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UNIFORM BOUNDARY STABILIZATION OF A THERMOELASTIC

BAR WITH A NONLINEAR WEAK DAMPING

BY

MOHAMMED AASS ILA (STRASBOURG)

1. Introduction. In this paper we shall prove exponential decay of the
energy of a one-dimensional homogeneous thermoelastic bar of unit length.
Let u be the displacement and θ be the temperature deviation from the refer-
ence temperature. Then u and θ satisfy the following linear one-dimensional
thermoelastic system:

utt − uxx + bθx = 0 in (0, 1) × (0,∞),(1.1)

θt − θxx + buxt = 0 in (0, 1) × (0,∞),(1.2)

with initial conditions

(1.3) u(x, 0) = u0(x), ut(0, x) = u1(x), θ(0, x) = θ0(x),

where b 6= 0 is a real number.

We assume that u and θ satisfy the boundary conditions

(1.4) θ(0, t) = θ(1, t) = 0, t > 0,

(1.5) u(0, t) = 0, ux(1, t) = −g(ut(1, t)), t > 0.

Since the pioneering work of Dafermos [5] on linear thermoelasticity,
significant progress has been made on the mathematical aspect of thermoe-
lasticity (see [2, 4, 6, 7, 9–11, 14–19] among others). Most studies focused on
the existence, regularity, and asymptotic behavior of solutions. More pre-
cisely, Dafermos [5] has shown that if (u0, u1, θ0) ∈ H1 × L2 × L2, then the
energy function of the system defined as

(1.6) E(t) = ‖ux‖2 + ‖ut‖2 + ‖θ‖2

converges to zero as time goes to infinity. However, no decay rate was given.
In 1981, Slemrod [19] used the energy method to prove that for the system
(1.1)–(1.3) if u, θ satisfy Dirichlet and Neumann boundary conditions at
both ends and if (u0, u1, θ0) ∈ H2 × H1 × H2 satisfy the compatibility
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conditions, then there are positive constants M and α such that

(1.7) ‖ut(x)‖2 + ‖ux(x)‖2 + ‖utt(x)‖2 + ‖uxt(x)‖2 + ‖uxx(x)‖2

+ ‖θ(t)‖2 + ‖θt(t)‖2 + ‖θx(t)‖2 + ‖θxx(t)‖2

≤ M(‖u0‖2H2 + ‖u1‖2H1 + ‖θ0‖2H2)e−αt, t > 0,

where ‖ · ‖ denotes the L2 norm in (0, 1) and Hs is the usual Sobolev space.

In 1992, Muñoz Rivera [15] proved that the estimate (1.7) still holds if u
and θ both satisfy the Dirichlet boundary condition at both ends (clamped,
constant temperature). The problem of establishing an energy estimate of
the form

(1.8) E(t) ≤ ME(0)e−αt, ∀t > 0,

has remained open for some time now.

When u and θ satisfy the Dirichlet and Neumann boundary conditions,
respectively (or vice versa), Hansen [7] in 1992 succeeded in establishing
(1.8) using the Fourier series expansion method and a decoupling technique.
We refer to Gibson–Rosen–Tao [6] for another approach, a combination of
semigroup theory and the energy method. When u and θ both satisfy the
Dirichlet boundary conditions, Kim [11] and Liu–Zheng [14] independently
proved that the estimate (1.8) still holds. The methods of these two papers
are quite different. Kim’s method is based on a control theory approach and
a unique continuation theorem by Lions. In [14], Liu–Zheng used a spectral
theorem due to Huang [8].

Quite recently, in 1996, Ammar Khodja–Benabdallah–Teniou [3] proved
that if the function g appearing in (1.5) is linear, then (1.8) still holds. They
used the method based on the construction of energy functionals developed
by Komornik–Zuazua [13]. However, their result has a serious drawback from
the point of view of physical applications: the feedback g(x) = x is never
bounded. Motivated by this problem, we are interested here in the decay
property of the solutions of the problem (1.1)–(1.5) with g(x) such that

(1.9) −∞ < lim
x→−∞

g(x) < lim
x→∞

g(x) < ∞.

If g satisfies at most (1.9) the dissipative effect by g(ut) is weak as |ut| is
large and for convenience we call such a term weak dissipation.

Hereafter, we consider the most typical example g(x) = x/
√
1 + x2,

which is increasing, globally Lipschitz continuous, satisfies xg(x) ≥ 0 for
all x ∈ R, and limx→±∞ g(x) = ±1.

