COLLOQUIUM MATHEMATICUM

VOL. 79

1999

NO. 1

CHARGE TRANSFER SCATTERING IN A CONSTANT ELECTRIC FIELD

 $_{\rm BY}$

LECH ZIELIŃSKI (PARIS)

We prove the asymptotic completeness of the quantum scattering for a Stark Hamiltonian with a time dependent interaction potential, created by N classical particles moving in a constant electric field.

1. Introduction. We consider a model describing the quantum dynamics of a light particle (such as an electron) in collisions with some heavy particles (such as some ions) obeying the laws of classical dynamics. Thus only the light particle is considered a quantum particle, while the heavy particles follow some classical trajectories $\mathbb{R} \ni t \mapsto \chi_k(t) \in \mathbb{R}^d$. If V_k denotes the quantum interaction potential between the quantum particle and the *k*th classical particle, the total quantum time-dependent interaction V(t) is the operator of multiplication by

(1.1)
$$V(t,x) = \sum_{1 \le k \le N} V_k(x - \chi_k(t)),$$

and the total time-dependent Hamiltonian H(t) is a self-adjoint operator in $L^2(\mathbb{R}^d)$,

(1.2)
$$H(t) = H_0 + V(t, x),$$

where H_0 denotes the free motion Hamiltonian. The subject of scattering theory is to describe the large time behaviour of the evolution propagator $\{U(t,t_0)\}_{t\geq t_0}$ of H(t), that is, the family of unitary operators in $L^2(\mathbb{R}^d)$ satisfying

(1.3)
$$i\frac{d}{dt}U(t,t_0)\varphi = H(t)U(t,t_0)\varphi, \quad U(t_0,t_0)\varphi = \varphi,$$

for φ from the domain of H_0 .

The first papers describing such a model considered the case of linear classical trajectories and H_0 the Laplace operator [10, 25, 26]. The papers

¹⁹⁹¹ Mathematics Subject Classification: 81U10, 47A40, 47N50.

^[37]

L. ZIELIŃSKI

[7, 29] deal with classical trajectories which are only asymptotically linear and the papers [30, 31, 32] deal with the dispersive case when H_0 is a more general elliptic operator. We note that all these papers consider the hypothesis that different classical trajectories have different asymptotic velocities $\lim_{t\to\infty} \chi'_k(t)$, which implies the separation of trajectories: $|\chi_k(t) - \chi_{k'}(t)| \ge ct$ with c > 0 if $k \ne k'$.

The aim of this paper is to consider the situation arising in the presence of a constant electric field $E \in \mathbb{R}^d \setminus \{0\}$, when the free motion Hamiltonian for a particle of mass m > 0 and charge $q \neq 0$ has the form

$$h_0(x,p) = \frac{p^2}{2m} - qE \cdot x$$

and the Hamilton equations $\dot{p}(t) = qE$, $\dot{x}(t) = p(t)/m$ have the solutions of the form

$$p(t) = qEt + mv, \quad x(t) = \frac{qE}{2m}t^2 + vt + \omega,$$

where $v = p(0)/m \in \mathbb{R}^d$ and $\omega = x(0) \in \mathbb{R}^d$. Thus the above solutions of the Hamilton equations describe the motion that is free in the directions orthogonal to the constant field E and uniformly accelerated in the direction parallel to E.

We shall consider only the simplest situation when different classical trajectories have different asymptotic accelerations $\lim_{t\to\infty} \chi_k''(t)$. More precisely we begin by assuming the following separation condition: there exist constants T_0 , c > 0, such that for $t \ge T_0$,

(1.4)
$$|\chi_k(t) - \chi_{k'}(t)| \ge ct^2 \quad \text{if } 1 \le k < k' \le N.$$

Let m_k , q_k be the mass and the charge of the kth classical particle and assume that $\chi(t) = (\chi_1(t), \ldots, \chi_N(t))$ is a solution of the Newton equations

(1.5)
$$m_k \chi_k''(t) = q_k E - \sum_{k' \in \{1, \dots, N\} \setminus \{k\}} \nabla V_{k,k'}(\chi_k(t) - \chi_{k'}(t)),$$

where the classical interaction potentials $V_{k,k'}$ satisfy the decay condition

(1.6)
$$|\nabla V_{k,k'}(x)| \le C_0 |x|^{-1-\mu_0} \quad \text{for } |x| \ge C_0$$

with $C_0, \mu_0 > 0$.

It is clear that (1.4)-(1.6) imply

(1.7)
$$\chi_k''(t) = z_k + O(t^{-2(1+\mu_0)})$$
 with $z_k = \frac{q_k}{m_k} E$

as $t \to \infty$, i.e. $z_k = (q_k/m_k)E = \lim_{t\to\infty} \chi_k''(t)$ is the asymptotic acceleration of the trajectory χ_k . Since (1.7) means that $\frac{d}{dt}(\chi_k'(t) - z_k t) = O(t^{-2-2\mu_0})$, the limit

$$v_k = \lim_{t \to \infty} (\chi'_k(t) - z_k t)$$

exists and introducing $\tilde{\chi}_k$ by the relation

(1.8)
$$\chi_k(t) = \frac{1}{2}z_kt^2 + \upsilon_k t + \widetilde{\chi}_k(t),$$

we have

(1.9)
$$\widetilde{\chi}_{k}''(t) = O(t^{-2-2\mu_{0}}), \quad \widetilde{\chi}_{k}'(t) = O(t^{-1-2\mu_{0}}) \quad \text{as } t \to \infty.$$

The Hamiltonian of the free motion for a quantum particle of mass $m_0 > 0$ and charge $q_0 \neq 0$ has the form

(1.10)
$$H_0 = \frac{p^2}{2m_0} - q_0 E \cdot x,$$

where $p = (p_1, \ldots, p_d) = (-i\partial_{x_1}, \ldots, -i\partial_{x_d}).$

For quantum interactions V_k we assume that for some constants $C, \hat{C}, \varepsilon_0 > 0$,

(1.11a) $V_k(x)(1+p^2)^{-1+\varepsilon_0}$ is a compact operator in $L^2(\mathbb{R}^d)$,

(1.11b) $|\partial_x^{\alpha} V_k(x)| \le C$ for $|x \cdot E| \ge \widehat{C}$ and $|\alpha| \le 2$,

and $V_k = V_k^l + V_k^s$ with real valued functions V_k^l, V_k^s , such that for some $\mu > 0$ we have

(1.11c)
$$|\partial_x^{\alpha} V_k^l(x)| \le C(1+|x|)^{-\mu-|\alpha|}$$
 for $x \in \mathbb{R}^d$ and $|\alpha| \le 1$,
(1.11d) $|\partial_x^{\alpha} V_k^s(x)| \le C(1+|x|)^{-\mu+(|\alpha|-1)/2}$ for $|x \cdot E| \ge \widehat{C}$

and
$$|\alpha| \leq 1$$
.

THEOREM 1. Let $U(t,t_0)$ be defined by (1.3) with H(t) given by (1.1), (1.2), (1.10). For k = 0, 1, ..., N, let $z_k = q_k E/m_k$ be such that $z_k \neq z_{k'}$ if $0 \leq k < k' \leq N$. Assume that the trajectories $\chi_k(t)$ have the form (1.8) with $\widetilde{\chi}_k(t)$ satisfying (1.9) for some $\mu_0 > 0$. If $V_k = V_k^l + V_k^s$ satisfy (1.11a–d) for some $\mu > 0$, $\varepsilon_0 > 0$, then the limit

(1.12)
$$\Omega(t_0)\psi = \lim_{t \to \infty} U(t, t_0)^* e^{-itH_0 - iS(t)}\psi \quad with$$
$$S(t) = \int_1^t d\tau \sum_{1 \le k \le N} V_k^l (\frac{1}{2}z_0\tau^2 - \chi_k(\tau)),$$

exists in the norm of $L^2(\mathbb{R}^d)$ for every $\psi \in L^2(\mathbb{R}^d)$. Moreover, the asymptotic completeness holds, i.e. the wave operator $\Omega(t_0)$ defined by (1.12) is unitary.

We recall the result of I. M. Sigal [20] (cf. also [3, 4, 5]) which guarantees the absence of eigenvalues for 2-body Stark Hamiltonians $H_k = H_0 + V_k(x)$. This allows us to neglect bound states and the asymptotic completeness formulated in Theorem 1 implies that for every $\varphi \in L^2(\mathbb{R}^d)$ there exists $\psi \in L^2(\mathbb{R}^d)$ such that $\varphi = \Omega(t_0)\psi$. Thus $U(t, t_0)\varphi - e^{-itH_0 - iS(t)}\psi \to 0$ as $t \to \infty$, which means that the asymptotic behaviour of $U(t, t_0)\varphi$ is asymptotically the same as for the free evolution (modulo a phase factor $e^{-iS(t)}$).

We note that the approach used in the proof below comes from recent developments of scattering theory of N-body systems ([6, 8, 21]). We also mention the references [9, 12, 15–17, 19, 23, 24, 27, 28, 33] concerning Stark scattering in the 2-body case and [1, 2, 13, 14, 18, 22] in the N-body case.

In Section 2 we begin by describing in Lemma 2.1 asymptotic concentration of the free evolution trajectories $e^{-itH_0}\varphi$ on classical Stark trajectories. Then it is easy to prove the existence of the wave operator $\Omega(t_0)$ given by (1.12). Clearly $\Omega(t_0)$ is an isometric injection and in order to prove the asymptotic completeness it suffices to prove the existence of the limit

(1.12')
$$\Omega(t_0)^* \varphi = \lim_{t \to \infty} e^{itH_0 + iS(t)} U(t, t_0) \varphi$$

for every $\varphi \in L^2(\mathbb{R}^d)$. Indeed, if $\Omega(t_0)^*$ given by (1.12') exists, then applying the chain rule we get $\Omega(t_0)\Omega(t_0)^*\varphi = \varphi$, that is, $\Omega(t_0)$ is surjective and hence unitary.

To begin the proof of the existence of (1.12') we assume for simplicity $V_k^s = 0$ and introduce the auxiliary observable η_t . This observable is used in Proposition 3.2 to introduce an energy cut-off, similarly to the "boosted Hamiltonian" of Graf [7]. However, instead of Enss approach used in Graf [7], our next step is based on the existence of the wave operators $\Omega_k(t)$ of Proposition 3.7 (similar to the Deift–Simon operators of the N-body theory developed in Graf [8]). Then Proposition 3.7 allows us to localize and "distinguish" interactions of different classical charges, reducing the problem to the 2-body problem when the number of classical charges is N = 1.

The situation N = 1 is studied in Section 4 using the ideas of the Mourre estimate. More precisely, knowing that $z_0 \cdot p$ is the conjugate operator for H_0 (i.e. we have the positive commutator $[iH_0, z_0 \cdot p] = z_0^2 I$), we find the propagation estimate of Proposition 4.3 using a suitable cut-off $g_1(z_0 \cdot p/t)$ instead of $z_0 \cdot p$. Finally, in Section 5 we sketch the idea allowing one to modify the observable η_t in order to recover all the previous results in the case of interaction potentials with singularities, $V_k^s \neq 0$.

2. Preliminary estimates. For $\mathcal{U} \subset \mathbb{R}^d$, $C_0^{\infty}(\mathcal{U})$ is the set of smooth functions with compact support in \mathcal{U} . We write $a_t = O(f(t))$ if there is a constant C > 0 such that $||a_t|| \leq Cf(t)$, where $||\cdot||$ is the norm of $L^2(\mathbb{R}^d)$ or the norm of bounded operators $B(L^2(\mathbb{R}^d))$. The analogous notation will be used when $a_t = (a_t^1, \ldots, a_t^d)$ assuming $||a_t|| = (||a_t^1||^2 + \ldots + ||a_t^d||^2)^{1/2}$. Moreover, $a_t = b_t + O(f(t))$ means $a_t - b_t = O(f(t))$. For $Z \subset \mathbb{R}$, $\mathbf{1}_Z$ denotes the characteristic function of Z on \mathbb{R} . Assume that V_0 is a real function satisfying

(2.1)
$$|\partial_t^n \partial_x^\alpha V_0(t,x)| \le Ct^{-2\mu-2|\alpha|-n} \quad \text{for } |\alpha|+n \le 1,$$

and denote by $U_0(t, t_0)$ the evolution propagator of the Hamiltonian

(2.2)
$$H_0(t) = H_0 + V_0(t, x),$$

where H_0 is given by (1.10). By rescaling we may assume further on that $m_0 = 1$.

