

(1.12′) Ω(t0)
∗ϕ = lim

t→∞
eitH0+iS(t)U(t, t0)ϕ

for every ϕ ∈ L2(Rd). Indeed, if Ω(t0)
∗ given by (1.12′) exists, then applying

the chain rule we getΩ(t0)Ω(t0)
∗ϕ = ϕ, that is, Ω(t0) is surjective and hence

unitary.

To begin the proof of the existence of (1.12′) we assume for simplicity
V sk = 0 and introduce the auxiliary observable ηt. This observable is used
in Proposition 3.2 to introduce an energy cut-off, similarly to the “boosted
Hamiltonian” of Graf [7]. However, instead of Enss approach used in Graf
[7], our next step is based on the existence of the wave operators Ωk(t)
of Proposition 3.7 (similar to the Deift–Simon operators of the N -body
theory developed in Graf [8]). Then Proposition 3.7 allows us to localize
and “distinguish” interactions of different classical charges, reducing the
problem to the 2-body problem when the number of classical charges is
N = 1.

The situation N = 1 is studied in Section 4 using the ideas of the Mourre
estimate. More precisely, knowing that z0 ·p is the conjugate operator forH0

(i.e. we have the positive commutator [iH0, z0 ·p] = z20I), we find the propa-
gation estimate of Proposition 4.3 using a suitable cut-off g1(z0 ·p/t) instead
of z0 · p. Finally, in Section 5 we sketch the idea allowing one to modify the
observable ηt in order to recover all the previous results in the case of inter-
action potentials with singularities, V sk 6= 0.

2. Preliminary estimates. For U ⊂ R
d, C∞

0 (U) is the set of smooth
functions with compact support in U . We write at = O(f(t)) if there is a
constant C > 0 such that ‖at‖ ≤ Cf(t), where ‖ · ‖ is the norm of L2(Rd)
or the norm of bounded operators B(L2(Rd)). The analogous notation will
be used when at = (a1t , . . . , a

d
t ) assuming ‖at‖ = (‖a1t‖

2 + . . . + ‖adt ‖
2)1/2.

Moreover, at = bt+O(f(t)) means at−bt = O(f(t)). For Z ⊂ R, 1Z denotes
the characteristic function of Z on R.
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Assume that V0 is a real function satisfying

(2.1) |∂nt ∂
α
xV0(t, x)| ≤ Ct−2µ−2|α|−n for |α|+ n ≤ 1,

and denote by U0(t, t0) the evolution propagator of the Hamiltonian

(2.2) H0(t) = H0 + V0(t, x),

where H0 is given by (1.10). By rescaling we may assume further on that
m0 = 1.

Let yt = (y1t , . . . , y
d
t ), wt = (w1

t , . . . , w
d
t ) be systems of d commuting

self-adjoint operators,

(2.3) yt =
2x

t2
− z0, wt =

p

t
− z0.

Lemma 2.1. Let U0(t, t0), yt, wt be as above and ϕ ∈ C∞
0 (Rd). Then

(2.4) wtU0(t, t0)ϕ = O(t−1), ytU0(t, t0)ϕ = O(t−1)

and for every κ > 0 and j = 1, . . . , d one has 1[κ;∞[(|y
j
t |)U0(t, t0)ϕ =

O(t−1).

P r o o f. Define U0(t, t0) = U0
t , f(t) = U0∗

t pU0
t ϕ and g(t) = U0∗

t xU0
t ϕ.

Then

f ′(t) = U0∗
t [iH0(t), p]U

0
t ϕ = z0ϕ+O(t−2(1+µ)),

g′(t) = U0∗
t [iH0(t), x]U

0
t ϕ = f(t)

= f(t0) +

t\
t0

f ′(τ) dτ = tz0ϕ+O(1),

hence wtU
0
t ϕ = t−1U0

t (f(t)− z0tϕ) = O(t−1). Moreover,

g(t) = g(t0) +

t\
t0

g′(τ) dτ = 1
2z0t

2ϕ+O(t),

and
(
x− 1

2z0t
2
)
U0
t ϕ = U0

t

(
g(t)− 1

2z0t
2ϕ

)
= O(t) implies the second estimate

(2.4). Finally, using κ21[κ;∞[(|λ|) ≤ λ2 and the second estimate (2.4) we
obtain

(κ21[κ;∞[(|y
j
t |)U

0
t ϕ,U

0
t ϕ) ≤ ((yjt )

2U0
t ϕ,U

0
t ϕ) = ‖yjtU

0
t ϕ‖

2 = O(t−2).

Note that (1.9) implies the existence of

(2.5) lim
t→∞

χ̃k(t) = ωk with χ̃k(t) = ωk +O(t−2µ0),

hence

(2.5′) χ′
k(t) = zkt+ υk +O(t−1−2µ0), χk(t) =

1
2zkt

2 + υkt+O(1).

By rotation of the coordinate system we may assume further on that E =
(E1, 0, . . . , 0) with E1 ∈ R \ {0}, hence zk = (z1k, 0, . . . , 0) with z1k =
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E1qk/mk. Further, we set

(2.6) τ = 1
16 min{|z1k − z1k′ | : 0 ≤ k < k′ ≤ N}.

Fix J0 ∈ C∞
0 (]− 4τ ; 4τ [) such that 0 ≤ J0 ≤ 1, J0 = 1 on [−2τ ; 2τ ], define

J0 = 1− J0 and let

V0k(t, x) = J0(4x1/t
2 − 2z1k)V

l
k(x− χk(t))(2.7)

= J0(2y1t − 2z̃k)V
l
k(x− χk(t))

where we have set z̃k = z1k − z10 . Then we have

Proposition 2.2. Let V0 =
∑

1≤k≤N V0k, where V0k is given by (2.7).

Then (2.1) holds and for every ϕ ∈ L2(Rd) the following limits exist :

(2.8)
Ω̃(t0)

∗ϕ = lim
t→∞

eitH0+iS(t)U0(t, t0)ϕ,

Ω̃(t0)ϕ = lim
t→∞

U0(t, t0)
∗e−itH0−iS(t)ϕ.

P r o o f. Since χk(t) =
1
2zkt

2 + O(t) there is T0 such that for t ≥ T0 we
have

J0(4x1/t
2 − 2z1k) 6= 0 ⇒ |4x1/t

2 − 2z1k| ≥ 2τ

⇒ |x− χk(t)| ≥
∣∣x1 − 1

2z
1
kt

2
∣∣−

∣∣1
2zkt

2 − χk(t)
∣∣

≥ 1
2τt

2 − C ′t ≥ 1
4τt

2

and applying (1.11) we find

(2.9) |x− χk(t)| ≥
1
4τt

2 ⇒ |(∂αV lk)(x− χk(t))| ≤ Ct−2(µ+|α|) if |α| ≤ 1.

We conclude that V0 satisfies (2.1) noting that

∂

∂x1
(J0(4x1/t

2 − 2z1k)) = O(t−2),
∂

∂t
(J0(4x1/t

2 − 2z1k)) = O(t−1).

Since C∞
0 (Rd) is dense in L2(Rd), to obtain the existence of Ω̃(t0)

∗ϕ it
suffices to consider ϕ ∈ C∞

0 (Rd) and to check that

(2.10)
d

dt
(eitH0+iS(t)U0(t, t0)ϕ)

= eitH0+iS(t)i(S′(t)− V0(t, x))U0(t, t0)ϕ = O(t−1−2µ).

However, for 1 ≤ k ≤ N we have |z1k − z10 | ≥ 16τ , hence J0(2z10 − 2z1k) = 1
and

(2.11) V0
(
t, 12z0t

2
)
=

∑

1≤k≤N

J0(2z10 − 2z1k)V
l
k

(
1
2z0t

2 − χk(t)
)
= S′(t).