In this paper we shall prove that (1.8) still holds for solutions of
(1.1)–(1.5). Our main tool is an integral inequality, combined with a multi-
plier technique.
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The paper is organized as follows. In Section 2, we state the main theo-
rem. In Section 3, we give the proof of the main result.

2. Statement of the main theorem. First, let us introduce some
notations. We denote by Ω the interval (0, 1), and

H1
Γ0
(Ω) = {u ∈ H1(Ω) : u(0, t) = 0},(2.1)

H1
0 (Ω) = {u ∈ H1(Ω) : u(0, t) = u(1, t) = 0}.(2.2)

The problem (1.1)–(1.5) is well-posed and dissipative. Indeed, we can write
it in the first order form

U ′ +AU = 0,(2.3)

U(0) = U0,(2.4)

where U = (u, ut, θ), U0 = (u0, u1, θ0) and the operator A is given by

(2.5) A(u, ut, θ) = (−ut,−uxx + bθx,−θxx + butx),

(2.6) D(A) = {(u, ut, θ) ∈ H1
Γ0

× L2 × L2 : uxx ∈ L2, ut ∈ H1
Γ0
,

θ ∈ H2 ∩H1
0 , ux(1, t) = −g(ut(1, t))}.

For all given initial data (u0, u1, θ0) ∈ H1
Γ0

× L2 × L2, by the standard
semigroup theory, there exists a unique weak solution (u, θ) such that

(2.7) u ∈ C(R+,H
1
Γ0
(Ω)) ∩C1(R+, L

2(Ω)),

(2.8) θ ∈ C(R+, L
2(Ω)).

Moreover, if (u0, u1, θ0) ∈ D(A) then we have the following regularity prop-
erty:

(2.9) u ∈ C(R+,H
2 ∩H1

Γ0
) ∩ C1(R+,H

1
Γ0
) ∩ C2(R+, L

2),

(2.10) θ ∈ C(R+,H
2 ∩H1

0 ) ∩ C1(R+, L
2);

we say in this case that (u, θ) is a strong solution.

We define the energy of the solutions by the formula

(2.11) E(t) :=
1

2

\
Ω

(u2
t + u2

x + θ2) dx.

If (u, θ) is a strong solution, then we have by a simple computation

(2.12) E′(t) = −
{ \

Ω

θ2x dx+ ut(1, t)g(ut(1, t))
}

≤ 0,

and for all 0 ≤ S < T < ∞,

(2.13) E(S)− E(T ) =

T\
S

\
Ω

θ2x dx dt+

T\
S

ut(1, t)g(ut(1, t)) dt.
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This identity remains valid for all mild solutions by an easy density ar-
gument. Hence, the energy is non-increasing and our main result is the
following

Main Theorem. There exist two constants M > 0, ω > 0 such that

(2.14) E(t) ≤ ME(0)e−ωt, ∀t > 0,

for all initial data (u0, u1, θ0) ∈ D(A).

For the proof, we need the following lemma.

Lemma 2.1 ([12], Lemma 8.1). Let E : R+ → R+ be a non-increasing

function and assume that there exists a constant T > 0 such that

(2.15)

∞\
t

E(s) ds ≤ TE(t), ∀t ∈ R+.

Then

(2.16) E(t) ≤ E(0)e1−t/T , ∀t ≥ T.

3. Proof of the main theorem. From now on we denote by c various
positive constants which may be different at different occurrences.

First, we multiply the equation (1.1) with u and integrate over (0, T ) to
obtain

0 =

T\
0

\
Ω

(uttu− uxxu+ bθxu) dx dt

=
[ \
Ω

uut

]T

0

−
T\
0

\
Ω

u2
t +

T\
0

\
Ω

u2
x

+ b

T\
0

\
Ω

uθx +

T\
0

u(1, t)g(ut(1, t)) dt.

Hence
T\
0

\
Ω

(u2
t + u2

x + θ2) = −
[ \
Ω

uut

]T

0

+ 2

T\
0

\
Ω

u2
t +

T\
0

\
Ω

(θ2 − bθxu)

−
T\
0

u(1, t)g(ut(1, t)) dt.