Let $y_t = (y_t^1, \dots, y_t^d)$, $w_t = (w_t^1, \dots, w_t^d)$ be systems of d commuting self-adjoint operators,

(2.3)
$$y_t = \frac{2x}{t^2} - z_0, \quad w_t = \frac{p}{t} - z_0.$$

LEMMA 2.1. Let $U_0(t,t_0)$, y_t , w_t be as above and $\varphi \in C_0^{\infty}(\mathbb{R}^d)$. Then

(2.4)
$$w_t U_0(t, t_0)\varphi = O(t^{-1}), \quad y_t U_0(t, t_0)\varphi = O(t^{-1})$$

and for every $\kappa > 0$ and $j = 1, \ldots, d$ one has $\mathbf{1}_{[\kappa;\infty[}(|y_t^j|)U_0(t,t_0)\varphi = O(t^{-1}).$

Proof. Define $U_0(t,t_0) = U_t^0$, $f(t) = U_t^{0*} p U_t^0 \varphi$ and $g(t) = U_t^{0*} x U_t^0 \varphi$. Then

$$f'(t) = U_t^{0*}[iH_0(t), p]U_t^0 \varphi = z_0 \varphi + O(t^{-2(1+\mu)}),$$

$$g'(t) = U_t^{0*}[iH_0(t), x]U_t^0 \varphi = f(t)$$

$$= f(t_0) + \int_{t_0}^t f'(\tau) d\tau = tz_0 \varphi + O(1),$$

hence $w_t U_t^0 \varphi = t^{-1} U_t^0 (f(t) - z_0 t \varphi) = O(t^{-1})$. Moreover,

$$g(t) = g(t_0) + \int_{t_0}^{t} g'(\tau) \, d\tau = \frac{1}{2} z_0 t^2 \varphi + O(t),$$

and $(x - \frac{1}{2}z_0t^2)U_t^0\varphi = U_t^0(g(t) - \frac{1}{2}z_0t^2\varphi) = O(t)$ implies the second estimate (2.4). Finally, using $\kappa^2 \mathbf{1}_{[\kappa;\infty[}(|\lambda|) \leq \lambda^2$ and the second estimate (2.4) we obtain

$$(\kappa^2 \mathbf{1}_{[\kappa;\infty[}(|y_t^j|)U_t^0\varphi, U_t^0\varphi) \le ((y_t^j)^2 U_t^0\varphi, U_t^0\varphi) = \|y_t^j U_t^0\varphi\|^2 = O(t^{-2}). \blacksquare$$

Note that (1.9) implies the existence of

(2.5)
$$\lim_{t \to \infty} \widetilde{\chi}_k(t) = \omega_k \quad \text{with} \quad \widetilde{\chi}_k(t) = \omega_k + O(t^{-2\mu_0}),$$

hence

(2.5')
$$\chi'_k(t) = z_k t + v_k + O(t^{-1-2\mu_0}), \quad \chi_k(t) = \frac{1}{2} z_k t^2 + v_k t + O(1).$$

By rotation of the coordinate system we may assume further on that $E = (E_1, 0, \ldots, 0)$ with $E_1 \in \mathbb{R} \setminus \{0\}$, hence $z_k = (z_k^1, 0, \ldots, 0)$ with $z_k^1 =$

 $E_1 q_k / m_k$. Further, we set

(2.6)
$$\tau = \frac{1}{16} \min\{|z_k^1 - z_{k'}^1| : 0 \le k < k' \le N\}.$$

Fix $J^0 \in C_0^{\infty}(] - 4\tau; 4\tau[)$ such that $0 \leq J^0 \leq 1$, $J^0 = 1$ on $[-2\tau; 2\tau]$, define $\overline{J}^0 = 1 - J^0$ and let

(2.7)
$$V_{0k}(t,x) = \overline{J}^0(4x_1/t^2 - 2z_k^1)V_k^l(x - \chi_k(t))$$
$$= \overline{J}^0(2y_t^1 - 2\widetilde{z}_k)V_k^l(x - \chi_k(t))$$

where we have set $\tilde{z}_k = z_k^1 - z_0^1$. Then we have

PROPOSITION 2.2. Let $V_0 = \sum_{1 \leq k \leq N} V_{0k}$, where V_{0k} is given by (2.7). Then (2.1) holds and for every $\varphi \in L^2(\mathbb{R}^d)$ the following limits exist:

(2.8)
$$\widetilde{\Omega}(t_0)^* \varphi = \lim_{t \to \infty} e^{itH_0 + iS(t)} U_0(t, t_0) \varphi,$$
$$\widetilde{\Omega}(t_0) \varphi = \lim_{t \to \infty} U_0(t, t_0)^* e^{-itH_0 - iS(t)} \varphi.$$

Proof. Since $\chi_k(t) = \frac{1}{2}z_kt^2 + O(t)$ there is T_0 such that for $t \ge T_0$ we have

$$\overline{J}^{0}(4x_{1}/t^{2} - 2z_{k}^{1}) \neq 0 \Rightarrow |4x_{1}/t^{2} - 2z_{k}^{1}| \geq 2\tau$$
$$\Rightarrow |x - \chi_{k}(t)| \geq |x_{1} - \frac{1}{2}z_{k}^{1}t^{2}| - |\frac{1}{2}z_{k}t^{2} - \chi_{k}(t)|$$
$$\geq \frac{1}{2}\tau t^{2} - C't \geq \frac{1}{4}\tau t^{2}$$

and applying (1.11) we find

(2.9) $|x - \chi_k(t)| \ge \frac{1}{4}\tau t^2 \Rightarrow |(\partial^{\alpha} V_k^l)(x - \chi_k(t))| \le Ct^{-2(\mu+|\alpha|)}$ if $|\alpha| \le 1$. We conclude that V_0 satisfies (2.1) noting that

$$\frac{\partial}{\partial x_1}(\overline{J}^0(4x_1/t^2 - 2z_k^1)) = O(t^{-2}), \quad \frac{\partial}{\partial t}(\overline{J}^0(4x_1/t^2 - 2z_k^1)) = O(t^{-1}).$$

Since $C_0^{\infty}(\mathbb{R}^d)$ is dense in $L^2(\mathbb{R}^d)$, to obtain the existence of $\widetilde{\Omega}(t_0)^*\varphi$ it suffices to consider $\varphi \in C_0^{\infty}(\mathbb{R}^d)$ and to check that

(2.10)
$$\frac{d}{dt} (e^{itH_0 + iS(t)} U_0(t, t_0)\varphi) = e^{itH_0 + iS(t)} i(S'(t) - V_0(t, x)) U_0(t, t_0)\varphi = O(t^{-1-2\mu}).$$

However, for $1 \le k \le N$ we have $|z_k^1 - z_0^1| \ge 16\tau$, hence $\overline{J}^0(2z_0^1 - 2z_k^1) = 1$ and

(2.11)
$$V_0(t, \frac{1}{2}z_0t^2) = \sum_{1 \le k \le N} \overline{J}^0(2z_0^1 - 2z_k^1)V_k^l(\frac{1}{2}z_0t^2 - \chi_k(t)) = S'(t).$$

Thus we may write

$$V_0(t,x) - S'(t) = V_0(t,x) - V_0\left(t,\frac{1}{2}z_0t^2\right) = \gamma_t \cdot \left(x - \frac{1}{2}z_0t^2\right) = \frac{1}{2}\gamma_t \cdot t^2 y_t$$

with

$$\gamma_t = \int_0^1 d\theta \, \nabla_x V_0 \left(t, (1-\theta)x + \frac{1}{2}\theta z_0 t^2 \right)$$

and (2.1) implies $t^2 \gamma_t = O(t^{-2\mu})$. Therefore

(2.12)
$$\| (S'(t) - V_0(t, x)) U_0(t, t_0) \varphi \| = \left\| \frac{1}{2} t^2 \gamma_t \cdot y_t U_0(t, t_0) \varphi \right\|$$
$$\leq C t^{-2\mu} \| y_t U_0(t, t_0) \varphi \|$$

and by (2.4) the right hand side of (2.12) is $O(t^{-1-2\mu})$, i.e. (2.10) follows.

We may use $V_0(t, x) = 0$ in Lemma 2.1, hence it is clear that e^{-itH_0} satisfies the same estimates as $U_0(t, t_0)$, and we obtain the existence of the second limit (2.8) as above with e^{-itH_0} and $U_0(t, t_0)$ interchanged.

Proof of the existence of $\Omega(t_0)$. Using the chain rule and the existence of (2.8), we note that it suffices to prove the existence of $\lim_{t\to\infty} U(t,t_0)^*$ $\times U_0(t,t_0)\varphi$, where as before we may assume $\varphi \in C_0^{\infty}(\mathbb{R}^d)$. Let $J \in C_0^{\infty}(\mathbb{R}^d)$ be such that J(x) = 1 for $|x| \leq \tau$, J(x) = 0 for $|x| \geq 2\tau$, $0 \leq J \leq 1$. Then Lemma 2.1 implies

$$\|(1-J)(y_t)U_0(t,t_0)\varphi\| \le \|\mathbf{1}_{[\tau;\infty[}(|y_t|)U_0(t,t_0)\varphi\| = O(t^{-1}),$$

i.e.

$$\lim_{t \to \infty} U(t, t_0)^* J(y_t) U_0(t, t_0) \varphi = \lim_{t \to \infty} U(t, t_0)^* U_0(t, t_0) \varphi$$

and it suffices to show that

(2.13)
$$\frac{d}{dt}(U(t,t_0)^*J(y_t)U_0(t,t_0)\varphi)$$
$$= U(t,t_0)^*(\mathbb{D}_{H_0}J(y_t) + iJ(y_t)(V(t,x) - V_0(t,x)))U_0(t,t_0)\varphi$$
$$= O(t^{-1-2\mu}) + O(t^{-2}),$$

where $\mathbb{D}_{a_t} b_t = [ia_t, b_t] + \frac{d}{dt} b_t$ denotes the Heisenberg derivative. However, a simple calculation gives

(2.14)
$$\mathbb{D}_{H_0}J(y_t) = \frac{2}{t}\sum_{1 \le j \le d} \partial_j J(y_t)(w_t^j - y_t^j) + O(t^{-3})$$

and using (2.4) we obtain $(\mathbb{D}_{H_0}J(y_t))U_0(t,t_0)\varphi = O(t^{-2})$. Next for $1 \le k \le N$ we have

$$\begin{split} J^0(2y_t^1 - 2\widetilde{z}_k) &\neq 0 \Rightarrow |y_t^1 - \widetilde{z}_k| < 2\tau \\ \Rightarrow |y_t^1| \geq |\widetilde{z}_k| - 2\tau = |z_k^1 - z_0^1| - 2\tau \geq 14\tau \Rightarrow J(y_t) = 0, \\ \text{hence } J(y_t)\overline{J}^0(2y_t^1 - 2\widetilde{z}_k) = J(y_t) \text{ and} \end{split}$$

$$J(y_t)(V - V_0)(t, x) = \sum_{1 \le k \le N} J(y_t) \overline{J}^0(2y_t^1 - 2\widetilde{z}_k) V_k^s(x - \chi_k(t)).$$

If T_0 is as at the beginning of the proof of Proposition 2.2, then for $t \geq T_0$ we have

$$\overline{J}^0(2y_t^1 - 2\widetilde{z}_k) \neq 0 \Rightarrow |x - \chi_k(t)| \ge \frac{1}{4}\tau t^2 \Rightarrow |V_k^s(x - \chi_k(t))| \le Ct^{-1-2\mu}.$$

Until the end of Section 4 we assume that $V_k^s = 0$, that is, $V_k = V_k^l$. We now introduce

(2.15)
$$\eta_t^0 = \frac{1}{2} \left(\frac{p_1}{t} - \frac{2x_1}{t^2} \right)^2 + \frac{1}{4} \left(\frac{2x_1}{t^2} - z_0^1 \right)^2 + \frac{1}{2} \sum_{2 \le j \le d} \frac{p_j^2}{t^2} + I,$$

(2.16) $\eta_t = \eta_t^0 + \frac{v(t,x)}{t^2}.$

LEMMA 2.3. If η_t^0 , η_t are given by (2.15)–(2.16) and \mathbb{D} is defined as below (2.13), then $\mathbb{D}_{H(t)}\eta_t = \mathbb{D}_{H_0}\eta_t^0 + r_t$ with

(2.17)
$$r_t = \frac{d}{dt} \left(\frac{V(t,x)}{t^2} \right) - \left[iV(t,x), \frac{x_1 p_1 + p_1 x_1}{t^3} \right].$$

Proof. A simple transformation of the expression (2.15) gives

$$\begin{split} \eta_t^0 &= \frac{1}{2} \left(\frac{p_1^2}{t^2} - 2\frac{x_1 p_1 + p_1 x_1}{t^3} + \frac{4x_1^2}{t^4} \right) \\ &\quad + \frac{1}{4} \left(4\frac{x_1^2}{t^4} - 4\frac{z_0^1 x_1}{t^2} + (z_0^1)^2 \right) + \frac{1}{2} \sum_{2 \le j \le d} \frac{p_j^2}{t^2} + I \\ &= \frac{1}{2} \frac{p_1^2}{t^2} - \frac{x_1 p_1 + p_1 x_1}{t^3} + \left(\frac{1}{2} \cdot 4 + \frac{1}{4} \cdot 4 \right) \frac{x_1^2}{t^4} \\ &\quad - \frac{z_0^1 x_1}{t^2} + \frac{(z_0^1)^2}{4} + \frac{1}{2} \sum_{2 \le j \le d} \frac{p_j^2}{t^2} + I \\ &= \frac{1}{t^2} \left(\frac{1}{2} p^2 - z_0^1 x_1 \right) - \frac{x_1 p_1 + p_1 x_1}{t^3} + \frac{3x_1^2}{t^4} + \frac{(z_0^1)^2}{4} + I. \end{split}$$