Thus we may write

V0(t, x)− S′(t) = V0(t, x)− V0
(
t, 12z0t

2
)
= γt ·

(
x− 1

2z0t
2
)
= 1

2γt · t
2yt
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with

γt =

1\
0

dθ∇xV0
(
t, (1− θ)x+ 1

2θz0t
2
)

and (2.1) implies t2γt = O(t−2µ). Therefore

‖(S′(t)− V0(t, x))U0(t, t0)ϕ‖ =
∥∥ 1
2 t

2γt · ytU0(t, t0)ϕ
∥∥(2.12)

≤ Ct−2µ‖ytU0(t, t0)ϕ‖

and by (2.4) the right hand side of (2.12) is O(t−1−2µ), i.e. (2.10) follows.
We may use V0(t, x) = 0 in Lemma 2.1, hence it is clear that e−itH0

satisfies the same estimates as U0(t, t0), and we obtain the existence of the
second limit (2.8) as above with e−itH0 and U0(t, t0) interchanged.

Proof of the existence of Ω(t0). Using the chain rule and the existence
of (2.8), we note that it suffices to prove the existence of limt→∞ U(t, t0)

∗

×U0(t, t0)ϕ, where as before we may assume ϕ ∈ C∞
0 (Rd). Let J ∈ C∞

0 (Rd)
be such that J(x) = 1 for |x| ≤ τ , J(x) = 0 for |x| ≥ 2τ , 0 ≤ J ≤ 1. Then
Lemma 2.1 implies

‖(1− J)(yt)U0(t, t0)ϕ‖ ≤ ‖1[τ ;∞[(|yt|)U0(t, t0)ϕ‖ = O(t−1),

i.e.

lim
t→∞

U(t, t0)
∗J(yt)U0(t, t0)ϕ = lim

t→∞
U(t, t0)

∗U0(t, t0)ϕ

and it suffices to show that

(2.13)
d

dt
(U(t, t0)

∗J(yt)U0(t, t0)ϕ)

= U(t, t0)
∗(DH0

J(yt) + iJ(yt)(V (t, x)− V0(t, x)))U0(t, t0)ϕ

= O(t−1−2µ) +O(t−2),

where Datbt = [iat, bt] +
d
dtbt denotes the Heisenberg derivative.

However, a simple calculation gives

(2.14) DH0
J(yt) =

2

t

∑

1≤j≤d

∂jJ(yt)(w
j
t − yjt ) +O(t−3)

and using (2.4) we obtain (DH0
J(yt))U0(t, t0)ϕ = O(t−2).

Next for 1 ≤ k ≤ N we have

J0(2y1t − 2z̃k) 6= 0 ⇒ |y1t − z̃k| < 2τ

⇒ |y1t | ≥ |z̃k| − 2τ = |z1k − z10 | − 2τ ≥ 14τ ⇒ J(yt) = 0,

hence J(yt)J
0(2y1t − 2z̃k) = J(yt) and

J(yt)(V − V0)(t, x) =
∑

1≤k≤N

J(yt)J
0(2y1t − 2z̃k)V

s
k (x− χk(t)).
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If T0 is as at the beginning of the proof of Proposition 2.2, then for t ≥ T0
we have

J0(2y1t − 2z̃k) 6= 0 ⇒ |x− χk(t)| ≥
1
4τt

2 ⇒ |V sk (x− χk(t))| ≤ Ct−1−2µ.

Until the end of Section 4 we assume that V sk = 0, that is, Vk = V lk . We
now introduce

η0t =
1

2

(
p1
t

−
2x1
t2

)2

+
1

4

(
2x1
t2

− z10

)2

+
1

2

∑

2≤j≤d

p2j
t2

+ I,(2.15)

ηt = η0t +
V (t, x)

t2
.(2.16)

Lemma 2.3. If η0t , ηt are given by (2.15)–(2.16) and D is defined as below
(2.13), then DH(t)ηt = DH0

η0t + rt with

(2.17) rt =
d

dt

(
V (t, x)

t2

)
−

[
iV (t, x),

x1p1 + p1x1
t3

]
.

P r o o f. A simple transformation of the expression (2.15) gives

η0t =
1

2

(
p21
t2

− 2
x1p1 + p1x1

t3
+

4x21
t4

)

+
1

4

(
4
x21
t4

− 4
z10x1
t2

+ (z10)
2

)
+

1

2

∑

2≤j≤d

p2j
t2

+ I

=
1

2

p21
t2

−
x1p1 + p1x1

t3
+

(
1

2
· 4 +

1

4
· 4

)
x21
t4

−
z10x1
t2

+
(z10)

2

4
+

1

2

∑

2≤j≤d

p2j
t2

+ I

=
1

t2

(
1

2
p2 − z10x1

)
−
x1p1 + p1x1

t3
+

3x21
t4

+
(z10)

2

4
+ I.

Therefore we may express η0t in the following way:

(2.15′) η0t =
H0

t2
−
x1p1 + p1x1

t3
+

3x21
t4

+
(z10)

2

4
+ I

and compute

DH(t)ηt = DH(t)

(
η0t +

V (t, x)

t2

)
= DH(t)

(
H(t)

t2
−
x1p1 + p1x1

t3
+

3x21
t4

)

= DH(t)

(
H(t)

t2

)
−

[
iV (t, x),

x1p1 + p1x1
t3

]

+ DH0

(
−
x1p1 + p1x1

t3
+

3x21
t4

)



CHARGE TRANSFER SCATTERING 45

=
d

dt

(
H0

t2
+
V (t, x)

t2

)
−

[
iV (t, x),

x1p1 + p1x1
t3

]

+ DH0

(
−
x1p1 + p1x1

t3
+

3x21
t4

)

= DH0

(
H0

t2

)
+ DH0

(
−
x1p1 + p1x1

t3
+

3x21
t4

)
+ rt = DH0

η0t + rt.

Lemma 2.4. If rt is given by (2.17) then rt = O(t−2).

P r o o f. First note that

d

dt
(t−2V (t, x)) = t−2∂tV (t, x)− 2t−3V (t, x) = t−2∂tV (t, x) +O(t−3).

Thus setting χ′
k(t) = (χ̇1

k(t), χ̇
⊥
k (t)) ∈ R×R

d−1 and using χ̇⊥
k (t) = O(1), we

have

t2rt = ∂tV (t, x)−

[
iV (t, x),

x1p1 + p1x1
t

]
+O(t−1)

=
∑

1≤k≤N

∂x1
Vk(x− χk(t))

(
2x1
t

− χ̇1
k(t)

)
+O(1).

But 2x1/t− χ̇1
k(t) = (2/t)(x1 −χ1

k(t)) +O(1) by (2.5′) and we complete the
proof noting that ∂x1

Vk(x− χk(t))(x1 − χ1
k(t)) = O(1).

Proposition 2.5. If ηt is given by (2.16) and D as below (2.13), then

(2.18) DH(t)ηt = −
3

t

(
p1
t

−
2x1
t2

)2

−
∑

2≤j≤d

p2j
t3

+O(t−2).

P r o o f. By Lemmas 2.3 and 2.4 it suffices to check that

(2.19) DH0
η0t = −

3

t

(
p1
t

−
2x1
t2

)2

−
∑

2≤j≤d

p2j
t3
.

Now we note that formally

(2.20) Dat(btb̃t) = (Datbt)̃bt + (btDat b̃t).

