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Introduction. Let A and B be {V, 0}-semilattices. We denote by A®B
the tensor product of A and B, defined as the free {V, 0}-semilattice gener-
ated by the set

(A—={0}) x (B —-{0})

subject to the relations
{(a,bg) V (a,by1) = (a,bg V by),
for a € A — {0}, by, by € B — {0}, and symmetrically,
{agp,b) V {(a1,b) = (ag V a1,b),
for ag,a; € A — {0}, b € B — {0}.

A® B is a universal object with respect to a natural notion of bimorphism
(see [2], [5], and [6]). This definition is similar to the classical definition of
the tensor product of modules over a commutative ring. Thus, for instance,
flatness is defined similarly: The {V,0}-semilattice S is flat if for every
embedding f : A < B, the canonical map f ®ids: A®S - B® S is an
embedding.

Our main result is the following;:

THEOREM. Let S be a {V,0}-semilattice. Then S is flat if and only if S
1s distributive.

1. Background

1.1. Basic concepts. We adopt the notation and terminology of [6]. In
particular, for every {V, 0}-semilattice A, we use the notation A~ = A—{0}.
Note that A~ is a subsemilattice of A.
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A semilattice S is distributive if whenever a < by V by in S, then there
exist ag < bg and a; < by such that a = agVay, or equivalently, iff the lattice
Id S of all ideals of S, ordered under inclusion, is a distributive lattice; see [4].

1.2. The set representation. In [6], we used the following representation
of the tensor product.
First, we introduce the notation:

1ap=(Ax{0})U{0} x B).

Second, we introduce a partial binary operation on A x B: let (ag, bg),
(a1,b1) € A x B; the lateral join of {ag,bo) and (a1, by) is defined if ag = a1
or byp = by, in which case it is the join (ag V ay,bg V by).

Third, we define bi-ideals: a nonempty subset I of A x B is a bi-ideal of
A x B if it satisfies the following conditions:

(i) I is hereditary;
(ii) I contains L 4 p;
(iii) I is closed under lateral joins.

The extended tensor product of A and B, denoted by A ® B, is the
lattice of all bi-ideals of A x B. It is easy to see that A ® B is an algebraic
lattice. For a € A and b € B, we define a @ b € A ® B by

a®b=_1apU{(z,y) € Ax B | (z,y) <(a,b)}

and call a ® b a pure tensor. A pure tensor is a principal (that is, one-
generated) bi-ideal.
Now we can state the representation:

PROPOSITION 1.1. The tensor product A ® B can be represented as the
{V,0}-subsemilattice of compact elements of A ® B.

1.3. The construction of A @ B. The proof of the Theorem uses the
following representation of the tensor product (see J. Anderson and N. Ki-
mura [1]).

Let A and B be {V,0}-semilattices. Define

A& B =Hom((A™;V), {Id B;n)),
and for £ € A @ B, let
e(€) ={(a,b) e A~ xB7 |bef(a)} ULap.

PRrROPOSITION 1.2. The map € is an order preserving isomorphism be-
tween A® B and A @ B and, for H € A® B, e~ (H) is given by

e ' (H)(a) ={be B|{a,b) € H},
forae A™.
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If a € Aand b € B, then e(a ®b) is the map £ : A~ — Id B given by

(@] ifzx<a,
£(z) = { {0} otherwise.

If A is finite, then a homomorphism from (A~;V) to (Id B;N) is deter-
mined by its restriction to J(A), the set of all join-irreducible elements of A.
For example, let A be a finite Boolean semilattice, say A = P(n) (n is a
non-negative integer, n = {0,1,...,n—1}); then A ® B = (Id B)", and the
isomorphism from A ® B onto (Id B)™ given by Proposition 1.2 is the unique
complete {V,0}-homomorphism sending every element of the form {i} ® b
(¢t <nand b e B) to ((0;;0] | j <n) (where ¢;; is the Kronecker symbol). If
n=3,let 3:P(3)®S — (IdS)? denote the natural isomorphism.

Next we compute A @ B, for A = Mjs, the diamond, and A = N5, the
pentagon (see Figure 1). In the following two subsections, we let S be a
{V,0}-semilattice. Furthermore, we denote by S the ideal lattice of S, and
identify every element s of S with its image, (s], in S.

Fig. 1

1.4. The lattices M3 & S and M3[S]; the map i. Let M3 = {0,p,q,r, 1},
J(M3) = {p,q,r} (see Figure 1). The nontrivial relations of J(M3) are the
following;:

(1) p<qVr, q<pVr, r<pVag
Accordingly, for every lattice L, we define
(2) MIL) = {(@,y,2) € P |a Ay = Az =y Az}

(this is the Schmidt’s construction; see [9] and [10]). The isomorphism from

M3 ® S onto Mj3[S] given by Proposition 1.2 is the unique complete {V,0}-
homomorphism « such that, for all z € S,

alp@x)=(x,0,0), algez)={020), arez) =/0,0z).
We shall later make use of the unique {V,0}-embedding
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defined by
Z(p) - {172}7 Z(Q) - {07 2}7 2(7“) = {07 1}'

1.5. The lattices N5 @ S and N5[S]; the map i'. Let N5 = {0, a,b,c, 1},
J(N5) = {a,b, c} with a > ¢ (see Figure 1). The nontrivial relations of J(N5)
are the following:

(3) c<a and a<bVe
Accordingly, for every lattice L, we define

Ns[L] = {{z,y,2) € L} |y Az <2 < z}.