Therefore we may express η^0_t in the following way:

(2.15')
$$\eta_t^0 = \frac{H_0}{t^2} - \frac{x_1 p_1 + p_1 x_1}{t^3} + \frac{3x_1^2}{t^4} + \frac{(z_0^1)^2}{4} + I$$

and compute

$$\mathbb{D}_{H(t)}\eta_t = \mathbb{D}_{H(t)}\left(\eta_t^0 + \frac{V(t,x)}{t^2}\right) = \mathbb{D}_{H(t)}\left(\frac{H(t)}{t^2} - \frac{x_1p_1 + p_1x_1}{t^3} + \frac{3x_1^2}{t^4}\right)$$
$$= \mathbb{D}_{H(t)}\left(\frac{H(t)}{t^2}\right) - \left[iV(t,x), \frac{x_1p_1 + p_1x_1}{t^3}\right]$$
$$+ \mathbb{D}_{H_0}\left(-\frac{x_1p_1 + p_1x_1}{t^3} + \frac{3x_1^2}{t^4}\right)$$

$$= \frac{d}{dt} \left(\frac{H_0}{t^2} + \frac{V(t, x)}{t^2} \right) - \left[iV(t, x), \frac{x_1 p_1 + p_1 x_1}{t^3} \right] \\ + \mathbb{D}_{H_0} \left(-\frac{x_1 p_1 + p_1 x_1}{t^3} + \frac{3x_1^2}{t^4} \right) \\ = \mathbb{D}_{H_0} \left(\frac{H_0}{t^2} \right) + \mathbb{D}_{H_0} \left(-\frac{x_1 p_1 + p_1 x_1}{t^3} + \frac{3x_1^2}{t^4} \right) + r_t = \mathbb{D}_{H_0} \eta_t^0 + r_t. \blacksquare$$

LEMMA 2.4. If r_t is given by (2.17) then $r_t = O(t^{-2})$.

 $\Pr{\texttt{roof.}}$ First note that

$$\frac{d}{dt}(t^{-2}V(t,x)) = t^{-2}\partial_t V(t,x) - 2t^{-3}V(t,x) = t^{-2}\partial_t V(t,x) + O(t^{-3})$$

Thus setting $\chi'_k(t) = (\dot{\chi}^1_k(t), \dot{\chi}^\perp_k(t)) \in \mathbb{R} \times \mathbb{R}^{d-1}$ and using $\dot{\chi}^\perp_k(t) = O(1)$, we have

$$t^{2}r_{t} = \partial_{t}V(t,x) - \left[iV(t,x), \frac{x_{1}p_{1} + p_{1}x_{1}}{t}\right] + O(t^{-1})$$
$$= \sum_{1 \le k \le N} \partial_{x_{1}}V_{k}(x - \chi_{k}(t)) \left(\frac{2x_{1}}{t} - \dot{\chi}_{k}^{1}(t)\right) + O(1).$$

But $2x_1/t - \dot{\chi}_k^1(t) = (2/t)(x_1 - \chi_k^1(t)) + O(1)$ by (2.5') and we complete the proof noting that $\partial_{x_1} V_k(x - \chi_k(t))(x_1 - \chi_k^1(t)) = O(1)$.

PROPOSITION 2.5. If η_t is given by (2.16) and \mathbb{D} as below (2.13), then

(2.18)
$$\mathbb{D}_{H(t)}\eta_t = -\frac{3}{t} \left(\frac{p_1}{t} - \frac{2x_1}{t^2}\right)^2 - \sum_{2 \le j \le d} \frac{p_j^2}{t^3} + O(t^{-2}).$$

Proof. By Lemmas 2.3 and 2.4 it suffices to check that

(2.19)
$$\mathbb{D}_{H_0}\eta_t^0 = -\frac{3}{t} \left(\frac{p_1}{t} - \frac{2x_1}{t^2}\right)^2 - \sum_{2 \le j \le d} \frac{p_j^2}{t^3}$$

Now we note that formally

(2.20)
$$\mathbb{D}_{a_t}(b_t\widetilde{b}_t) = (\mathbb{D}_{a_t}b_t)\widetilde{b}_t + (b_t\mathbb{D}_{a_t}\widetilde{b}_t).$$

If a_t and b_t are self-adjoint, then

(2.20')
$$\mathbb{D}_{a_t}(b_t)^2 = b_t(\mathbb{D}_{a_t}b_t) + (\mathbb{D}_{a_t}b_t)b_t = 2b_t(\mathbb{D}_{a_t}b_t) + hc,$$

where $m_t + hc = \frac{1}{2}(m_t + m_t^*)$ denotes the Hermitian symmetrization of the operator m_t . In particular, using

(2.21)
$$\mathbb{D}_{H_0} w_t = -\frac{w_t}{t}, \quad \mathbb{D}_{H_0} y_t^1 = \frac{2}{t} (w_t^1 - y_t^1)$$

[where w_t , y_t are given by (2.3)], we obtain

$$\frac{1}{4}\mathbb{D}_{H_0}(y_t^1)^2 = \frac{1}{2}y_t^1\mathbb{D}_{H_0}y_t^1 + hc = \frac{1}{t}y_t^1(w_t^1 - y_t^1) + hc$$
$$\frac{1}{2}\mathbb{D}_{H_0}(w_t^1 - y_t^1)^2 = (w_t^1 - y_t^1)\mathbb{D}_{H_0}(w_t^1 - y_t^1) + hc$$
$$= \frac{1}{t}(w_t^1 - y_t^1)(2y_t^1 - 3w_t^1) + hc.$$

Introducing $w_t^{\perp} = (w_t^2, \dots, w_t^d) = (p_2/t, \dots, p_d/t)$ we may express (2.15) in the form

$$\eta_t^0 = \frac{1}{2}(w_t^1 - y_t^1)^2 + \frac{1}{4}(y_t^1)^2 + \frac{1}{2}|w_t^\perp|^2 + I$$

and it is clear that $\frac{1}{2}\mathbb{D}_{H_0}|w_t^{\perp}|^2 = -\frac{1}{t}|w_t^{\perp}|^2$. To complete the proof we compute

$$\begin{split} \frac{1}{2} \mathbb{D}_{H_0} (w_t^1 - y_t^1)^2 &+ \frac{1}{4} \mathbb{D}_{H_0} (y_t^1)^2 \\ &= \frac{1}{t} (w_t^1 - y_t^1) (2y_t^1 - 3w_t^1) + \frac{1}{t} (w_t^1 - y_t^1) y_t^1 + hc \\ &= \frac{1}{t} (w_t^1 - y_t^1) (3y_t^1 - 3w_t^1) + hc = -\frac{3}{t} (w_t^1 - y_t^1)^2. \end{split}$$

3. Propagation estimates. We denote by $\mathcal{G}(H)$ the set of operatorvalued functions $t \mapsto M(t) \in B(L^2(\mathbb{R}^d))$ satisfying

(3.1)
$$\int_{1}^{T} dt \operatorname{Re}(M(t)U(t,t_0)\varphi, U(t,t_0)\varphi) \leq C \|\varphi\|^2$$

for all $\varphi \in L^2(\mathbb{R}^d)$, all $T \ge 1$ and for some constant C > 0.

Sometimes we write $M(t) \in \mathcal{G}(H(t))$ instead of $M \in \mathcal{G}(H)$. We note that

(3.2) if $M(t) = O(t^{-1-\varepsilon})$ with $\varepsilon > 0$, then $M \in \mathcal{G}(H)$,

(3.3) if $(\widetilde{M} \in \mathcal{G}(H) \text{ and } M(t) \leq \widetilde{M}(t) \text{ for all } t \geq 1)$, then $M \in \mathcal{G}(H)$.

If $\mathbb{D}_{H(t)}M(t)$ is well defined, then writing $U(t,t_0)\varphi = \varphi_t$ we have

(3.4)
$$\int_{1}^{T} dt \left((\mathbb{D}_{H(t)} M(t)) \varphi_t, \varphi_t \right) = \int_{1}^{T} dt \frac{d}{dt} (M(t) \varphi_t, \varphi_t) = \left[(M(t) \varphi_t, \varphi_t) \right]_{1}^{T}$$
and if $M(t) = O(1)$, then $\mathbb{D}_{H(t)} M(t) \in \mathcal{G}(H(t))$.

Note that $\eta_t^0 \ge I$ and $\eta_t = \eta_t^0 + O(t^{-2})$, hence for $n \ge 1$, $t \ge T_0$, $\tilde{\eta}_{n,t} = (1 + \eta_t/n)^{-1}$ is well defined and satisfies $0 \le \tilde{\eta}_{n,t} \le I$. Introducing

(3.5)
$$M_0(t) = \frac{1}{t} \widetilde{\eta}_{n,t} (3(w_t^1 - y_t^1)^2 + |w_t^\perp|^2) \widetilde{\eta}_{n,t},$$

we find that Proposition 2.5 gives

(3.6)
$$n\mathbb{D}_{H(t)}\widetilde{\eta}_{n,t} = -\widetilde{\eta}_{n,t}(\mathbb{D}_{H(t)}\eta_t)\widetilde{\eta}_{n,t} = M_0(t) + O(t^{-2})$$

It is clear that (3.4), (3.2) and (3.6) give

COROLLARY 3.1. If M_0 is given by (3.5), then $M_0 \in \mathcal{G}(H)$.

PROPOSITION 3.2. For every $\varphi \in L^2(\mathbb{R}^d)$ we have

$$\lim_{n \to \infty} \sup_{t \ge T_0} \| (I - \tilde{\eta}_{n,t}^2) U(t,t_0)\varphi \| = 0.$$

Proof. First we set $U(t,t_0)\varphi = \varphi_t$ and note that $0 \leq \lambda \leq 1 \Rightarrow (1-\lambda^2)^2 \leq 4(1-\lambda)$, hence

$$\|(I - \widetilde{\eta}_{n,t}^2)\varphi_t\|^2 = ((I - \widetilde{\eta}_{n,t}^2)^2\varphi_t, \varphi_t) \le 4((I - \widetilde{\eta}_{n,t})\varphi_t, \varphi_t)$$

It remains to note that $\tilde{\eta}_{n,T_0}\varphi_{T_0} \to \varphi_{T_0}$ as $n \to \infty$, and $-n\mathbb{D}_{H(t)}\tilde{\eta}_{n,t} \leq -M_0(t) + Ct^{-2} \leq Ct^{-2}$ allows us to estimate

$$[((I - \widetilde{\eta}_{n,t})\varphi_t, \varphi_t)]_{T_0}^T = -\int_{T_0}^T dt \left((\mathbb{D}_{H(t)}\widetilde{\eta}_{n,t})\varphi_t, \varphi_t \right) \le \int_{T_0}^T dt \, Ct^{-2}/n \le C/n. \blacksquare$$

Further on in this section we assume $n \geq 1$ fixed and write simply $\tilde{\eta}_t = \tilde{\eta}_{n,t}$. As below (2.20'), M(t) + hc denotes the symmetrization $\frac{1}{2}(M(t) + M(t)^*)$.

LEMMA 3.3. Let $J_0 \in C_0^{\infty}(\mathbb{R})$. Then $M_1 \in \mathcal{G}(H)$ if

(3.7)
$$M_1(t) = \frac{1}{t} \tilde{\eta}_t (y_t^1 - w_t^1) J_0(y_t^1) \tilde{\eta}_t + hc.$$

Proof. Let $J \in C^{\infty}(\mathbb{R})$ be such that the derivative $J' = -J_0$, and set $M_{1,0}(t) = \tilde{\eta}_t J(y_t^1) \tilde{\eta}_t.$

Then $\mathbb{D}_{H(t)}M_{1,0} = M_{1,1} + M_{1,2}$ with

$$M_{1,1}(t) = \widetilde{\eta}_t(\mathbb{D}_{H(t)}J(y_t^1))\widetilde{\eta}_t = 2M_1(t) + O(t^{-3}),$$

$$M_{1,2}(t) = 2\widetilde{\eta}_t J(y_t^1)\mathbb{D}_{H(t)}\widetilde{\eta}_t + hc.$$

From (3.4) we have $\mathbb{D}_{H(t)}M_{1,0} \in \mathcal{G}(H)$ and it is clear that in order to show $M_1 \in \mathcal{G}(H)$ it suffices to check that $-M_{1,2} \in \mathcal{G}(H)$.