If at and bt are self-adjoint, then

(2.20′) Dat(bt)
2 = bt(Datbt) + (Datbt)bt = 2bt(Datbt) + hc,

where mt + hc = 1
2 (mt +m∗

t ) denotes the Hermitian symmetrization of the
operator mt. In particular, using

(2.21) DH0
wt = −

wt
t
, DH0

y1t =
2

t
(w1

t − y1t )
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[where wt, yt are given by (2.3)], we obtain

1

4
DH0

(y1t )
2 =

1

2
y1tDH0

y1t + hc =
1

t
y1t (w

1
t − y1t ) + hc,

1

2
DH0

(w1
t − y1t )

2 = (w1
t − y1t )DH0

(w1
t − y1t ) + hc

=
1

t
(w1

t − y1t )(2y
1
t − 3w1

t ) + hc.

Introducing w⊥
t = (w2

t , . . . , w
d
t ) = (p2/t, . . . , pd/t) we may express (2.15) in

the form

η0t = 1
2 (w

1
t − y1t )

2 + 1
4 (y

1
t )

2 + 1
2 |w

⊥
t |

2 + I

and it is clear that 1
2DH0

|w⊥
t |

2 = − 1
t |w

⊥
t |

2. To complete the proof we com-
pute

1

2
DH0

(w1
t − y1t )

2 +
1

4
DH0

(y1t )
2

=
1

t
(w1

t − y1t )(2y
1
t − 3w1

t ) +
1

t
(w1

t − y1t )y
1
t + hc

=
1

t
(w1

t − y1t )(3y
1
t − 3w1

t ) + hc = −
3

t
(w1

t − y1t )
2.

3. Propagation estimates. We denote by G(H) the set of operator-
valued functions t 7→M(t) ∈ B(L2(Rd)) satisfying

(3.1)

T\
1

dtRe(M(t)U(t, t0)ϕ,U(t, t0)ϕ) ≤ C‖ϕ‖2

for all ϕ ∈ L2(Rd), all T ≥ 1 and for some constant C > 0.

Sometimes we writeM(t) ∈ G(H(t)) instead ofM ∈ G(H). We note that

if M(t) = O(t−1−ε) with ε > 0, then M ∈ G(H),(3.2)

if (M̃ ∈ G(H) and M(t) ≤ M̃(t) for all t ≥ 1), then M ∈ G(H).(3.3)

If DH(t)M(t) is well defined, then writing U(t, t0)ϕ = ϕt we have

(3.4)

T\
1

dt ((DH(t)M(t))ϕt, ϕt) =

T\
1

dt
d

dt
(M(t)ϕt, ϕt) = [(M(t)ϕt, ϕt)]

T
1

and if M(t) = O(1), then DH(t)M(t) ∈ G(H(t)).

Note that η0t ≥ I and ηt = η0t + O(t−2), hence for n ≥ 1, t ≥ T0, η̃n,t =
(1 + ηt/n)

−1 is well defined and satisfies 0 ≤ η̃n,t ≤ I. Introducing

(3.5) M0(t) =
1

t
η̃n,t(3(w

1
t − y1t )

2 + |w⊥
t |

2)η̃n,t,
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we find that Proposition 2.5 gives

(3.6) nDH(t)η̃n,t = −η̃n,t(DH(t)ηt)η̃n,t =M0(t) +O(t−2).

It is clear that (3.4), (3.2) and (3.6) give

Corollary 3.1. If M0 is given by (3.5), then M0 ∈ G(H).

Proposition 3.2. For every ϕ ∈ L2(Rd) we have

lim
n→∞

sup
t≥T0

‖(I − η̃2n,t)U(t, t0)ϕ‖ = 0.

P r o o f. First we set U(t, t0)ϕ = ϕt and note that 0 ≤ λ ≤ 1 ⇒
(1− λ2)2 ≤ 4(1 − λ), hence

‖(I − η̃2n,t)ϕt‖
2 = ((I − η̃2n,t)

2ϕt, ϕt) ≤ 4((I − η̃n,t)ϕt, ϕt).

It remains to note that η̃n,T0
ϕT0

→ ϕT0
as n → ∞, and −nDH(t)η̃n,t ≤

−M0(t) + Ct−2 ≤ Ct−2 allows us to estimate

[((I − η̃n,t)ϕt, ϕt)]
T
T0

= −

T\
T0

dt ((DH(t)η̃n,t)ϕt, ϕt) ≤

T\
T0

dtCt−2/n ≤ C/n.

Further on in this section we assume n ≥ 1 fixed and write simply
η̃t = η̃n,t. As below (2.20′),M(t)+hc denotes the symmetrization 1

2 (M(t)+
M(t)∗).

Lemma 3.3. Let J0 ∈ C∞
0 (R). Then M1 ∈ G(H) if

(3.7) M1(t) =
1

t
η̃t(y

1
t − w1

t )J0(y
1
t )η̃t + hc.

P r o o f. Let J ∈ C∞(R) be such that the derivative J ′ = −J0, and set

M1,0(t) = η̃tJ(y
1
t )η̃t.

Then DH(t)M1,0 =M1,1 +M1,2 with

M1,1(t) = η̃t(DH(t)J(y
1
t ))η̃t = 2M1(t) +O(t−3),

M1,2(t) = 2η̃tJ(y
1
t )DH(t)η̃t + hc.

From (3.4) we have DH(t)M1,0 ∈ G(H) and it is clear that in order to show
M1 ∈ G(H) it suffices to check that −M1,2 ∈ G(H).

Noting that

w⊥
t η̃t = O(1), y1t η̃t = O(1), (w1

t − y1t )η̃t = O(1),

it is easy to estimate the commutators

n[η̃t, w
⊥
t ] = −η̃t[η

0
t +O(t−2), w⊥

t ]η̃t = O(t−2),

n[η̃t, w
1
t − y1t ] = η̃t[η

0
t +O(t−2), y1t − w1

t ]η̃t

= η̃t
[
1
4
(y1t )

2, y1t − w1
t

]
η̃t +O(t−2) = O(t−2),
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n[η̃t, J(y
1
t )] = −η̃t[η

0
t , J(y

1
t )]η̃t = O(t−2).

Using (2.18) to express DH(t)η̃t in M1,2(t) it is easy to see that the above
commutator estimates allow us to write

−M1,2(t) =
2

t
η̃t(3(w

1
t − y1t )at(w

1
t − y1t ) + w⊥

t atw
⊥
t )η̃t +O(t−2)

with at = −n−1J(y1t )η̃t + hc, and it is clear that the inequality at ≤ CI
implies

(3.8) −M1,2(t) ≤ 2CM0(t) + Ct−2

where M0 is given by (3.5). By Lemma 3.3 the right hand side of (3.8)
belongs to G(H) and consequently −M1,2 ∈ G(H).

Proposition 3.4. Let J0 ∈ C∞
0 (R \ {z̃1, . . . , z̃N}) where z̃k = z1k − z10 .

Then M2 ∈ G(H) if

(3.9) M2(t) =
1

t
η̃tJ0(y

1
t )y

1
t η̃t.

P r o o f. If M1 is given by (3.7), then M1 ∈ G(H) and M2 = 3M1 +M3

with

M3(t) =
1

t
η̃t(3w

1
t − 2y1t )J0(y

1
t )η̃t + hc.

Thus it remains to show that M3 ∈ G(H). But for 1 ≤ k ≤ N , z̃k 6∈ suppJ0
and

J0(y
1
t ) 6= 0 ⇒ |y1t − z̃k| = |2x1/t

2 − z1k| ≥ c > 0

⇒ |x− χk(t)| ≥
∣∣x1 − 1

2
z1kt

2
∣∣− C ′t ≥ 1

2
ct2 −C ′t

implies

[iV (t, x), w1
t ]J0(yt) = −∂xV (t, x)J0(yt)t

−1 = O(t−3).