That is,

2

T\
0

E(t) dt = −
[ \
Ω

uut

]T

0

+ 2

T\
0

\
Ω

u2
t +

T\
0

\
Ω

(θ2 − bθxu)(3.1)

−
T\
0

u(1, t)g(ut(1, t)) dt.
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Next, we multiply (1.1) with 2xux and integrate over (0, T ) to obtain

0 =

T\
0

\
Ω

(2xuxutt − 2xuxuxx + 2bxuxθx) dx dt(3.2)

=
[ \
Ω

2xuxut

]T

0

−
T\
0

\
Ω

(2xututx + 2xuxuxx) dx dt

+ 2b

T\
0

\
Ω

xuxθx.

Since we have\
Ω

(2xututx + 2xuxuxx) =
\
Ω

(x(u2
t )x − ux(2xux)x) dx+ [2xu2

x]
1
0

= −
\
Ω

(u2
x + u2

t ) dx+ u2
t (1, t) + u2

x(1, t),

we conclude from (3.2) that

0 =
[ \
Ω

2xuxut

]T

0

+

T\
0

\
Ω

(u2
x + u2

t ) dx dt + 2b

T\
0

\
Ω

xuxθx dx dt(3.3)

−
T\
0

(u2
t (1, t) + g2(ut(1, t))) dt.

Hence the relations (3.1)–(3.3) give

2

T\
0

E(t) dt ≤
[ \
Ω

(uut + 4xuxut)
]0

T
+

T\
0

\
Ω

(θ2 − bθxu)− 4b

T\
0

\
Ω

xuxθx

+

T\
0

(2g2(ut(1, t)) − u(1, t)g(ut(1, t)) + 2u2
t (1, t)) dt.

Now we want to majorize the right hand side of the above inequality.
We have

∣

∣

∣

\
Ω

(uut + 4xuxut)
∣

∣

∣
≤
\
Ω

u2 +
\
Ω

u2
t + 4

\
Ω

u2
x + 4

\
Ω

u2
t ≤ cE(0),(3.4) \

Ω

(θ2 − buθx) ≤
\
Ω

(cθ2x + εu2 + c(ε)θ2x) dx

≤ c(ε)
\
Ω

θ2x dx+ cε
\
Ω

u2
x dx ≤ −c(ε)E′ + cεE(0)

and hence
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T\
0

\
Ω

(θ2 − bθxu) dx dt ≤ c(ε)E(0) + cε

T\
0

E(t) dt,(3.5)

∣

∣

∣
4b

T\
0

\
Ω

xuxθx dx
∣

∣

∣
≤ ε

T\
0

\
Ω

u2
x dx dt+ c(ε)

T\
0

\
Ω

θ2x dx dt(3.6)

≤ ε

T\
0

E(t) dt + c(ε)E(0),

and finally,

|−u(1, t)g(ut(1, t))| ≤ εu2(1, t) + c(ε)g2(ut(1, t))(3.7)

≤ ε
\
Ω

u2
x dx+ c(ε)g2(ut(1, t))

≤ 2εE(t) + c(ε)g2(ut(1, t)).

We deduce from (3.4)–(3.7) that

(3.8) (2− cε)

T\
0

E(t) dt ≤ c(ε)E(0) + c(ε)

T\
0

(u2
t (1, t) + g2(ut(1, t))) dt.

As the function g(x) = x/
√
1 + x2 satisfies

1√
2
|x| ≤ |g(x)| ≤ |x| if |x| ≤ 1,(3.9)

1√
2
≤ |g(x)| ≤ |x| if |x| > 1,(3.10)

we conclude from (3.8) that

(3.11) (2− cε)

T\
0

E(t) dt ≤ c(ε)E(0) + c(ε)

T\
0

u2
t (1, t) dt.

If |ut(1, t)| ≤ 1, then from (3.9) and (3.11) we obtain

(2− cε)

T\
0

E(t) dt ≤ c(ε)E(0) + c(ε)

T\
0

ut(1, t)g(ut(1, t)) dt

≤ c(ε)E(0) + c(ε)

T\
0

−E′(t) dt

≤ c(ε)E(0).

Choosing ε = 1/c, we obtain the desired result by applying Lemma 2.1.
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If |ut(1, t)| ≥ 1, then from the trace theorem H1(Ω) →֒ C(Ω) →֒ L∞(Γ )
and (3.10) we obtain

(2− cε)

T\
0

E(t) dt ≤ c(ε)E(0) + ‖ut‖∞c(ε)

T\
0

utg(ut) dt

≤ c(ε)E(0),

and hence, the choice ε = 1/c with Lemma 2.1 yields the desired decay
estimate.
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