Noting that

$$w_t^{\perp} \widetilde{\eta}_t = O(1), \quad y_t^1 \widetilde{\eta}_t = O(1), \quad (w_t^1 - y_t^1) \widetilde{\eta}_t = O(1),$$

it is easy to estimate the commutators

$$n[\tilde{\eta}_t, w_t^{\perp}] = -\tilde{\eta}_t [\eta_t^0 + O(t^{-2}), w_t^{\perp}] \tilde{\eta}_t = O(t^{-2}),$$

$$n[\tilde{\eta}_t, w_t^1 - y_t^1] = \tilde{\eta}_t [\eta_t^0 + O(t^{-2}), y_t^1 - w_t^1] \tilde{\eta}_t$$

$$= \tilde{\eta}_t [\frac{1}{4} (y_t^1)^2, y_t^1 - w_t^1] \tilde{\eta}_t + O(t^{-2}) = O(t^{-2}),$$

$$n[\widetilde{\eta}_t, J(y_t^1)] = -\widetilde{\eta}_t[\eta_t^0, J(y_t^1)]\widetilde{\eta}_t = O(t^{-2}).$$

Using (2.18) to express $\mathbb{D}_{H(t)}\tilde{\eta}_t$ in $M_{1,2}(t)$ it is easy to see that the above commutator estimates allow us to write

$$-M_{1,2}(t) = \frac{2}{t}\widetilde{\eta}_t(3(w_t^1 - y_t^1)a_t(w_t^1 - y_t^1) + w_t^{\perp}a_tw_t^{\perp})\widetilde{\eta}_t + O(t^{-2})$$

with $a_t = -n^{-1}J(y_t^1)\tilde{\eta}_t + hc$, and it is clear that the inequality $a_t \leq CI$ implies

(3.8)
$$-M_{1,2}(t) \le 2CM_0(t) + Ct^{-2}$$

where M_0 is given by (3.5). By Lemma 3.3 the right hand side of (3.8) belongs to $\mathcal{G}(H)$ and consequently $-M_{1,2} \in \mathcal{G}(H)$.

PROPOSITION 3.4. Let $J_0 \in C_0^{\infty}(\mathbb{R} \setminus \{\tilde{z}_1, \ldots, \tilde{z}_N\})$ where $\tilde{z}_k = z_k^1 - z_0^1$. Then $M_2 \in \mathcal{G}(H)$ if

(3.9)
$$M_2(t) = \frac{1}{t} \widetilde{\eta}_t J_0(y_t^1) y_t^1 \widetilde{\eta}_t.$$

Proof. If M_1 is given by (3.7), then $M_1 \in \mathcal{G}(H)$ and $M_2 = 3M_1 + M_3$ with

$$M_{3}(t) = \frac{1}{t} \tilde{\eta}_{t} (3w_{t}^{1} - 2y_{t}^{1}) J_{0}(y_{t}^{1}) \tilde{\eta}_{t} + hc.$$

Thus it remains to show that $M_3 \in \mathcal{G}(H)$. But for $1 \leq k \leq N$, $\tilde{z}_k \notin \operatorname{supp} J_0$ and

$$J_0(y_t^1) \neq 0 \Rightarrow |y_t^1 - \tilde{z}_k| = |2x_1/t^2 - z_k^1| \ge c > 0$$

$$\Rightarrow |x - \chi_k(t)| \ge |x_1 - \frac{1}{2}z_k^1t^2| - C't \ge \frac{1}{2}ct^2 - C't$$

implies

$$[iV(t,x), w_t^1]J_0(y_t) = -\partial_x V(t,x)J_0(y_t)t^{-1} = O(t^{-3}).$$

Therefore introducing

$$M_{3,0}(t) = \widetilde{\eta}_t (y_t^1 - w_t^1) J_0(y_t) \widetilde{\eta}_t + hc$$

we find that $\mathbb{D}_{H(t)}M_{3,0} = M_{3,1} + M_{3,2} + M_{3,3}$ with

$$\begin{split} M_{3,1}(t) &= \tilde{\eta}_t (\mathbb{D}_{H(t)}(y_t^1 - w_t^1)) J_0(y_t^1) \tilde{\eta}_t = M_3(t) + O(t^{-3}), \\ M_{3,2}(t) &= \tilde{\eta}_t (y_t^1 - w_t^1) (\mathbb{D}_{H(t)} J_0(y_t^1)) \tilde{\eta}_t + hc, \\ M_{3,3}(t) &= 2 \tilde{\eta}_t (y_t^1 - w_t^1) J_0(y_t^1) \mathbb{D}_{H(t)} \tilde{\eta}_t + hc. \end{split}$$

As before, (3.4) gives $\mathbb{D}_{H(t)}M_{3,0} \in \mathcal{G}(H)$ and $M_3 \in \mathcal{G}(H)$ follows if we know that $-M_{3,2}, -M_{3,3} \in \mathcal{G}(H)$. To show $-M_{3,3} \in \mathcal{G}(H)$ we note that we may replace $M_{1,2}$ by $M_{3,3}$ in (3.8) using $a_t = n^{-1}J_0(y_t^1)(w_t^1 - y_t^1)\tilde{\eta}_t + hc \leq CI$ to express $-M_{3,3}$ similarly to $-M_{1,2}$. Also

$$-M_{3,2}(t) = -\frac{2}{t}\tilde{\eta}_t(y_t^1 - w_t^1)J_0'(y_t^1)(y_t^1 - w_t^1)\tilde{\eta}_t + O(t^{-3})$$

$$\leq CM_0(t) + Ct^{-3} \in \mathcal{G}(H(t)).$$

We keep the notations $J^0, \tilde{z}_k, V_{0k}, V_0, H_0(t), U_0(t, t_0)$ introduced in Section 2. Moreover, for $1 \leq k \leq N$ we denote by $U_k(t, t_0)$ the evolution propagator of the Hamiltonian

(3.10)
$$H_k(t) = H_0 + V^k(t, x) \quad \text{with} \\ V^k(t, x) = V_k(x - \chi_k(t)) + \sum_{k' \in \{1, \dots, N\} \setminus \{k\}} V_{0k'}(t, x).$$

COROLLARY 3.5. If M_0, M_2, H_k are as above, then $M_0, M_2 \in \mathcal{G}(H_k)$.

Proof. Define η_t^k by using $V^k(t,x)$ instead of V(t,x) in (2.16). As before we obtain

$$M_0^k(t) = \frac{1}{t} \tilde{\eta}_t^k (3(w_t^1 - y_t^1)^2 + |w_t^\perp|^2) \tilde{\eta}_t^k \in \mathcal{G}(H_k(t))$$

with $\widetilde{\eta}_t^k = (1 + \eta_t^k/n)^{-1}$. We recall that $|\partial_t^n \partial_x^\alpha V_{0k'}(t, x)| \leq Ct^{-2\mu - 2|\alpha| - n}$ for $|\alpha| + n \leq 1$, and reasoning as in the proof of Proposition 3.4 we find

$$M_2^k(t) = \frac{1}{t} \tilde{\eta}_t^k J_0(y_t^1) y_t^1 \tilde{\eta}_t^k \in \mathcal{G}(H_k(t))$$

for $J_0 \in C_0^{\infty}(\mathbb{R} \setminus \{\widetilde{z}_1, \ldots, \widetilde{z}_N\})$. However, $\eta_t = \eta_t^k + O(t^{-2})$ implies $((w_t^1 - y_t^1)^2 + |w_t^\perp|^2)(\tilde{\eta}_t - \tilde{\eta}_t^k) = ((w_t^1 - y_t^1)^2 + |w_t^\perp|^2)\tilde{\eta}_t^k(\eta_t - \eta_t^k)\tilde{\eta}_t/n = O(t^{-2}),$ hence

$$M_{1}(t) = M^{k}(t) + O(t)$$

TT (1)

$$M_j(t) = M_j^k(t) + O(t^{-2}) \in \mathcal{G}(H_k(t)), \quad j = 0, 2.$$

~ ~

The following well known lemma is the basic tool allowing us to obtain the existence of wave operators (we give its proof in the Appendix):

LEMMA 3.6. Let $U(t,t_0)$ and $\tilde{U}(t,t_0)$ be the evolution propagators of $H(t) = H_0 + V(t)$ and $\tilde{H}(t) = H_0 + \tilde{V}(t)$ respectively. Assume that for $M(t) \in B(L^2(\mathbb{R}^d))$ we may define $\mathbb{D}_{H_0}M(t)$ as bounded operators with

(3.11)
$$(\widetilde{V}(t) - V(t))M(t) = O(t^{-1-\varepsilon}) \quad and$$
$$\mathbb{D}_{H_0}M(t) = \widetilde{M}(t) + O(t^{-1-\varepsilon})$$

where $\varepsilon > 0$, and that there exists $\widetilde{M}_0 \in \mathcal{G}(H) \cap \mathcal{G}(\widetilde{H})$ satisfying the estimates $-\widetilde{M}_0(t) < \widetilde{M}(t) < \widetilde{M}_0(t)$ and $\widetilde{M}_0(t) > 0$ for all t > 1. (3.11')If $\varphi \in L^2(\mathbb{R}^d)$ and $\Omega_t = \widetilde{U}(t,t_0)^* M(t) U(t,t_0)$, then the limit $\lim_{t\to\infty} \Omega_t \varphi$ exists.

PROPOSITION 3.7. Set $\overline{J}(y_t^1) = 1 - \sum_{1 \le k \le N} J^0 (y_t^1 - \widetilde{z}_k)^2$ and define O(1,1) $T(1,1) * \overline{T}(1,1)$

(3.12)
$$\Omega_0(t,t_0) = U_0(t,t_0)^* J(y_t^1) U(t,t_0),$$
$$\Omega_k(t,t_0) = U_k(t,t_0)^* J^0(y_t^1 - \tilde{z}_k) U(t,t_0) \quad for \ k = 1,\dots, N.$$

Then for every $\varphi \in L^2(\mathbb{R}^d)$, k = 0, 1, ..., N, the following limits exist: (3.12') $\Omega_k(t_0)\varphi = \lim_{t \to \infty} \Omega_k(t, t_0)\varphi.$

Proof. Consider first the case k = 0. By Proposition 3.2 it suffices to show that

$$\lim_{t \to \infty} U_0(t, t_0)^* \overline{J}(y_t^1) \widetilde{\eta}_{n,t}^2 U(t, t_0) \varphi$$

exists for every $n \geq 1$. Further on n is fixed, we write $\tilde{\eta}_t = \tilde{\eta}_{n,t}$ and we apply Lemma 3.6 with $\tilde{H}(t) = H_0(t)$ and $M(t) = \bar{J}(y_t^1)\tilde{\eta}_t^2$.

We begin by noting that the first condition of (3.11) follows from

$$(3.13) \quad (H(t) - H_0(t))\overline{J}(y_t^1) = \sum_{1 \le k \le N} J^0(2y_t^1 - 2\widetilde{z}_k)V_k^l(x - \chi_k(t))\overline{J}(y_t^1) = 0.$$

To check (3.13) we note that $J^0(y_t^1 - \widetilde{z}_k) \neq 0 \Rightarrow |y_t^1 - \widetilde{z}_k| < 4\tau$ and for $k' \neq k$ we have $|\widetilde{z}_k - \widetilde{z}_{k'}| = |z_k^1 - z_{k'}^1| \ge 16\tau$, hence $J^0(y_t^1 - \widetilde{z}_k) \neq 0 \Rightarrow J^0(y_t^1 - \widetilde{z}_{k'}) = 0$ for $k' \neq k$. Thus it is clear that $J^0(2y_t^1 - 2\widetilde{z}_k) \neq 0 \Rightarrow |y_t^1 - \widetilde{z}_k| < 2\tau \Rightarrow J^0(y_t^1 - \widetilde{z}_k) = 1 \Rightarrow \overline{J}(y_t^1) = 1 - J^0(y_t^1 - \widetilde{z}_k)^2 = 0.$

Next we find that $\mathbb{D}_{H_0}M = \widetilde{M}_1 + \widetilde{M}_2$ with

(3.14)
$$\widetilde{M}_1(t) = (\mathbb{D}_{H_0}\overline{J}(y_t^1))\widetilde{\eta}_t^2 = \frac{2}{t}\widetilde{\eta}_t(w_t^1 - y_t^1)\overline{J}'(y_t^1)\widetilde{\eta}_t + hc + O(t^{-2}),$$

(3.15)
$$\widetilde{M}_2(t) = 2\widetilde{\eta}_t \overline{J}(y_t^1) \mathbb{D}_{H(t)} \widetilde{\eta}_t + hc + O(t^{-2}).$$

Next for k = 1, ..., N, we have $|y_t^1| \le 2\tau \Rightarrow |y_t^1 - \tilde{z}_k| \ge 14\tau \Rightarrow J^0(2y_t^1 - 2\tilde{z}_k) = 0$. Therefore $\overline{J} = 1$ on $[-2\tau; 2\tau]$ and $0 \notin \operatorname{supp} \overline{J'}$ allows us to define $J_0 \in C_0^\infty(\mathbb{R} \setminus \{\tilde{z}_1, \ldots, \tilde{z}_N\})$ satisfying $J_0(\lambda)\lambda = \overline{J'}(\lambda)^2$ and to estimate (3.16) $\pm (w_t^1 - y_t^1)\overline{J'}(y_t^1) + hc \le 2(w_t^1 - y_t^1)^2 + 2J_0(y_t^1)y_t^1$

$$\Rightarrow \pm \widetilde{M}_1 \le 4M_0 + 4M_2$$

with M_0 , M_2 given by (3.5), (3.9). Then similarly to the proof of Lemma 3.3 we find $\pm \widetilde{M}_2(t) \leq CM_0(t) + Ct^{-2}$, hence it is clear that the hypotheses of Lemma 3.6 hold with $\widetilde{M}_0 = C_0M_0 + 4M_2 \in \mathcal{G}(H) \cap \mathcal{G}(H_k)$ by Corollary 3.1, 3.5 and Proposition 3.4.