Therefore introducing

M3,0(t) = η̃t(y
1
t − w1

t )J0(yt)η̃t + hc,

we find that DH(t)M3,0 =M3,1 +M3,2 +M3,3 with

M3,1(t) = η̃t(DH(t)(y
1
t − w1

t ))J0(y
1
t )η̃t =M3(t) +O(t−3),

M3,2(t) = η̃t(y
1
t − w1

t )(DH(t)J0(y
1
t ))η̃t + hc,

M3,3(t) = 2η̃t(y
1
t − w1

t )J0(y
1
t )DH(t)η̃t + hc.

As before, (3.4) gives DH(t)M3,0 ∈ G(H) and M3 ∈ G(H) follows if we know
that −M3,2,−M3,3 ∈ G(H). To show −M3,3 ∈ G(H) we note that we may
replace M1,2 by M3,3 in (3.8) using at = n−1J0(y

1
t )(w

1
t − y1t )η̃t + hc ≤ CI

to express −M3,3 similarly to −M1,2. Also

−M3,2(t) = −
2

t
η̃t(y

1
t − w1

t )J
′
0(y

1
t )(y

1
t − w1

t )η̃t +O(t−3)
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≤ CM0(t) + Ct−3 ∈ G(H(t)).

We keep the notations J0, z̃k, V0k, V0,H0(t), U0(t, t0) introduced in Sec-
tion 2. Moreover, for 1 ≤ k ≤ N we denote by Uk(t, t0) the evolution
propagator of the Hamiltonian

(3.10)

Hk(t) = H0 + V k(t, x) with

V k(t, x) = Vk(x− χk(t)) +
∑

k′∈{1,...,N}\{k}

V0k′(t, x).

Corollary 3.5. If M0, M2, Hk are as above, then M0,M2 ∈ G(Hk).

P r o o f. Define ηkt by using V k(t, x) instead of V (t, x) in (2.16). As
before we obtain

Mk
0 (t) =

1

t
η̃kt (3(w

1
t − y1t )

2 + |w⊥
t |

2)η̃kt ∈ G(Hk(t))

with η̃kt = (1 + ηkt /n)
−1. We recall that |∂nt ∂

α
xV0k′(t, x)| ≤ Ct−2µ−2|α|−n for

|α|+ n ≤ 1, and reasoning as in the proof of Proposition 3.4 we find

Mk
2 (t) =

1

t
η̃kt J0(y

1
t )y

1
t η̃
k
t ∈ G(Hk(t))

for J0 ∈ C∞
0 (R \ {z̃1, . . . , z̃N}). However, ηt = ηkt +O(t−2) implies

((w1
t −y

1
t )

2+|w⊥
t |

2)(η̃t−η̃
k
t ) = ((w1

t −y
1
t )

2+|w⊥
t |

2)η̃kt (ηt−η
k
t )η̃t/n = O(t−2),

hence

Mj(t) =Mk
j (t) +O(t−2) ∈ G(Hk(t)), j = 0, 2.

The following well known lemma is the basic tool allowing us to obtain
the existence of wave operators (we give its proof in the Appendix):

Lemma 3.6. Let U(t, t0) and Ũ(t, t0) be the evolution propagators of

H(t) = H0 + V (t) and H̃(t) = H0 + Ṽ (t) respectively. Assume that for
M(t) ∈ B(L2(Rd)) we may define DH0

M(t) as bounded operators with

(3.11)
(Ṽ (t)− V (t))M(t) = O(t−1−ε) and

DH0
M(t) = M̃(t) +O(t−1−ε)

where ε > 0, and that there exists M̃0 ∈ G(H)∩G(H̃) satisfying the estimates

(3.11′) −M̃0(t) ≤ M̃(t) ≤ M̃0(t) and M̃0(t) ≥ 0 for all t ≥ 1.

If ϕ ∈ L2(Rd) and Ωt = Ũ(t, t0)
∗M(t)U(t, t0), then the limit limt→∞Ωtϕ

exists.

Proposition 3.7. Set J(y1t ) = 1−
∑

1≤k≤N J
0(y1t − z̃k)

2 and define

(3.12)
Ω0(t, t0) = U0(t, t0)

∗J(y1t )U(t, t0),

Ωk(t, t0) = Uk(t, t0)
∗J0(y1t − z̃k)U(t, t0) for k = 1, . . . , N.
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Then for every ϕ ∈ L2(Rd), k = 0, 1, . . . , N , the following limits exist :

(3.12′) Ωk(t0)ϕ = lim
t→∞

Ωk(t, t0)ϕ.

P r o o f. Consider first the case k = 0. By Proposition 3.2 it suffices to
show that

lim
t→∞

U0(t, t0)
∗J(y1t )η̃

2
n,tU(t, t0)ϕ

exists for every n ≥ 1. Further on n is fixed, we write η̃t = η̃n,t and we apply

Lemma 3.6 with H̃(t) = H0(t) and M(t) = J(y1t )η̃
2
t .

We begin by noting that the first condition of (3.11) follows from

(3.13) (H(t)−H0(t))J(y
1
t ) =

∑

1≤k≤N

J0(2y1t − 2z̃k)V
l
k(x−χk(t))J(y

1
t ) = 0.

To check (3.13) we note that J0(y1t − z̃k) 6= 0 ⇒ |y1t − z̃k| < 4τ and for k′ 6= k
we have |z̃k−z̃k′| = |z1k−z

1
k′ | ≥ 16τ , hence J0(y1t−z̃k) 6= 0 ⇒ J0(y1t−z̃k′) = 0

for k′ 6= k. Thus it is clear that J0(2y1t − 2z̃k) 6= 0 ⇒ |y1t − z̃k| < 2τ ⇒
J0(y1t − z̃k) = 1 ⇒ J(y1t ) = 1− J0(y1t − z̃k)

2 = 0.

Next we find that DH0
M = M̃1 + M̃2 with

M̃1(t) = (DH0
J(y1t ))η̃

2
t =

2

t
η̃t(w

1
t − y1t )J

′(y1t )η̃t + hc+O(t−2),(3.14)

M̃2(t) = 2η̃tJ(y
1
t )DH(t)η̃t + hc+O(t−2).(3.15)

Next for k = 1, . . . , N , we have |y1t | ≤ 2τ ⇒ |y1t − z̃k| ≥ 14τ ⇒ J0(2y1t −
2z̃k) = 0. Therefore J = 1 on [−2τ ; 2τ ] and 0 6∈ suppJ ′ allows us to define
J0 ∈ C∞

0 (R \ {z̃1, . . . , z̃N}) satisfying J0(λ)λ = J ′(λ)2 and to estimate

(3.16) ± (w1
t − y1t )J

′(y1t ) + hc ≤ 2(w1
t − y1t )

2 + 2J0(y
1
t )y

1
t

⇒ ±M̃1 ≤ 4M0 + 4M2

with M0, M2 given by (3.5), (3.9). Then similarly to the proof of Lemma

3.3 we find ±M̃2(t) ≤ CM0(t) +Ct−2, hence it is clear that the hypotheses

of Lemma 3.6 hold with M̃0 = C0M0 + 4M2 ∈ G(H) ∩ G(Hk) by Corollary
3.1, 3.5 and Proposition 3.4.

In the case k = 1, . . . , N , we apply Lemma 3.6 with H̃(t) = Hk(t) and

M(t) = J̃(y1t )η̃
2
t , where J̃(λ) = J0(λ− z̃k). As before we have

(3.17) (H(t)−Hk(t))J̃(y
1
t )

=
∑

k′∈{1,...,N}\{k}

J0(2y1t − 2z̃k′)V lk′(x− χk′(t))J̃(y1t ) = 0.