The isomorphism from N5 ® S onto N5[S] given by Proposition 1.2 is the
unique complete {V,0}-homomorphism o’ such that, for all x € S,

da®x)=(x,0z), dObox)=/(020), do(c®z)=/0,0z).
We shall later make use of the unique {V,0}-embedding
i« N5 — P(3)
defined by
(a) ={0,2}, (b)) ={1,2}, i'(c) ={0}.

1.6. The complete homomorphisms [ ® g. The proof of the following
lemma is straightforward:

LEMMA 1.3. Let A, B, A’, and B’ be {V,0}-semilattices, let f: A — A’
and g : B — B’ be {V,0}-homomorphisms. Then the natural {V,0}-homo-
morphism h = f ® g from A® B to A’ @ B’ extends to a unique complete
{V,0}-homomorphism h = f ® g from A® B to A’ ® B'. Furthermore, if
h is an embedding, then so is h.

We refer to Proposition 3.4 of [6] for an explicit description of the map h.

2. Characterization of flat {V,0}-semilattices. Our definition of
flatness is similar to the usual one for modules over a commutative ring:

DEFINITION. A {V,0}-semilattice S is flat if for every embedding f :
A < B of {V,0}-semilattices, the tensor map f ®idg: A® S — B® S is
an embedding.

In this definition, idg is the identity map on S.

In Lemmas 2.1-2.3, we let S be a {V,0}-semilattice and assume that
both homomorphisms f = i ® idg and f' = i’ ® idg are embeddings. As
in the previous section, we use the notation S = Id S, and identify every
element s of S with the corresponding principal ideal (s].
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We define the maps g : Ms[S] — 53 and ¢’ : N5[S] — 53 by
(@ 2) = V2o vz vy), forall (z,y,2) € My[8),

9'((z,y,2)) = (29,2 Vy), for all (z,y,2) € Ns[9].
Note that g and ¢’ are complete {V,0}-homomorphisms. The proof of
the following lemma is a straightforward calculation.

LEMMA 2.1. The following two diagrams commuite:
MBS L p3)y@s Ns®S L PB) @S
al ¥ o ¥

Mg[S] — S3 N5[S] — S3
g

Therefore, both g and g’ are embeddings.
LEMMA 2.2. The lattice S does not contain a copy of Ms.

Proof. Suppose, on the contrary, that S contains a copy of Ms, say
{o,z,y,z,i} with o < x,y,z < i. Then both elements u = (z,y,z) and v =

(i,i,i) of L? belong to M3[S], and g(u) = g(v) = (i,4,4). This contradicts
the fact, justified by Lemma 2.1, that g is one-to-one. m

LEMMA 2.3. The lattice S does not contain a copy of Ns.

Proof. Suppose, on the contrary, that S contains a copy of Nj, say
{o,2,y,2,i} with 0o < z < z < i and 0 < y < i. Then both elements u =

(x,y,2) and v = (2,vy, 2) of L? belong to N5[S], and ¢'(u) = ¢'(v) = (z,y,1).
This contradicts the fact (again Lemma 2.1) that ¢’ is one-to-one. m

Lemmas 2.2 and 2.3 together prove that S is distributive, and therefore
S is a distributive semilattice. Now we are in a position to prove the main
result of this paper in the following form:

THEOREM 1. Let S be a {V,0}-semilattice. Then the following are equiv-
alent:

(i) S is flat.

(ii) Both homomorphisms i ® idg and i’ ® idg are embeddings.

(iii) S s distributive.

Proof. (i)=(ii). This is trivial.

(ii)=-(iii). This was proved in Lemmas 2.2 and 2.3.

(iii)=-(i). Let S be a distributive {V,0}-semilattice; we prove that S
is flat. Since the tensor product by a fixed factor preserves direct limits
(see Proposition 2.6 of [6]), flatness is preserved under direct limits. By
P. Pudlék [8], every distributive join-semilattice is the direct union of all its
finite distributive subsemilattices; therefore, it suffices to prove that every
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finite distributive {V,0}-semilattice S is flat. Since S is a distributive lat-
tice, it admits a lattice embedding into a finite Boolean lattice B. We have
seen in Section 1.3 that if B = P(n), then A® B = A™ (up to a natural
isomorphism), for every {V,0}-semilattice A. It follows that B is flat. Fur-
thermore, the inclusion map S — B is a lattice embedding; in particular,
with the terminology of [6], it is an L-homomorphism. Thus, the natural
map from A® S to A® B is, by Proposition 3.4 of [6], a {V, 0}-semilattice
embedding. This implies the flatness of S. =

3. Discussion. It is well known that a module over a given principal
ideal domain R is flat if and only if it is torsion-free, which is equivalent to
the module being a direct limit of (finitely generated) free modules over R.
So the analogue of the concept of torsion-free module for semilattices is the
concept of distributive semilattice. This analogy can be pushed further, by
using the following result, proved in [3]: a join-semilattice is distributive iff
it 1is a direct limit of finite Boolean semilattices.

PROBLEM 1. Let V be a variety of lattices. Let us say that a {Vv,0}-
semilattice S is in V if Id S as a lattice is in V. Is every {V, 0}-semilattice
in V a direct limit (resp., direct union) of finite join-semilattices in V?

If V is the variety of all lattices, we obtain the obvious result that every
{V, 0}-semilattice is the direct union of its finite {V, 0}-subsemilattices. If V
is the variety of all distributive lattices, there are two results (both quoted
above): P. Pudldk’s result and K. R. Goodearl and the second author’s
result.

PROBLEM 2. Let V be a variety of lattices. When is a {V, 0}-semilattice
S flat with respect to {V, 0}-semilattice embeddings in V7 That is, when is
it the case that for all {V, 0}-semilattices A and B in V and every semilattice
embedding f : A < B, the natural map f ® idg is an embedding?
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