In the case k = 1, ..., N, we apply Lemma 3.6 with $H(t) = H_k(t)$ and $M(t) = \tilde{J}(y_t^1)\tilde{\eta}_t^2$, where $\tilde{J}(\lambda) = J^0(\lambda - \tilde{z}_k)$. As before we have

(3.17)
$$(H(t) - H_k(t))\widetilde{J}(y_t^1) = \sum_{k' \in \{1, \dots, N\} \setminus \{k\}} J^0(2y_t^1 - 2\widetilde{z}_{k'}) V_{k'}^l(x - \chi_{k'}(t))\widetilde{J}(y_t^1) = 0.$$

Indeed, $\widetilde{J}(y_t^1) \neq 0 \Rightarrow |y_t^1 - \widetilde{z}_k| < 4\tau \Rightarrow |y_t^1 - \widetilde{z}_{k'}| \geq 2\tau$ for $k' \neq k \Rightarrow J^0(2y_t^1 - 2\widetilde{z}_{k'}) = 0$ for $k' \neq k$. We complete the proof noting that $\widetilde{J} = 0$ on $[-2\tau; 2\tau]$ and (3.14)–(3.16) still hold if \overline{J} is replaced by \widetilde{J} .

4. Asymptotic completeness. In order to obtain the asymptotic completeness it remains to prove

PROPOSITION 4.1. If
$$k = 1, ..., N$$
 and $\varphi \in L^2(\mathbb{R}^d)$, then

$$\lim_{t \to \infty} J^0(y_t^1 - \tilde{z}_k)U_k(t, t_0)\varphi = 0.$$

Indeed, using Propositions 2.2, 3.7 and 4.1, we can see that via the chain rule,

$$\begin{split} e^{itH_0 + iS(t)} U(t, t_0) \varphi &= e^{itH_0 + iS(t)} \Big(\overline{J}(y_t^1) + \sum_{1 \le k \le N} J^0(y_t^1 - \widetilde{z}_k)^2 \Big) U(t, t_0) \varphi \\ &= e^{itH_0 + iS(t)} U_0(t, t_0) \Omega_0(t, t_0) \varphi \\ &+ \sum_{1 \le k \le N} e^{itH_0 + iS(t)} J^0(y_t^1 - \widetilde{z}_k) U_k(t, t_0) \Omega_k(t, t_0) \varphi \end{split}$$

converges to $\widetilde{\Omega}_0(t_0)^* \Omega_0(t_0) \varphi$, i.e. the limit (1.12') exists.

Before starting the proof of Proposition 4.1 we introduce more notation. We set

(4.1)
$$H_{0k} = \frac{1}{2}p^2 + \tilde{z}_k x_1, \quad H_k = H_{0k} + V_k (x - \omega_k),$$

where $k = 1, \dots, N$ and ω_k is as in (2.5). We define

(4.2)
$$\chi_k^0(t) = \frac{1}{2}z_k t^2 + v_k t, \quad \dot{\chi}_k^0(t) = z_k t + v_k,$$

(4.3)
$$\widetilde{H}_k(t) = H_{0k} + \widetilde{V}_k(t, x)$$

with

$$\widetilde{V}_{k}(t,x) = V^{k}(t,x+\chi_{k}^{0}(t))$$

= $V_{k}(x-\widetilde{\chi}_{k}(t)) + \sum_{k'\in\{1,\dots,N\}\setminus\{k\}} V_{0k'}(t,x+\frac{1}{2}z_{k}t^{2}+\upsilon_{k}t)$

It is easy to see that $V_{0k'}(t, x + \frac{1}{2}z_kt^2 + v_kt)$ satisfies estimates (2.1) similarly to $V_{0k'}$. The following lemma allows us to compare \widetilde{H}_k and $\widetilde{H}_k(t)$.

LEMMA 4.2. (a) We have $V_k(x - \tilde{\chi}_k(t)) = V_k(x - \omega_k) + O(t^{-2\mu_0})$ and $\frac{d}{dt}V_k(x - \tilde{\chi}_k(t)) = -\tilde{\chi}'_k(t) \cdot \nabla V_k(x - \tilde{\chi}_k(t)) = O(t^{-1-2\mu_0}).$ (b) If $h \in C_0^{\infty}(\mathbb{R})$ then $h(\tilde{H}_k(t)) = h(\tilde{H}_k) + O(t^{-2\mu_0}) + O(t^{-2\mu})$ and \mathbb{R}

$$\mathbb{D}_{\widetilde{H}_{k}(t)}h(H_{k}(t)) = \frac{u}{dt}h(H_{k}(t)) = O(t^{-1-2\mu_{0}}) + O(t^{-1-2\mu}).$$

(c) If $g, h \in C_0^{\infty}(\mathbb{R})$ then $[h(H_k), g(\widetilde{w}_t)] = O(t^{-1}).$

We note that our assumptions $\nabla V_k = \nabla V_k^l = O(1)$ and (1.9) give immediately the indicated estimate of $\frac{d}{dt}V_k(x-\tilde{\chi}_k(t))$, while the first estimate of

Lemma 4.2(a) follows by integration. The proof of estimates in (b) and (c) is given in the Appendix.

PROPOSITION 4.3. Let $g \in C_0^{\infty}(]-\frac{3}{4}|\widetilde{z}_k|; \frac{3}{4}|\widetilde{z}_k|[)$ and $h \in C_0^{\infty}(\mathbb{R})$. Then (4.4) $\widetilde{M}_h(t) = \frac{1}{t}h(\widetilde{H}_k(t))g(\widetilde{w}_t)^2h(\widetilde{H}_k(t)) \in \mathcal{G}(\widetilde{H}_k(t)),$

where we have set $\widetilde{w}_t = p_1/t$.

Proof. Let $n \in \mathbb{N}$ be such that $h \in C_0^{\infty}(]-n; n[)$. Since $(\widetilde{M}_h(t)\varphi, \varphi) = t^{-1} \|g(\widetilde{w}_t)h(\widetilde{H}_k(t))\varphi\|^2$, it is clear that $\widetilde{M}_{h_1+h_2}(t) \leq 2\widetilde{M}_{h_1}(t) + 2\widetilde{M}_{h_2}(t)$. Thus it suffices to show that for every $\lambda \in [-n; n]$ there is $\delta > 0$ such that $\widetilde{M}_h(t) \in \mathcal{G}(\widetilde{H}_k(t))$ with $h \in C_0^{\infty}(]\lambda - \delta; \lambda + \delta[), |h| \leq 1$.

Let $g_1 \in C^{\infty}(\mathbb{R})$ satisfy $g'_1 = -g^2$ and set

$$M_0(t) = \tilde{z}_k h(\tilde{H}_k(t)) g_1(\tilde{w}_t) h(\tilde{H}_k(t))$$

Let $\varepsilon = \min\{1, 2\mu_0, 2\mu\}$. Then Lemma 4.2 allows us to write

$$\begin{split} \mathbb{D}_{\widetilde{H}_{k}(t)}M_{0}(t) &= \widetilde{z}_{k}h(\widetilde{H}_{k}(t))(\mathbb{D}_{\widetilde{H}_{k}(t)}g_{1}(\widetilde{w}_{t}))h(\widetilde{H}_{k}(t)) + O(t^{-1-\varepsilon}) \\ &= \widetilde{z}_{k}h(\widetilde{H}_{k})(\mathbb{D}_{\widetilde{H}_{k}}g_{1}(\widetilde{w}_{t}))h(\widetilde{H}_{k}) + O(t^{-1-\varepsilon}). \end{split}$$

We now show that choosing $\delta > 0$ small enough we have

(4.5)
$$\widetilde{z}_k h(\widetilde{H}_k)[iV_k(x-\omega_k),g_1(\widetilde{w}_t)]h(\widetilde{H}_k) \ge -\frac{\widetilde{z}_k^2}{8t}h(\widetilde{H}_k)g(\widetilde{w}_t)^2h(\widetilde{H}_k)-Ct^{-2}.$$

Using (1.11b) and the standard pseudo-differential expansion [(A.1) of Appendix with n = 2 and then with n = 1] we find the following expression of the commutator:

(4.6)
$$[iV_k(x-\omega_k), g_1(\widetilde{w}_t)] = -\frac{1}{t}\partial_{x_1}V_k(x-\omega_k)g'_1(\widetilde{w}_t) + O(t^{-2})$$
$$= \frac{1}{t}g(\widetilde{w}_t)\partial_{x_1}V_k(x-\omega_k)g(\widetilde{w}_t) + O(t^{-2}),$$

and since \widetilde{H}_k has no eigenvalues (cf. [20]), $\mathbf{1}_{[\lambda-2\delta;\lambda+2\delta]}(\widetilde{H}_k) \to 0$ strongly as $\delta \to 0$. As $\partial_{x_1} V_k(x - \omega_k) \mathbf{1}_{[-n;n]}(\widetilde{H}_k)$ is compact, for $\delta > 0$ small enough we have

(4.7)
$$\widetilde{z}_k \widetilde{h}(\widetilde{H}_k) \partial_{x_1} V_k(x - \omega_k) \widetilde{h}(\widetilde{H}_k) \ge -\frac{1}{8} \widetilde{z}_k^2$$

if $\tilde{h} \in C_0^{\infty}(]\lambda - 2\delta; \lambda + 2\delta[), 0 \leq \tilde{h} \leq 1$. Using \tilde{h} such that $h = h\tilde{h}$ and Lemma 4.2(c) we obtain (4.5) from (4.6)–(4.7). Next we note that $\mathbb{D}_{H_{0k}}g_1(\tilde{w}_t) = -t^{-1}(\tilde{z}_k + \tilde{w}_t)g_1'(\tilde{w}_t) = t^{-1}(\tilde{z}_k + \tilde{w}_t)g(\tilde{w}_t)^2$ and since $\lambda \in \operatorname{supp} g \Rightarrow |\lambda| \leq \frac{3}{4}|\tilde{z}_k| \Rightarrow \tilde{z}_k(\tilde{z}_k + \lambda) \geq \frac{1}{4}\tilde{z}_k^2$, it is clear that

(4.8)
$$\widetilde{z}_k h(\widetilde{H}_k)(\mathbb{D}_{H_{0k}}g_1(\widetilde{w}_t))h(\widetilde{H}_k) \ge \frac{1}{4t}\widetilde{z}_k^2 h(\widetilde{H}_k)g(\widetilde{w}_t)^2 h(\widetilde{H}_k).$$

Let M_1 , M_2 denote the left hand sides of (4.5) and (4.8). Then (4.4) follows from

$$\frac{1}{8}\widetilde{z}_k^2\widetilde{M}_h(t) \le (M_1 + M_2)(t) + Ct^{-1-\varepsilon}$$
$$= \mathbb{D}_{\widetilde{H}_k(t)}M_0(t) + O(t^{-1-\varepsilon}) \in \mathcal{G}(\widetilde{H}_k(t)). \blacksquare$$

Proof of Proposition 4.1. STEP 1. Introduce

$$G_k(t) = e^{-i\Phi_k(t)}e^{-ix\cdot\chi_k^0(t)}e^{ip\cdot\chi_k^0(t)} \quad \text{where}$$

(4.9)

$$\Phi_k(t) = \int_{1}^{t} d\tau \left(z_0 \cdot \chi_k^0(\tau) + \frac{1}{2} \dot{\chi}_k^0(\tau)^2 \right).$$

Since $e^{-ix\cdot\dot{\chi}_k^0(t)}p = (p + \dot{\chi}_k^0(t))e^{-ix\cdot\chi_k^0(t)}$ and $e^{ip\cdot\chi_k^0(t)}x = (x + \chi_k^0(t))e^{ip\cdot\chi_k^0(t)}$, we compute

$$\begin{aligned} G'_k(t) &= \left(-z_0 \cdot \chi^0_k(t) - \frac{1}{2} \dot{\chi}^0_k(t)^2 - x \cdot z_k + (p + \dot{\chi}^0_k(t)) \cdot \dot{\chi}^0_k(t) \right) i G_k(t), \\ i G_k(t) H_k(t) &= \left(\frac{1}{2} (p + \dot{\chi}^0_k(t))^2 - z_0 \cdot (x + \chi^0_k(t)) + V^k(t, x + \chi^0_k(t)) \right) i G_k(t) \\ &= \left(\widetilde{H}_k(t) + p \cdot \dot{\chi}^0_k(t) + \frac{1}{2} \dot{\chi}^0_k(t)^2 - z_k \cdot x - z_0 \cdot \chi^0_k(t) \right) i G_k(t) \\ &= i \widetilde{H}_k(t) G_k(t) + G'_k(t). \end{aligned}$$

Thus we have

$$\frac{d}{dt}(\widetilde{U}_k(t,t_0)^*G_k(t)U_k(t,t_0)\varphi)$$

= $\widetilde{U}_k(t,t_0)^*(G'_k(t)+i\widetilde{H}_k(t)G_k(t)-iG_k(t)H_k(t))U_k(t,t_0)\varphi = 0,$

which implies

(4.10)
$$\widetilde{U}_k(t,t_0) = G_k(t)U_k(t,t_0)G_k(t_0)^{-1}.$$

We write $\tilde{y}_t = 2x_1/t^2$. Then

$$G_k(t)J^0(y_t^1 - \tilde{z}_k) = J^0(\tilde{y}_t + 2v_k^1/t)G_k(t) = J^0(\tilde{y}_t)G_k(t) + O(t^{-1})$$

and using (4.10) we obtain

(4.11)
$$\lim_{t \to \infty} \|J^0(y_t^1 - \widetilde{z}_k)U_k(t, t_0)\varphi\| = \lim_{t \to \infty} \|J^0(\widetilde{y}_t)\widetilde{U}_k(t, t_0)G_k(t_0)\varphi\|.$$

STEP 2. It suffices to show that for every $h \in C_0^{\infty}(\mathbb{R})$ we have

(4.12)
$$\liminf_{t \to \infty} \|J^0(\widetilde{y}_t)h(\widetilde{H}_k(t))\widetilde{\varphi}_t\| = 0$$

where we have set $\tilde{\varphi}_t = \tilde{U}_k(t, t_0)G_k(t_0)\varphi$.