Indeed, J̃(y1t ) 6= 0 ⇒ |y1t − z̃k| < 4τ ⇒ |y1t − z̃k′ | ≥ 2τ for k′ 6= k ⇒

J0(2y1t − 2z̃k′) = 0 for k′ 6= k. We complete the proof noting that J̃ = 0 on

[−2τ ; 2τ ] and (3.14)–(3.16) still hold if J is replaced by J̃ .
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4. Asymptotic completeness. In order to obtain the asymptotic
completeness it remains to prove

Proposition 4.1. If k = 1, . . . , N and ϕ ∈ L2(Rd), then

lim
t→∞

J0(y1t − z̃k)Uk(t, t0)ϕ = 0.

Indeed, using Propositions 2.2, 3.7 and 4.1, we can see that via the chain
rule,

eitH0+iS(t)U(t, t0)ϕ = eitH0+iS(t)
(
J(y1t ) +

∑

1≤k≤N

J0(y1t − z̃k)
2
)
U(t, t0)ϕ

= eitH0+iS(t)U0(t, t0)Ω0(t, t0)ϕ

+
∑

1≤k≤N

eitH0+iS(t)J0(y1t − z̃k)Uk(t, t0)Ωk(t, t0)ϕ

converges to Ω̃0(t0)
∗Ω0(t0)ϕ, i.e. the limit (1.12′) exists.

Before starting the proof of Proposition 4.1 we introduce more notation.
We set

(4.1) H0k = 1
2p

2 + z̃kx1, H̃k = H0k + Vk(x− ωk),

where k = 1, . . . , N and ωk is as in (2.5). We define

χ0
k(t) =

1
2
zkt

2 + υkt, χ̇0
k(t) = zkt+ υk,(4.2)

H̃k(t) = H0k + Ṽk(t, x)(4.3)

with

Ṽk(t, x) = V k(t, x+ χ0
k(t))

= Vk(x− χ̃k(t)) +
∑

k′∈{1,...,N}\{k}

V0k′

(
t, x+ 1

2zkt
2 + υkt

)
.

It is easy to see that V0k′

(
t, x+ 1

2zkt
2+υkt

)
satisfies estimates (2.1) similarly

to V0k′ . The following lemma allows us to compare H̃k and H̃k(t).

Lemma 4.2. (a) We have Vk(x− χ̃k(t)) = Vk(x− ωk) +O(t−2µ0) and

d

dt
Vk(x− χ̃k(t)) = −χ̃′

k(t) · ∇Vk(x− χ̃k(t)) = O(t−1−2µ0).

(b) If h ∈ C∞
0 (R) then h(H̃k(t)) = h(H̃k) +O(t−2µ0) +O(t−2µ) and

D
H̃k(t)

h(H̃k(t)) =
d

dt
h(H̃k(t)) = O(t−1−2µ0) +O(t−1−2µ).

(c) If g, h̃ ∈ C∞
0 (R) then [h̃(H̃k), g(w̃t)] = O(t−1).

We note that our assumptions ∇Vk = ∇V lk = O(1) and (1.9) give imme-
diately the indicated estimate of d

dtVk(x− χ̃k(t)), while the first estimate of
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Lemma 4.2(a) follows by integration. The proof of estimates in (b) and (c)
is given in the Appendix.

Proposition 4.3. Let g ∈ C∞
0

(]
− 3

4 |z̃k|;
3
4 |z̃k|

[)
and h ∈ C∞

0 (R). Then

(4.4) M̃h(t) =
1

t
h(H̃k(t))g(w̃t)

2h(H̃k(t)) ∈ G(H̃k(t)),

where we have set w̃t = p1/t.

P r o o f. Let n ∈ N be such that h ∈ C∞
0 (]−n;n[). Since (M̃h(t)ϕ,ϕ) =

t−1‖g(w̃t)h(H̃k(t))ϕ‖
2, it is clear that M̃h1+h2

(t) ≤ 2M̃h1
(t) + 2M̃h2

(t).
Thus it suffices to show that for every λ ∈ [−n;n] there is δ > 0 such that

M̃h(t) ∈ G(H̃k(t)) with h ∈ C∞
0 (]λ− δ;λ + δ[), |h| ≤ 1.

Let g1 ∈ C∞(R) satisfy g′1 = −g2 and set

M0(t) = z̃kh(H̃k(t))g1(w̃t)h(H̃k(t)).

Let ε = min{1, 2µ0, 2µ}. Then Lemma 4.2 allows us to write

D
H̃k(t)

M0(t) = z̃kh(H̃k(t))(DH̃k(t)
g1(w̃t))h(H̃k(t)) +O(t−1−ε)

= z̃kh(H̃k)(DH̃k

g1(w̃t))h(H̃k) +O(t−1−ε).

We now show that choosing δ > 0 small enough we have

(4.5) z̃kh(H̃k)[iVk(x−ωk), g1(w̃t)]h(H̃k) ≥ −
z̃2k
8t
h(H̃k)g(w̃t)

2h(H̃k)−Ct
−2.

Using (1.11b) and the standard pseudo-differential expansion [(A.1) of Ap-
pendix with n = 2 and then with n = 1] we find the following expression of
the commutator:

[iVk(x− ωk), g1(w̃t)] = −
1

t
∂x1

Vk(x− ωk)g
′
1(w̃t) +O(t−2)(4.6)

=
1

t
g(w̃t)∂x1

Vk(x− ωk)g(w̃t) +O(t−2),

and since H̃k has no eigenvalues (cf. [20]), 1[λ−2δ;λ+2δ](H̃k) → 0 strongly as

δ → 0. As ∂x1
Vk(x− ωk)1[−n;n](H̃k) is compact, for δ > 0 small enough we

have

(4.7) z̃kh̃(H̃k)∂x1
Vk(x− ωk)h̃(H̃k) ≥ − 1

8 z̃
2
k

if h̃ ∈ C∞
0 (]λ−2δ;λ+2δ[), 0 ≤ h̃ ≤ 1. Using h̃ such that h = hh̃ and Lemma

4.2(c) we obtain (4.5) from (4.6)–(4.7). Next we note that DH0k
g1(w̃t) =

−t−1(z̃k + w̃t)g
′
1(w̃t) = t−1(z̃k + w̃t)g(w̃t)

2 and since λ ∈ supp g ⇒ |λ| ≤
3
4 |z̃k| ⇒ z̃k(z̃k + λ) ≥ 1

4 z̃
2
k, it is clear that

(4.8) z̃kh(H̃k)(DH0k
g1(w̃t))h(H̃k) ≥

1

4t
z̃2kh(H̃k)g(w̃t)

2h(H̃k).
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Let M1, M2 denote the left hand sides of (4.5) and (4.8). Then (4.4) follows
from

1
8
z̃2kM̃h(t) ≤ (M1 +M2)(t) + Ct−1−ε

= D
H̃k(t)

M0(t) +O(t−1−ε) ∈ G(H̃k(t)).

Proof of Proposition 4.1 . Step 1. Introduce

(4.9)

Gk(t) = e−iΦk(t)e−ix·χ̇
0

k
(t)eip·χ

0

k
(t) where

Φk(t) =

t\
1

dτ
(
z0 · χ

0
k(τ) +

1
2
χ̇0
k(τ)

2
)
.