Indeed, note first that (4.11) is the limit of the norms of $\varphi(t) = U_k(t, t_0)^* \times J^0(y_t^1 - \tilde{z}_k)U_k(t, t_0)\varphi$ and that $\varphi(t)$ converges in $L^2(\mathbb{R}^d)$, by a reasoning analogous to the proof of Proposition 3.7. Thus the limits (4.11) exist and we may replace them by liminf.

However, taking $h_0 \in C_0^{\infty}(\mathbb{R})$ such that $h_0 = 1$ in a neighbourhood of 0, $0 \leq h_0 \leq 1$, we have $h_0(\tilde{H}_k(T_0)/n)\psi \to \psi$ as $n \to \infty$ and by Lemma 4.2(b),

$$[((I - h_0(\widetilde{H}_k(t)/n))^2 \widetilde{\varphi}_t, \widetilde{\varphi}_t)]_{T_0}^T = \int_{T_0}^T dt \, (\mathbb{D}_{\widetilde{H}_k(t)} (I - h_0(\widetilde{H}_k(t)/n))^2 \widetilde{\varphi}_t, \widetilde{\varphi}_t)$$
$$\leq \int_{T_0}^T dt \, C_{\varphi} t^{-1-2\min\{\mu,\mu_0\}}/n \leq \widetilde{C}_{\varphi}/n,$$

which implies

$$\lim_{n \to \infty} \sup_{t \ge T_0} \| (I - h_0(\widetilde{H}_k(t)/n))\widetilde{\varphi}_t \| = 0$$

STEP 3. Instead of (4.12) it suffices to show that $M(t) \in \mathcal{G}(\widetilde{H}_k(t))$ with

(4.13)
$$M(t) = \frac{1}{t}h(\widetilde{H}_k(t))J^0(\widetilde{y}_t)^2h(\widetilde{H}_k(t)).$$

Indeed, $(M(t)\widetilde{\varphi}_t,\widetilde{\varphi}_t) \in L^1([t_0;\infty[, dt) \text{ implies})$

$$0 = \liminf_{t \to \infty} t(M(t)\widetilde{\varphi}_t, \widetilde{\varphi}_t) = \liminf_{t \to \infty} \|J^0(\widetilde{y}_t)h(\widetilde{H}_k(t))\widetilde{\varphi}_t\|^2.$$

STEP 4. To complete the proof of Proposition 4.1 it suffices to prove

LEMMA 4.4. Let $g \in C_0^{\infty}(]-\frac{3}{4}|\widetilde{z}_k|;\frac{3}{4}|\widetilde{z}_k|[)$ be such that g = 1 on $[-\frac{2}{3}|\widetilde{z}_k|;\frac{2}{3}|\widetilde{z}_k|]$. Then

(4.14)
$$(1-g)(\widetilde{w}_t)J^0(\widetilde{y}_t)h(\widetilde{H}_k(t)) = O(t^{-1}).$$

Indeed, if g, M, \widetilde{M}_h are as before, then Lemma 4.4 and Proposition 4.3 give

$$M(t) = \frac{1}{t} h(\widetilde{H}_k(t)) g(\widetilde{w}_t) J^0(\widetilde{y}_t)^2 g(\widetilde{w}_t) h(\widetilde{H}_k(t)) + O(t^{-2})$$

$$\leq \widetilde{M}_h(t) + Ct^{-2} \in \mathcal{G}(\widetilde{H}_k(t)). \blacksquare$$

Proof (of Lemma 4.4). We set $J = J^0$ and $\overline{g} = 1 - g$. Then (4.14) follows if we show

$$(4.14') \qquad (-i+\tilde{H}_k)^{-1}J(\tilde{y}_t)\overline{g}(\tilde{w}_t)^2 J(\tilde{y}_t)(i+\tilde{H}_k)^{-1} \leq Ct^{-2}.$$

Writing $\overline{g}(\lambda)^2 = \tilde{g}(\lambda) \left(\lambda^2 - \frac{1}{4}\tilde{z}_k^2\right)\tilde{g}(\lambda)$ we have $\tilde{g} \in S_1^{-1}(\mathbb{R}) \Rightarrow [J(\tilde{y}_t), \tilde{g}(\tilde{w}_t)]$
 $\times (1+|\tilde{w}_t|) = O(t^{-3})$ (cf. Appendix), and $J(\tilde{y}_t) \neq 0 \Rightarrow |\tilde{y}_t| \leq 4\tau \leq \frac{1}{4}|\tilde{z}_k| \Rightarrow$
 $-\tilde{z}_k \tilde{y}_t \leq \frac{1}{4}\tilde{z}_k^2$ allows us to estimate

$$J(\widetilde{y}_t)\widetilde{g}(\widetilde{w}_t)(\widetilde{w}_t^2 - \frac{1}{4}\widetilde{z}_k^2)\widetilde{g}(\widetilde{w}_t)J(\widetilde{y}_t)$$

= $\widetilde{g}(\widetilde{w}_t)J(\widetilde{y}_t)(\widetilde{w}_t^2 - \frac{1}{4}\widetilde{z}_k^2)J(\widetilde{y}_t)\widetilde{g}(\widetilde{w}_t) + O(t^{-3})$
 $\leq \widetilde{g}(\widetilde{w}_t)J(\widetilde{y}_t)(\widetilde{w}_t^2 + \widetilde{z}_k\widetilde{y}_t)J(\widetilde{y}_t)\widetilde{g}(\widetilde{w}_t) + Ct^{-3}$
 $\leq \widetilde{g}(\widetilde{w}_t)J(\widetilde{y}_t)2t^{-2}H_{0k}J(\widetilde{y}_t)\widetilde{g}(\widetilde{w}_t) + Ct^{-3}.$

Since $[\widetilde{y}_t, \widetilde{g}(\widetilde{w}_t)]$ and $[\widetilde{w}_t^2, J(\widetilde{y}_t)]\widetilde{g}(\widetilde{w}_t)$ are $O(t^{-3})$, we obtain (4.14') noting that $H_{0k}J(\widetilde{y}_t)\widetilde{g}(\widetilde{w}_t)(i + \widetilde{H}_k)^{-1} = J(\widetilde{y}_t)\widetilde{g}(\widetilde{w}_t)H_{0k}(i + \widetilde{H}_k)^{-1} + O(t^{-1}) = O(1)$.

5. Interaction potentials with singularities. Let \widehat{C} be as in (1.11b) and $\theta \in C_0^{\infty}(\mathbb{R})$ be such that $\theta(x_1) = 1$ for $|x_1| \leq \widehat{C}/|E|$. Then

(5.1)
$$||V_k(x)\theta(x_1)\varphi|| \le \frac{1}{5}||p^2\theta(x_1)\varphi|| + C||\varphi|| \le \frac{1}{2}||H_0\varphi|| + C'||\varphi||$$

and $V_k(x)(1-\theta)(x_1)$ is bounded. Therefore $H_0 + V_k(x)$ is well defined as a self-adjoint operator on the domain of H_0 and the operators $H_0(H_0 + V_k(x)$ $+i)^{-1}$, $(H_0+V_k(x))(H_0+i)^{-1}$ are bounded. The analogous assertion clearly holds if $V_k(x)$ is replaced by $V_k(x - \chi_k(t))$ or by V(t, x) (using constants locally bounded with respect to t).

Further on $\beta > 0$ is fixed small enough. Following [7] or [9] we may state LEMMA 5.1. There exist functions $u_t^j \in C_0^{\infty}(\mathbb{R}), j = 1, ..., d$, such that for $t \geq 1$ one has

(5.2a)
$$u_t^1(\lambda) = \dot{\chi}_k^1(t)/t - z_0^1 \quad \text{for } \lambda \in [\tilde{z}_k - t^{-\beta}; \tilde{z}_k + t^{-\beta}],$$

(5.2b) $u_t^1(\lambda) = \lambda \quad \text{for } \lambda \notin \bigcup_{1 \le k \le N} [\tilde{z}_k - 2t^{-\beta}; \tilde{z}_k + 2t^{-\beta}],$

(5.2c)
$$u_t^j(\lambda) = \dot{\chi}_k^j(t) \quad \text{for } \lambda \in [\dot{\chi}_k^j(t) - t^{-\beta}; \dot{\chi}_k^j(t) + t^{-\beta}], \quad j \ge 2,$$

(5.2d) $u_t^j(\lambda) = \lambda$ for $\lambda \in [-\overline{C} + t^{-\beta}; \overline{C} - t^{-\beta}]$ $\setminus \bigcup_{1 \le k \le N} [\dot{\chi}_k^j(t) - 2t^{-\beta}; \dot{\chi}_k^j(t) + 2t^{-\beta}], \quad j \ge 2,$

(5.2e)
$$(u_t^j)'(\lambda) = \frac{d}{d\lambda} u_t^j(\lambda) = 0 \quad \text{for } |\lambda| \ge \overline{C}, \ j \ge 2,$$
$$\left| \frac{d}{dt} u_t^j(\lambda) \right| \le Ct^{-1-\beta}, \quad (u_t^j)'(\lambda) \ge 0,$$
(5.2f)
$$|d^n - u_t| = 0$$

$$|(u_t^j)^{(n)}(\lambda)| = \left| \frac{d^n}{d^n \lambda} u_t^j(\lambda) \right| \le C_n t^{(n-1)\beta} \quad \text{for } \lambda \in \mathbb{R}, \ n \ge 1,$$

where $\widetilde{\chi}'_k(t) = (\dot{\chi}^1_k(t), \dots, \dot{\chi}^d_k(t))$ and \overline{C} is fixed large enough.