Since e−ix·χ̇
0

k
(t)p = (p+ χ̇0

k(t))e
−ix·χ0

k
(t) and eip·χ

0

k
(t)x = (x+χ0

k(t))e
ip·χ0

k
(t),

we compute

G′
k(t) =

(
− z0 · χ

0
k(t)−

1
2
χ̇0
k(t)

2 − x · zk + (p+ χ̇0
k(t)) · χ̇

0
k(t)

)
iGk(t),

iGk(t)Hk(t) =
(
1
2 (p+ χ̇0

k(t))
2 − z0 · (x+ χ0

k(t)) + V k(t, x+ χ0
k(t))

)
iGk(t)

=
(
H̃k(t) + p · χ̇0

k(t) +
1
2 χ̇

0
k(t)

2 − zk · x− z0 · χ
0
k(t)

)
iGk(t)

= iH̃k(t)Gk(t) +G′
k(t).

Thus we have

d

dt
(Ũk(t, t0)

∗Gk(t)Uk(t, t0)ϕ)

= Ũk(t, t0)
∗(G′

k(t) + iH̃k(t)Gk(t)− iGk(t)Hk(t))Uk(t, t0)ϕ = 0,

which implies

(4.10) Ũk(t, t0) = Gk(t)Uk(t, t0)Gk(t0)
−1.

We write ỹt = 2x1/t
2. Then

Gk(t)J
0(y1t − z̃k) = J0(ỹt + 2υ1k/t)Gk(t) = J0(ỹt)Gk(t) +O(t−1)

and using (4.10) we obtain

(4.11) lim
t→∞

‖J0(y1t − z̃k)Uk(t, t0)ϕ‖ = lim
t→∞

‖J0(ỹt)Ũk(t, t0)Gk(t0)ϕ‖.

Step 2. It suffices to show that for every h ∈ C∞
0 (R) we have

(4.12) lim inf
t→∞

‖J0(ỹt)h(H̃k(t))ϕ̃t‖ = 0

where we have set ϕ̃t = Ũk(t, t0)Gk(t0)ϕ.

Indeed, note first that (4.11) is the limit of the norms of ϕ(t) = Uk(t, t0)
∗

× J0(y1t − z̃k)Uk(t, t0)ϕ and that ϕ(t) converges in L2(Rd), by a reasoning
analogous to the proof of Proposition 3.7. Thus the limits (4.11) exist and
we may replace them by lim inf.
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However, taking h0 ∈ C∞
0 (R) such that h0 = 1 in a neighbourhood of 0,

0 ≤ h0 ≤ 1, we have h0(H̃k(T0)/n)ψ → ψ as n→ ∞ and by Lemma 4.2(b),

[((I − h0(H̃k(t)/n))
2ϕ̃t, ϕ̃t)]

T
T0

=

T\
T0

dt (D
H̃k(t)

(I − h0(H̃k(t)/n))
2ϕ̃t, ϕ̃t)

≤

T\
T0

dtCϕt
−1−2min{µ,µ0}/n ≤ C̃ϕ/n,

which implies

lim
n→∞

sup
t≥T0

‖(I − h0(H̃k(t)/n))ϕ̃t‖ = 0.

Step 3. Instead of (4.12) it suffices to show that M(t) ∈ G(H̃k(t)) with

(4.13) M(t) =
1

t
h(H̃k(t))J

0(ỹt)
2h(H̃k(t)).

Indeed, (M(t)ϕ̃t, ϕ̃t) ∈ L1([t0;∞[, dt) implies

0 = lim inf
t→∞

t(M(t)ϕ̃t, ϕ̃t) = lim inf
t→∞

‖J0(ỹt)h(H̃k(t))ϕ̃t‖
2.

Step 4. To complete the proof of Proposition 4.1 it suffices to prove

Lemma 4.4. Let g ∈ C∞
0

(]
− 3

4
|z̃k|;

3
4
|z̃k|

[)
be such that g = 1 on[

− 2
3 |z̃k|;

2
3 |z̃k|

]
. Then

(4.14) (1− g)(w̃t)J
0(ỹt)h(H̃k(t)) = O(t−1).

Indeed, if g, M , M̃h are as before, then Lemma 4.4 and Proposition 4.3
give

M(t) =
1

t
h(H̃k(t))g(w̃t)J

0(ỹt)
2g(w̃t)h(H̃k(t)) +O(t−2)

≤ M̃h(t) + Ct−2 ∈ G(H̃k(t)).

P r o o f (of Lemma 4.4). We set J = J0 and g = 1 − g. Then (4.14)
follows if we show

(4.14′) (−i+ H̃k)
−1J(ỹt)g(w̃t)

2J(ỹt)(i+ H̃k)
−1 ≤ Ct−2.

Writing g(λ)2 = g̃(λ)
(
λ2 − 1

4
z̃2k
)
g̃(λ) we have g̃ ∈ S−1

1 (R) ⇒ [J(ỹt), g̃(w̃t)]
× (1+ |w̃t|) = O(t−3) (cf. Appendix), and J(ỹt) 6= 0 ⇒ |ỹt| ≤ 4τ ≤ 1

4 |z̃k| ⇒
−z̃kỹt ≤

1
4 z̃

2
k allows us to estimate

J(ỹt)g̃(w̃t)
(
w̃2
t −

1
4 z̃

2
k

)
g̃(w̃t)J(ỹt)

= g̃(w̃t)J(ỹt)
(
w̃2
t −

1
4
z̃2k
)
J(ỹt)g̃(w̃t) +O(t−3)

≤ g̃(w̃t)J(ỹt)(w̃
2
t + z̃kỹt)J(ỹt)g̃(w̃t) + Ct−3

≤ g̃(w̃t)J(ỹt)2t
−2H0kJ(ỹt)g̃(w̃t) + Ct−3.
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Since [ỹt, g̃(w̃t)] and [w̃2
t , J(ỹt)]g̃(w̃t) are O(t−3), we obtain (4.14′) noting

that H0kJ(ỹt)g̃(w̃t)(i + H̃k)
−1 = J(ỹt)g̃(w̃t)H0k(i + H̃k)

−1 + O(t−1) =
O(1).

5. Interaction potentials with singularities. Let Ĉ be as in (1.11b)

and θ ∈ C∞
0 (R) be such that θ(x1) = 1 for |x1| ≤ Ĉ/|E|. Then

(5.1) ‖Vk(x)θ(x1)ϕ‖ ≤ 1
5‖p

2θ(x1)ϕ‖+ C‖ϕ‖ ≤ 1
2‖H0ϕ‖+ C ′‖ϕ‖

and Vk(x)(1− θ)(x1) is bounded. Therefore H0 + Vk(x) is well defined as a
self-adjoint operator on the domain of H0 and the operators H0(H0+Vk(x)
+i)−1, (H0+Vk(x))(H0+i)

−1 are bounded. The analogous assertion clearly
holds if Vk(x) is replaced by Vk(x − χk(t)) or by V (t, x) (using constants
locally bounded with respect to t).

Further on β > 0 is fixed small enough. Following [7] or [9] we may state

Lemma 5.1. There exist functions ujt ∈ C∞
0 (R), j = 1, . . . , d, such that

for t ≥ 1 one has

u1t (λ) = χ̇1
k(t)/t− z10 for λ ∈ [z̃k − t−β; z̃k + t−β ],(5.2a)

u1t (λ) = λ for λ 6∈
⋃

1≤k≤N

[z̃k − 2t−β ; z̃k + 2t−β ],(5.2b)

ujt(λ) = χ̇jk(t) for λ ∈ [χ̇jk(t)− t−β ; χ̇jk(t) + t−β ], j ≥ 2,(5.2c)

ujt(λ) = λ for λ ∈ [−C + t−β;C − t−β ](5.2d)

\
⋃

1≤k≤N

[χ̇jk(t)− 2t−β ; χ̇jk(t) + 2t−β ], j ≥ 2,

(ujt )
′(λ) =

d

dλ
ujt(λ) = 0 for |λ| ≥ C, j ≥ 2,(5.2e)

∣∣∣∣
d

dt
ujt (λ)

∣∣∣∣ ≤ Ct−1−β, (ujt)
′(λ) ≥ 0,

|(ujt )
(n)(λ)| =

∣∣∣∣
dn

dnλ
ujt(λ)

∣∣∣∣ ≤ Cnt
(n−1)β for λ ∈ R, n ≥ 1,

(5.2f)

where χ̃′
k(t) = (χ̇1

k(t), . . . , χ̇
d
k(t)) and C is fixed large enough.

We write at = O(bt) if bt ≥ I for t ≥ T0 and b
−1/2
t atb

−1/2
t = O(1). Note

that at = O(bt) holds if we have atb
−1
t = O(1) and b−1

t at=O(1). Further, we
denote x⊥ = (x2, . . . , xd), ỹ

⊥
t = x⊥/t, u

⊥
t (ỹ

⊥
t ) = (u2t (x2/t), . . . , u

d
t (xd/t)),

u⊥t
′(ỹ⊥t ) = ((u2t )

′(x2/t), . . . , (u
d
t )

′(xd/t)),

(5.3) η⊥t = 1
2 |w

⊥
t |

2 − u⊥t (ỹ
⊥
t ) · w

⊥
t /t+ hc+ C⊥I

with C⊥ > 0 large enough and

(5.3′) η0t = 1
2 (w

1
t − u1t (y

1
t ))

2 + 1
4 (y

1
t )

2.
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Proposition 5.2. Let ηt = η0t + η
⊥
t +V (t)/t2. If ε > 0 is small enough,

then

(wt)
2θ ≤ C(η0t + η⊥t )

θ for 0 ≤ θ ≤ 1,(5.4a)

ηt − (η0t + η⊥t ) = t−2V (t) = O(t−2ε(η0t + η⊥t )),(5.4b)

DH(t)ηt = DH0
(η0t + η⊥t ) +O(t−1−εη1−εt ),(5.4c)

DH0
η⊥t = −

1

t

∑

2≤j≤d

wjt (1 + (ujt )
′(xj/t))w

j
t +O(t−1−εη

1/2
t ),(5.4d)

DH0
η0t = −

1

t
(w1

t − y1t )(1 + 2(u1t )
′(y1t ))(w

1
t − y1t ) +O(t−1−εη

1/2
t ).(5.4e)

P r o o f. By interpolation it suffices to prove (5.4a) for θ = 1. As u⊥t (ỹ
⊥
t )

is bounded, we have |w⊥
t |

2 ≤ Cη⊥t . Then using ut(y
1
t )

2 = (y1t )
2 + O(t−β)

we may estimate

(w1
t )

2 = (w1
t − u1t (y

1
t ))

2 + u1t (y
1
t )

2 + 2(w1
t − u1t (y

1
t ))ut(y

1
t ) + hc(5.5)

≤ 2(w1
t − u1t (y

1
t ))

2 + 2u1t (y
1
t )

2 + 1 ≤ 12η0t + Ct−β.

Thus (5.4b) follows from (5.4a) by the estimate

t−2e−iχk(t)·pVk(x)e
iχk(t)·p ≤ Ct−2(1 + p2)1−ε ≤ C ′t−2ε(1 + |wt|

2)1−ε.

Next we note that

u1t (y
1
t ) + z10 − χ̇1

k(t)/t 6= 0 ⇒ |x1 − χ1
k(t)| ≥

1
2
t2−β

⇒ ∇Vk(x− χk(t)) = O(t−µ(2−β)),

u⊥t (ỹ
⊥
t )− χ̇⊥

k (t) 6= 0 ⇒ |x⊥ − χ⊥
k (t)| ≥

1
2 t

1−β

⇒ ∇Vk(x− χk(t)) = O(t−µ(1−β)),

hence using the fact that χ̇1
k(t)/t, χ̇

⊥
k (t), u

1
t (y

1
t )η

−1/2
t , u⊥t (ỹ

⊥
t ) are O(1), we

obtain

∂x1
Vk(x− χk(t))(u

1
t (y

1
t ) + z10 − χ̇1

t (t)/t) = O(t−εη
1/2
t ),(5.6)

∂x⊥
Vk(x− χk(t))(u

⊥
t (ỹ

⊥
t )− χ̇⊥

k (t)) = O(t−ε).(5.6′)

Then reasoning as in the proof of Lemma 2.4 we can see that (5.6)–(5.6′)
imply (5.4c).

Finally, we obtain (5.4d, e) calculating

DH0
u⊥t (ỹ

⊥
t ) =

1

t
u⊥′
t (ỹ⊥t )(p⊥ − ỹ⊥t ) +O(t−2+β),

−tDH0
η0t +O(t−ε) = (w1

t )
2 − 2(y1t − w1

t )u
1′
t (y

1
t )w

1
t − u1t (y

1
t )w

1
t

+ 2(y1t − w1
t )(u

1′
t u

1
t )(y

1
t ) + (y1t − w1

t )y
1
t

= (w1
t − y1t )

2

+ 2(w1
t − y1t )(1 + 2u1′t )(y

1
t )(w

1
t − y1t ) +O(t−ε).
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Now it is clear that Corollary 3.1 holds. However, η̃n,t(ηt)
1−ε = O(n1−ε)

and (3.6) holds if O(t−2) is replaced by O(n1−εt−1−ε). Thus the proof of
Proposition 3.2 is valid if C/n is replaced by Cn−ε. All the remaining proofs
of Section 3 are valid if O(t−2) is replaced by O(t−1−ε). In Section 4 we use

(5.1) with Vk(x), H0 replaced by Vk(x − χ̃k(t)), H0k to conclude that H̃k,

H̃k(t) are self-adjoint on the domain of H0k and that

(5.7) H0k(H̃k + i)−1,H0k(H̃k(t) + i)−1,

H̃k(H0k + i)−1, H̃k(t)(H0k + i)−1 ∈ B(L2(Rd)).

The second inequality of (5.1) with H0 and ϕ replaced by H0k and (H0k +
i)−1ϕ gives θ(x1)p

2(H0k + i)−1 ∈ B(L2(Rd)), hence

(5.8) (H0k + i)−1[ip, θ(x1)V
s
k (x− χ̃k(t))](H0k + i)−1 = O(1).

Since ∇V (x) = [ip, V (x)] we obtain the following version of Lemma 4.2(a):

d

dt
V sk (x− χ̃k(t)) = O(t−1−2µ0(I + |H0k|

2)),(5.9)

V sk (x− χ̃k(t)) = V sk (x− ωk) +O(t−2µ0(I + |H0k|
2))(5.9′)

and by (5.7) we may always replace H0k by H̃k or H̃k(t). It is checked in the
Appendix that the assertions of Lemma 4.2(b), (c) still hold and moreover
one has

(5.10) (H̃k + i)[h̃(H̃k), J
0(ỹt)] = O(t−1).

We also note that

(5.11) B = (H̃k + i)−1[ip, θ(x1)V
s
k (x− ωk)](H̃k + i)−1

is compact on L2(Rd).

In order to show that the assertion of Proposition 4.3 still holds it suffices
to fix λ ∈ [−n;n] and to find δ > 0 such that for h ∈ C∞

0 (]λ − δ;λ + δ[),
|h| ≤ 1, one has

(5.12) ±h(H̃k)[iθ(x1)V
s
k (x− ωk), g1(w̃t)]h(H̃k) ≤

1
8 |z̃k|M̃h(t) + Ct−2,

where we assume that g1(λ) = −λ for |λ| ≤ 2
3
|z̃k|, i.e. g(λ) = 1 for |λ| ≤

2
3
|z̃k|.
First of all we introduce g̃(λ) = g1(λ) + λ and we check that

(5.13) θ(x1)g̃(w̃t)h(H̃k) = O(t−2).