We write $a_t = O(b_t)$ if $b_t \ge I$ for $t \ge T_0$ and $b_t^{-1/2} a_t b_t^{-1/2} = O(1)$. Note that $a_t = O(b_t)$ holds if we have $a_t b_t^{-1} = O(1)$ and $b_t^{-1} a_t = O(1)$. Further, we denote $x_{\perp} = (x_2, \ldots, x_d)$, $\tilde{y}_t^{\perp} = x_{\perp}/t$, $u_t^{\perp}(\tilde{y}_t^{\perp}) = (u_t^2(x_2/t), \ldots, u_t^d(x_d/t))$, $u_t^{\perp'}(\tilde{y}_t^{\perp}) = ((u_t^2)'(x_2/t), \ldots, (u_t^d)'(x_d/t))$,

(5.3)
$$\eta_t^{\perp} = \frac{1}{2} |w_t^{\perp}|^2 - u_t^{\perp} (\widetilde{y}_t^{\perp}) \cdot w_t^{\perp} / t + hc + C_{\perp} I$$

with $C_{\perp} > 0$ large enough and

(5.3')
$$\eta_t^0 = \frac{1}{2}(w_t^1 - u_t^1(y_t^1))^2 + \frac{1}{4}(y_t^1)^2.$$

PROPOSITION 5.2. Let $\eta_t = \eta_t^0 + \eta_t^\perp + V(t)/t^2$. If $\varepsilon > 0$ is small enough, then

 $(w_t)^{2\theta} \le C(\eta_t^0 + \eta_t^\perp)^\theta \quad \text{for } 0 \le \theta \le 1,$ (5.4a) $\eta_t - (\eta_t^0 + \eta_t^{\perp}) = t^{-2} V(t) = O(t^{-2\varepsilon} (\eta_t^0 + \eta_t^{\perp})),$ (5.4b) $\mathbb{D}_{H(t)}\eta_t = \mathbb{D}_{H_0}(\eta_t^0 + \eta_t^\perp) + O(t^{-1-\varepsilon}\eta_t^{1-\varepsilon}),$ (5.4c) $\mathbb{D}_{H_{\sigma}}\eta_{t}^{\perp} = -\frac{1}{2} \sum w_{t}^{j} (1 + (u_{t}^{j})'(x_{i}/t)) w_{t}^{j} + O(t^{-1-\varepsilon} \eta_{t}^{1/2})$ (5.4d)

$$(5.4e) \qquad \mathbb{D}_{H_0/I_t} \qquad t \sum_{2 \le j \le d} u_t^{-1} (u_t^{-1} - u_t^{-1})(1 + 2(u_t^{-1})'(u_t^{-1}))(u_t^{-1} - u_t^{-1}) + O(t^{-1-\varepsilon} u^{1/2})(u_t^{-1} - u_t^{-1}) + O(t^{-1-\varepsilon} u^{1/2})(u_t^{-1} - u_t^{-1}) + O(t^{-1-\varepsilon} u^{1/2})(u_t^{-1} - u_t^{-1})(u_t^{-1} - u_t^{-1})(u_t^{-1}$$

(5.4e)
$$\mathbb{D}_{H_0}\eta_t^0 = -\frac{1}{t}(w_t^1 - y_t^1)(1 + 2(u_t^1)'(y_t^1))(w_t^1 - y_t^1) + O(t^{-1-\varepsilon}\eta_t^{1/2}).$$

Proof. By interpolation it suffices to prove (5.4a) for $\theta = 1$. As $u_t^{\perp}(\tilde{y}_t^{\perp})$ is bounded, we have $|w_t^{\perp}|^2 \leq C\eta_t^{\perp}$. Then using $u_t(y_t^1)^2 = (y_t^1)^2 + O(t^{-\beta})$ we may estimate

(5.5)
$$(w_t^1)^2 = (w_t^1 - u_t^1(y_t^1))^2 + u_t^1(y_t^1)^2 + 2(w_t^1 - u_t^1(y_t^1))u_t(y_t^1) + hc$$

 $\leq 2(w_t^1 - u_t^1(y_t^1))^2 + 2u_t^1(y_t^1)^2 + 1 \leq 12\eta_t^0 + Ct^{-\beta}.$

Thus (5.4b) follows from (5.4a) by the estimate

$$t^{-2}e^{-i\chi_k(t)\cdot p}V_k(x)e^{i\chi_k(t)\cdot p} \le Ct^{-2}(1+p^2)^{1-\varepsilon} \le C't^{-2\varepsilon}(1+|w_t|^2)^{1-\varepsilon}.$$

Next we note that

$$\begin{split} u_t^1(y_t^1) + z_0^1 - \dot{\chi}_k^1(t)/t &\neq 0 \Rightarrow |x_1 - \chi_k^1(t)| \ge \frac{1}{2}t^{2-\beta} \\ \Rightarrow \nabla V_k(x - \chi_k(t)) = O(t^{-\mu(2-\beta)}), \\ u_t^{\perp}(\widetilde{y}_t^{\perp}) - \dot{\chi}_k^{\perp}(t) &\neq 0 \Rightarrow |x_{\perp} - \chi_k^{\perp}(t)| \ge \frac{1}{2}t^{1-\beta} \\ \Rightarrow \nabla V_k(x - \chi_k(t)) = O(t^{-\mu(1-\beta)}), \end{split}$$

hence using the fact that $\dot{\chi}_k^1(t)/t$, $\dot{\chi}_k^{\perp}(t)$, $u_t^1(y_t^1)\eta_t^{-1/2}$, $u_t^{\perp}(\widetilde{y}_t^{\perp})$ are O(1), we obtain

(5.6)
$$\partial_{x_1} V_k(x - \chi_k(t))(u_t^1(y_t^1) + z_0^1 - \dot{\chi}_t^1(t)/t) = O(t^{-\varepsilon} \eta_t^{1/2}),$$

(5.6')
$$\partial_{x_\perp} V_k(x - \chi_k(t))(u_t^\perp(\widetilde{y}_t^\perp) - \dot{\chi}_k^\perp(t)) = O(t^{-\varepsilon}).$$

(5.6')
$$\partial_{x_{\perp}} V_k(x - \chi_k(t))(u_t^-(y_t^-) - \chi_k^-(t)) = O(t^{-1})$$

Then reasoning as in the proof of Lemma 2.4 we can see that (5.6)-(5.6')imply (5.4c).

Finally, we obtain (5.4d, e) calculating

$$\begin{split} \mathbb{D}_{H_0} u_t^{\perp}(\widetilde{y}_t^{\perp}) &= \frac{1}{t} u_t^{\perp'}(\widetilde{y}_t^{\perp}) (p_{\perp} - \widetilde{y}_t^{\perp}) + O(t^{-2+\beta}), \\ -t \mathbb{D}_{H_0} \eta_t^0 + O(t^{-\varepsilon}) &= (w_t^1)^2 - 2(y_t^1 - w_t^1) u_t^{1'}(y_t^1) w_t^1 - u_t^1(y_t^1) w_t^1 \\ &+ 2(y_t^1 - w_t^1) (u_t^{1'} u_t^1) (y_t^1) + (y_t^1 - w_t^1) y_t^1 \\ &= (w_t^1 - y_t^1)^2 \\ &+ 2(w_t^1 - y_t^1) (1 + 2u_t^{1'}) (y_t^1) (w_t^1 - y_t^1) + O(t^{-\varepsilon}). \end{split}$$

Now it is clear that Corollary 3.1 holds. However, $\tilde{\eta}_{n,t}(\eta_t)^{1-\varepsilon} = O(n^{1-\varepsilon})$ and (3.6) holds if $O(t^{-2})$ is replaced by $O(n^{1-\varepsilon}t^{-1-\varepsilon})$. Thus the proof of Proposition 3.2 is valid if C/n is replaced by $Cn^{-\varepsilon}$. All the remaining proofs of Section 3 are valid if $O(t^{-2})$ is replaced by $O(t^{-1-\varepsilon})$. In Section 4 we use (5.1) with $V_k(x)$, H_0 replaced by $V_k(x - \tilde{\chi}_k(t))$, H_{0k} to conclude that \tilde{H}_k , $\tilde{H}_k(t)$ are self-adjoint on the domain of H_{0k} and that

(5.7)
$$H_{0k}(\widetilde{H}_k+i)^{-1}, H_{0k}(\widetilde{H}_k(t)+i)^{-1}, \\ \widetilde{H}_k(H_{0k}+i)^{-1}, \widetilde{H}_k(t)(H_{0k}+i)^{-1} \in B(L^2(\mathbb{R}^d)).$$

The second inequality of (5.1) with H_0 and φ replaced by H_{0k} and $(H_{0k} + i)^{-1}\varphi$ gives $\theta(x_1)p^2(H_{0k} + i)^{-1} \in B(L^2(\mathbb{R}^d))$, hence

(5.8)
$$(H_{0k}+i)^{-1}[ip,\theta(x_1)V_k^s(x-\tilde{\chi}_k(t))](H_{0k}+i)^{-1} = O(1).$$

Since $\nabla V(x) = [ip, V(x)]$ we obtain the following version of Lemma 4.2(a):

(5.9)
$$\frac{d}{dt}V_k^s(x-\tilde{\chi}_k(t)) = O(t^{-1-2\mu_0}(I+|H_{0k}|^2)),$$

(5.9')
$$V_k^s(x - \tilde{\chi}_k(t)) = V_k^s(x - \omega_k) + O(t^{-2\mu_0}(I + |H_{0k}|^2))$$

and by (5.7) we may always replace H_{0k} by \tilde{H}_k or $\tilde{H}_k(t)$. It is checked in the Appendix that the assertions of Lemma 4.2(b), (c) still hold and moreover one has

(5.10)
$$(\widetilde{H}_k + i)[\widetilde{h}(\widetilde{H}_k), J^0(\widetilde{y}_t)] = O(t^{-1}).$$

We also note that

(5.11)
$$B = (\widetilde{H}_k + i)^{-1} [ip, \theta(x_1) V_k^s(x - \omega_k)] (\widetilde{H}_k + i)^{-1}$$

is compact on $L^2(\mathbb{R}^d)$.

In order to show that the assertion of Proposition 4.3 still holds it suffices to fix $\lambda \in [-n; n]$ and to find $\delta > 0$ such that for $h \in C_0^{\infty}(]\lambda - \delta; \lambda + \delta[),$ $|h| \leq 1$, one has

(5.12)
$$\pm h(\tilde{H}_k)[i\theta(x_1)V_k^s(x-\omega_k), g_1(\tilde{w}_t)]h(\tilde{H}_k) \leq \frac{1}{8}|\tilde{z}_k|\tilde{M}_h(t) + Ct^{-2},$$

where we assume that $g_1(\lambda) = -\lambda$ for $|\lambda| \leq \frac{2}{3}|\tilde{z}_k|$, i.e. $g(\lambda) = 1$ for $|\lambda| \leq \frac{2}{3}|\tilde{z}_k|$.

First of all we introduce $\widetilde{g}(\lambda) = g_1(\lambda) + \lambda$ and we check that

(5.13)
$$\theta(x_1)\widetilde{g}(\widetilde{w}_t)h(\widetilde{H}_k) = O(t^{-2})$$

Indeed, if $\theta_1 \in C_0^{\infty}(\mathbb{R})$ is such that $\theta_1 = 1$ on $\operatorname{supp} \theta$, then the standard pseudo-differential expansion [cf. (A.1) of Appendix] gives $\theta(x_1)\widetilde{g}(\widetilde{w}_t)$ $\times (1 - \theta_1)(x_1) = O(t^{-N})$ for every $N \in \mathbb{N}$. To obtain (5.13) we note that $(1 + |p_1|^2)\theta_1(x_1)h(\widetilde{H}_k) = O(1)$ and $\widetilde{g}(\lambda) = 0$ for $|\lambda| \leq \frac{2}{3}|\widetilde{z}_k|$ implies $|\widetilde{g}(\lambda)| \leq C\lambda^2$, hence $|\widetilde{g}(\widetilde{w}_t)|(1 + |p_1|^2)^{-1} \leq C|p_1|^2t^{-2}(1 + |p_1|^2)^{-1} \leq Ct^{-2}$. From (5.13) it is clear that modulo $O(t^{-2})$ we may replace $g_1(\widetilde{w}_t)$ by $-\widetilde{w}_t$ in (5.12). Next we note that $|x_1| \leq \tau t \Rightarrow J^0(x_1/t) = 1$ and there is $T_0 > 0$ such that $\theta(x_1) = \theta(x_1)J^0(\widetilde{y}_t)$ for $t \geq T_0$. Writing $h = h\widetilde{h}$ with $\widetilde{h} \in C_0^\infty(]\lambda - 2\delta; \lambda + 2\delta[)$ and using (5.10) we have

(5.14)
$$\pm t^{-1}h(\widetilde{H}_k)J^0(\widetilde{y}_t)[ip_1,\theta(x_1)V_k^s(x-\omega_k)]J^0(\widetilde{y}_t)h(\widetilde{H}_k) \\ = \pm t^{-1}h(\widetilde{H}_k)J^0(\widetilde{y}_t)\widetilde{h}_1(\widetilde{H}_k)B\widetilde{h}_1(\widetilde{H}_k)J^0(\widetilde{y}_t)h(\widetilde{H}_k) + O(t^{-2}),$$

where $\tilde{h}_1(\lambda) = \tilde{h}(\lambda)(\lambda + i)$ and B is the compact operator given by (5.11). Thus for δ small enough we may estimate (5.14) by

$$\begin{split} \frac{1}{8t} |\widetilde{z}_k| h(\widetilde{H}_k) J^0(\widetilde{y}_t)^2 h(\widetilde{H}_k) + O(t^{-2}) \\ &= \frac{1}{8t} |\widetilde{z}_k| h(\widetilde{H}_k) g(\widetilde{w}_t) J^0(\widetilde{y}_t)^2 g(\widetilde{w}_t) h(\widetilde{H}_k) + O(t^{-2}) \\ &\leq \frac{1}{8} |\widetilde{z}_k| \widetilde{M}_h(t) + Ct^{-2}, \end{split}$$

where the cut-off $g(\tilde{w}_t)$ was introduced in view of (4.14).

Thus Propositions 4.3 and 4.1 still hold under the general hypotheses of Section 1.