Indeed, if θ1 ∈ C∞
0 (R) is such that θ1 = 1 on supp θ, then the stan-

dard pseudo-differential expansion [cf. (A.1) of Appendix] gives θ(x1)g̃(w̃t)
× (1 − θ1)(x1) = O(t−N) for every N ∈ N. To obtain (5.13) we note

that (1 + |p1|
2)θ1(x1)h(H̃k) = O(1) and g̃(λ) = 0 for |λ| ≤ 2

3 |z̃k| implies
|g̃(λ)| ≤ Cλ2, hence |g̃(w̃t)|(1 + |p1|

2)−1 ≤ C|p1|
2t−2(1 + |p1|

2)−1 ≤ Ct−2.
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From (5.13) it is clear that modulo O(t−2) we may replace g1(w̃t) by
−w̃t in (5.12). Next we note that |x1| ≤ τt ⇒ J0(x1/t) = 1 and there is

T0 > 0 such that θ(x1) = θ(x1)J
0(ỹt) for t ≥ T0. Writing h = hh̃ with

h̃ ∈ C∞
0 (]λ− 2δ;λ + 2δ[) and using (5.10) we have

(5.14) ± t−1h(H̃k)J
0(ỹt)[ip1, θ(x1)V

s
k (x− ωk)]J

0(ỹt)h(H̃k)

= ±t−1h(H̃k)J
0(ỹt)h̃1(H̃k)Bh̃1(H̃k)J

0(ỹt)h(H̃k) +O(t−2),

where h̃1(λ) = h̃(λ)(λ + i) and B is the compact operator given by (5.11).
Thus for δ small enough we may estimate (5.14) by

1

8t
|z̃k|h(H̃k)J

0(ỹt)
2h(H̃k) +O(t−2)

=
1

8t
|z̃k|h(H̃k)g(w̃t)J

0(ỹt)
2g(w̃t)h(H̃k) +O(t−2)

≤ 1
8
|z̃k|M̃h(t) + Ct−2,

where the cut-off g(w̃t) was introduced in view of (4.14).
Thus Propositions 4.3 and 4.1 still hold under the general hypotheses of

Section 1.

Appendix. Let J, η ∈ C(Rd) and n ∈ N be such that J (α) ∈ L∞(Rd)
for |α| = n and η(α) ∈ L1(Rd) for |α| ≥ n. Then

J(x)η(D) =
∑

|α|≤n−1

η(α)(D)J (α)(x)i−|α|/α!(A.1)

+O( max
|α|=n≤|α′|≤n+d+1

‖J (α)‖L∞(Rd)‖η
(α′)‖L1(Rd)).

In particular, we may apply (A.1) with n > m + d if J, η ∈ Sm1 (Rd),
where the notation f ∈ Sm1 (Rd) means that for any α ∈ N

d one has the
estimate |f (α)(x)| ≤ Cα(1 + |x|)m−|α|.

It is easy to check that applying formula (A.1) we obtain the commutator
estimates needed in the proof of Lemma 4.4.

Proof of Lemma 3.6 . Let ϕ,ψ ∈ D(H0), ϕt = U(t, t0)ϕ and ψ̃t =

Ũ(t, t0)ψ. Then

‖Ωt′′ϕ−Ωt′ϕ‖ = sup
‖ψ‖≤1
ψ∈D(H0)

|(Ωt′′ϕ−Ωt′ϕ,ψ)| ≤ sup
‖ψ‖≤1
ψ∈D(H0)

t′′\
t′

dt

∣∣∣∣
d

dt
(Ωtϕ,ψ)

∣∣∣∣,

∣∣∣∣
d

dt
(Ωtϕ,ψ)

∣∣∣∣ = |((DH0
M(t) +O(t−1−ε))ϕt, ψ̃t)|

≤ 4(M̃0(t)ϕt, ϕt)
1/2(M̃0(t)ψ̃t, ψ̃t)

1/2 + Ct−1−ε‖ϕ‖ · ‖ψ‖,



CHARGE TRANSFER SCATTERING 59

and we obtain ‖Ωt′′ϕ−Ωt′ϕ‖ → 0 as t′, t′′ → ∞ estimating
Tt′′
t′
dt

∣∣ d
dt(Ωtϕ,ψ)

∣∣
by

[ t′′\
t′

(M̃0(t)ϕt, ϕt) dt
]1/2[ t′′\

t′

(M̃0(t)ψ̃t, ψ̃t) dt
]1/2

+ Ct′−ε‖ϕ‖ · ‖ψ‖.

Proof of Lemma 4.2 . By (5.9)–(5.9′), for ζ ∈ C \ R we have

(ζ − H̃k(t))
−1 − (ζ − H̃k)

−1 = (ζ − H̃k(t))
−1(H̃k(t)− H̃k)(ζ − H̃k)

−1

= O

(
t−ε

1 + |ζ|2

|Im ζ|2

)
,

d

dt
(ζ − H̃k(t))

−1 = (ζ − H̃k(t))
−1

(
d

dt
H̃k(t)

)
(ζ − H̃k(t))

−1

= O

(
t−1−ε 1 + |ζ|2

|Im ζ|2

)

with ε > 0. We complete the proof of part (b) by using a = H̃k(t) or a = H̃k

in the formula

(A.2) h(a) = i
\
∂ζ h̃(ζ)(ζ − a)−1 dζ ∧ dζ/(2π),

where h̃ ∈ C∞
0 (C) is an almost analytic extension satisfying |∂ζ h̃(ζ)| ≤

Ck|Im ζ|k for every k ∈ N and h̃ = h on R (cf. [11]). To prove (c) we note
that

(ζ − H̃k)
−1[H̃k, w̃t](ζ − H̃k)

−1 = O

(
t−1 1 + |ζ|2

|Im ζ|2

)

and (A.2) with a = H̃k implies [h(H̃k), w̃t] = O(t−1).
We complete the proof using an almost analytic extension of g, allowing

one to express g(w̃t) similarly to (A.2) and obtain the estimate

‖[h(H̃k), g(w̃t)]‖ ≤ C‖[h(H̃k), w̃t]‖.

Proof of (5.10). Let J ∈ C∞
0 (R). Then

2J(ỹt)w̃
2
t J(ỹt) = J(ỹt)

2w̃2
t + w̃2

t J(ỹt)
2 + [[w̃2

t , J(ỹt)], J(ỹt)]

= J(ỹt)
2w̃2

t + w̃2
t J(ỹt)

2 +O(t−6)

and for ζ ∈ C \ R we have

(ζ − H̃k)
−1J(ỹt)w̃

2
t J(ỹt)(ζ − H̃k)

−1

≤ (ζ − H̃k)
−1J(ỹt)(2t

−2H0k − z̃kỹt)J(ỹt)(ζ − H̃k)
−1

= (ζ − H̃k)
−1(t−2J(ỹt)

2H0k + t−2H0kJ(ỹt)
2 +O(1))(ζ − H̃k)

−1

= O

(
1 + |ζ|2

|Im ζ|2

)
.
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Hence w̃tJ
0′(ỹt)(ζ − H̃k)

−1 = O
( 1+|ζ|
|Im ζ|

)
and it remains to use (A.2) as

before noting that

(i+ H̃k)[(ζ − H̃k)
−1, J0(ỹt)]

= (i+ H̃k)(ζ − H̃k)
−1(2t−1w̃tJ

0′(ỹt) +O(t−2))(ζ − H̃k)
−1

= O

(
t−1 1 + |ζ|2

|Im ζ|2

)
.
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