Appendix. Let $J, \eta \in C(\mathbb{R}^d)$ and $n \in \mathbb{N}$ be such that $J^{(\alpha)} \in L^{\infty}(\mathbb{R}^d)$ for $|\alpha| = n$ and $\eta^{(\alpha)} \in L^1(\mathbb{R}^d)$ for $|\alpha| \ge n$. Then

(A.1)
$$J(x)\eta(D) = \sum_{|\alpha| \le n-1} \eta^{(\alpha)}(D) J^{(\alpha)}(x) i^{-|\alpha|} / \alpha! + O(\max_{|\alpha| = n \le |\alpha'| \le n+d+1} \|J^{(\alpha)}\|_{L^{\infty}(\mathbb{R}^d)} \|\eta^{(\alpha')}\|_{L^{1}(\mathbb{R}^d)}).$$

In particular, we may apply (A.1) with n > m + d if $J, \eta \in S_1^m(\mathbb{R}^d)$, where the notation $f \in S_1^m(\mathbb{R}^d)$ means that for any $\alpha \in \mathbb{N}^d$ one has the estimate $|f^{(\alpha)}(x)| \leq C_{\alpha}(1+|x|)^{m-|\alpha|}$.

It is easy to check that applying formula (A.1) we obtain the commutator estimates needed in the proof of Lemma 4.4.

Proof of Lemma 3.6. Let $\varphi, \psi \in D(H_0), \varphi_t = U(t, t_0)\varphi$ and $\widetilde{\psi}_t = \widetilde{U}(t, t_0)\psi$. Then

$$\begin{split} \|\Omega_{t''}\varphi - \Omega_{t'}\varphi\| &= \sup_{\substack{\|\psi\| \le 1\\\psi \in D(H_0)}} |(\Omega_{t''}\varphi - \Omega_{t'}\varphi, \psi)| \le \sup_{\substack{\|\psi\| \le 1\\\psi \in D(H_0)}} \int_{t'}^{t''} dt \left| \frac{d}{dt} \left(\Omega_t\varphi, \psi \right) \right|, \\ \left| \frac{d}{dt} (\Omega_t\varphi, \psi) \right| &= |((\mathbb{D}_{H_0}M(t) + O(t^{-1-\varepsilon}))\varphi_t, \widetilde{\psi}_t)| \\ &\le 4(\widetilde{M}_0(t)\varphi_t, \varphi_t)^{1/2} (\widetilde{M}_0(t)\widetilde{\psi}_t, \widetilde{\psi}_t)^{1/2} + Ct^{-1-\varepsilon} \|\varphi\| \cdot \|\psi\|, \end{split}$$

and we obtain $\|\Omega_{t''}\varphi - \Omega_{t'}\varphi\| \to 0$ as $t', t'' \to \infty$ estimating $\int_{t'}^{t''} dt \left|\frac{d}{dt}(\Omega_t\varphi,\psi)\right|$ by

$$\left[\int_{t'}^{t''} (\widetilde{M}_0(t)\varphi_t,\varphi_t) dt\right]^{1/2} \left[\int_{t'}^{t''} (\widetilde{M}_0(t)\widetilde{\psi}_t,\widetilde{\psi}_t) dt\right]^{1/2} + Ct'^{-\varepsilon} \|\varphi\| \cdot \|\psi\|.$$

Proof of Lemma 4.2. By (5.9)–(5.9'), for $\zeta \in \mathbb{C} \setminus \mathbb{R}$ we have $(\zeta - \widetilde{H}_k(t))^{-1} - (\zeta - \widetilde{H}_k)^{-1} = (\zeta - \widetilde{H}_k(t))^{-1} (\widetilde{H}_k(t) - \widetilde{H}_k) (\zeta - \widetilde{H}_k)^{-1}$ $= O\left(t^{-\varepsilon} \frac{1 + |\zeta|^2}{|\operatorname{Im} \zeta|^2}\right),$ $\frac{d}{dt} (\zeta - \widetilde{H}_k(t))^{-1} = (\zeta - \widetilde{H}_k(t))^{-1} \left(\frac{d}{dt} \widetilde{H}_k(t)\right) (\zeta - \widetilde{H}_k(t))^{-1}$ $= O\left(t^{-1-\varepsilon} \frac{1 + |\zeta|^2}{|\operatorname{Im} \zeta|^2}\right)$

with $\varepsilon > 0$. We complete the proof of part (b) by using $a = \widetilde{H}_k(t)$ or $a = \widetilde{H}_k$ in the formula

(A.2)
$$h(a) = i \int \partial_{\overline{\zeta}} \widetilde{h}(\zeta) (\zeta - a)^{-1} d\zeta \wedge d\overline{\zeta} / (2\pi),$$

where $\tilde{h} \in C_0^{\infty}(\mathbb{C})$ is an almost analytic extension satisfying $|\partial_{\zeta}\tilde{h}(\zeta)| \leq C_k |\operatorname{Im} \zeta|^k$ for every $k \in \mathbb{N}$ and $\tilde{h} = h$ on \mathbb{R} (cf. [11]). To prove (c) we note that

$$(\zeta - \widetilde{H}_k)^{-1} [\widetilde{H}_k, \widetilde{w}_t] (\zeta - \widetilde{H}_k)^{-1} = O\left(t^{-1} \frac{1 + |\zeta|^2}{|\operatorname{Im} \zeta|^2}\right)$$

and (A.2) with $a = H_k$ implies $[h(H_k), \tilde{w}_t] = O(t^{-1})$.

We complete the proof using an almost analytic extension of g, allowing one to express $g(\tilde{w}_t)$ similarly to (A.2) and obtain the estimate

$$\|[h(H_k), g(\widetilde{w}_t)]\| \le C \|[h(H_k), \widetilde{w}_t]\|. \blacksquare$$

Proof of (5.10). Let $J \in C_0^{\infty}(\mathbb{R})$. Then

$$2J(\widetilde{y}_t)\widetilde{w}_t^2 J(\widetilde{y}_t) = J(\widetilde{y}_t)^2 \widetilde{w}_t^2 + \widetilde{w}_t^2 J(\widetilde{y}_t)^2 + [[\widetilde{w}_t^2, J(\widetilde{y}_t)], J(\widetilde{y}_t)]$$

$$= J(\widetilde{y}_t)^2 \widetilde{w}_t^2 + \widetilde{w}_t^2 J(\widetilde{y}_t)^2 + O(t^{-6})$$

and for $\zeta \in \mathbb{C} \setminus \mathbb{R}$ we have

$$\begin{aligned} (\overline{\zeta} - \widetilde{H}_k)^{-1} J(\widetilde{y}_t) \widetilde{w}_t^2 J(\widetilde{y}_t) (\zeta - \widetilde{H}_k)^{-1} \\ &\leq (\overline{\zeta} - \widetilde{H}_k)^{-1} J(\widetilde{y}_t) (2t^{-2}H_{0k} - \widetilde{z}_k \widetilde{y}_t) J(\widetilde{y}_t) (\zeta - \widetilde{H}_k)^{-1} \\ &= (\overline{\zeta} - \widetilde{H}_k)^{-1} (t^{-2} J(\widetilde{y}_t)^2 H_{0k} + t^{-2} H_{0k} J(\widetilde{y}_t)^2 + O(1)) (\zeta - \widetilde{H}_k)^{-1} \\ &= O\left(\frac{1 + |\zeta|^2}{|\operatorname{Im} \zeta|^2}\right). \end{aligned}$$

Hence $\widetilde{w}_t J^{0'}(\widetilde{y}_t)(\zeta - \widetilde{H}_k)^{-1} = O(\frac{1+|\zeta|}{|\operatorname{Im}\zeta|})$ and it remains to use (A.2) as before noting that

$$(i + \tilde{H}_k)[(\zeta - \tilde{H}_k)^{-1}, J^0(\tilde{y}_t)]$$

= $(i + \tilde{H}_k)(\zeta - \tilde{H}_k)^{-1}(2t^{-1}\tilde{w}_t J^{0'}(\tilde{y}_t) + O(t^{-2}))(\zeta - \tilde{H}_k)^{-1}$
= $O\left(t^{-1}\frac{1 + |\zeta|^2}{|\mathrm{Im}\,\zeta|^2}\right).$

REFERENCES

- T. Adachi and H. Tamura, Asymptotic completeness for long range many-particle systems with Stark effect, J. Math. Sci. Univ. Tokyo 2 (1995), 77–116.
- [2] —, —, Asymptotic completeness for long range many-particle systems with Stark effect. II, Comm. Math. Phys. 174 (1996), 537–559.
- W. O. Amrein, A. Boutet de Monvel and V. Georgescu, L^p-inequalities for the Laplacian and unique continuation, Ann. Inst. Fourier (Grenoble) 31 (1981), no. 3, 153-168.
- [4] -, -, -, C₀-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians, Birkhäuser, 1996.
- J. E. Avron and I. W. Herbst, Spectral and scattering theory for Schrödinger operators related to Stark effect, Comm. Math. Phys. 52 (1977), 239–254.
- [6] J. Dereziński and C. Gérard, Asymptotic Completeness of N-Particle Systems, Springer, 1996.
- [7] G. M. Graf, Phase space analysis of the charge transfer model, Helv. Phys. Acta 63 (1990), 107-138.
- [8] —, Asymptotic completeness for N-body short-range quantum systems: a new proof, Comm. Math. Phys. 123 (1990), 107–138.
- [9] —, A remark on long-range Stark scattering, Helv. Phys. Acta 64 (1991), 1167–1174.
- [10] G. A. Hagedorn, Asymptotic completeness for the impact parameter approximation to the three particle scattering, Ann. Inst. H. Poincaré, Sect. A 36 (1982), 19–40.
- [11] B. Helffer et J. Sjöstrand, Equation de Schrödinger avec champ magnétique et équation de Harper, in: Lecture Notes in Phys. 345, Springer, 1989, 118–197.
- [12] I. W. Herbst, Unitary equivalence of Stark effect Hamiltonians, Math. Z. 155 (1977), 55–70.
- [13] I. W. Herbst, J. S. Møller and E. Skibsted, Spectral analysis of N-body Stark Hamiltonians, Comm. Math. Phys. 174 (1995), 261–294.
- [14] —, —, —, Asymptotic completeness for N-body Stark Hamiltonians, ibid. 174 (1996), 509–535.
- [15] A. Jensen, Scattering theory for Stark Hamiltonians, Proc. Indian Acad. Sci. (Math. Sci.) 104 (1994), 599–651.
- [16] A. Jensen and T. Ozawa, Existence and non-existence results for wave operators for perturbations of the Laplacian, Rev. Math. Phys. 5 (1993), 601–629.
- [17] A. Jensen and K. Yajima, On the long range scattering for Stark Hamiltonians, J. Reine Angew. Math. 420 (1991), 179–193.
- [18] E. L. Korotyaev, On the scattering theory of several particles in an external electric field, Math. USSR-Sb. 60 (1988), 177–196.

- [19] P. A. Perry, Scattering Theory by the Enss Method, Math. Rep. 1, Harwood, 1983, 1–347.
- [20] I. M. Sigal, Stark effect in multielectron systems: non-existence of bound states, Comm. Math. Phys. 122 (1989), 1–22.
- [21] I. M. Sigal and A. Soffer, The N-particle scattering problem: asymptotic completeness for the short-range quantum systems, Ann. of Math. 125 (1987), 35–108.
- [22] H. Tamura, Scattering theory for N-particle systems with Stark effect: asymptotic completeness, RIMS Kyoto Univ. 29 (1993), 869–884.
- [23] D. A. White, The Stark effect and long-range scattering in two Hilbert spaces, Indiana Univ. Math. J. 39 (1990), 517–546.
- [24] —, Modified wave operators and Stark Hamiltonians, Duke Math. J. 68 (1992), 83–100.
- [25] U. Wüller, Geometric methods in scattering theory of the charge transfer model, ibid. 62 (1991), 273–313.
- [26] K. Yajima, A multi-channel scattering theory for some time dependent hamiltonians, Charge Transfer Problem, Comm. Math. Phys. 75 (1980), 153–178.
- [27] —, Spectral and scattering theory for Schrödinger operators with Stark effect, J. Fac. Sci. Univ. Tokyo Sect. IA 26 (1979), 377–390.
- [28] —, Spectral and scattering theory for Schrödinger operators with Stark effect, II, ibid. 28 (1981), 1–15.
- [29] L. Zieliński, Complétude asymptotique pour un modèle du transfert de charge, Ann. Inst. H. Poincaré Phys. Théor. 58 (1993), 363–411.
- [30] —, Scattering for a dispersive charge transfer model, ibid. 65 (1997), 339–386.
- [31] —, Asymptotic completeness for multiparticle dispersive charge transfer model, J. Funct. Anal. 150 (1997), 453–470.
- [32] —, Dispersive charge transfer model with long range interactions, J. Math. Anal. Appl. 217 (1998), 43–71.
- J. Zorbas, Scattering theory for Stark Hamiltonians involving long range potentials, J. Math. Phys. 19 (1978), 577–580.

Institut de Mathématiques de Paris-Jussieu UMR 9994 Université Paris 7 (D. Diderot) 2 Place Jussieu 75252 Paris Cedex 05, France E-mail: zielinsk@math.jussieu.fr

> Received 17 March 1997; revised 12 May 1998