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Introduction. Let A and B be {∨, 0}-semilattices. We denote by A⊗B

the tensor product of A and B, defined as the free {∨, 0}-semilattice gener-
ated by the set

(A− {0}) × (B − {0})

subject to the relations

〈a, b0〉 ∨ 〈a, b1〉 = 〈a, b0 ∨ b1〉,

for a ∈ A− {0}, b0, b1 ∈ B − {0}, and symmetrically,

〈a0, b〉 ∨ 〈a1, b〉 = 〈a0 ∨ a1, b〉,

for a0, a1 ∈ A− {0}, b ∈ B − {0}.

A⊗B is a universal object with respect to a natural notion of bimorphism

(see [2], [5], and [6]). This definition is similar to the classical definition of
the tensor product of modules over a commutative ring. Thus, for instance,
flatness is defined similarly: The {∨, 0}-semilattice S is flat if for every
embedding f : A →֒ B, the canonical map f ⊗ idS : A ⊗ S → B ⊗ S is an
embedding.

Our main result is the following:

Theorem. Let S be a {∨, 0}-semilattice. Then S is flat if and only if S

is distributive.

1. Background

1.1. Basic concepts. We adopt the notation and terminology of [6]. In
particular, for every {∨, 0}-semilattice A, we use the notation A− = A−{0}.
Note that A− is a subsemilattice of A.
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A semilattice S is distributive if whenever a ≤ b0 ∨ b1 in S, then there
exist a0 ≤ b0 and a1 ≤ b1 such that a = a0∨a1, or equivalently, iff the lattice
IdS of all ideals of S, ordered under inclusion, is a distributive lattice; see [4].

1.2. The set representation. In [6], we used the following representation
of the tensor product.

First, we introduce the notation:

⊥A,B = (A× {0}) ∪ ({0} ×B).

Second, we introduce a partial binary operation on A × B: let 〈a0, b0〉,
〈a1, b1〉 ∈ A×B; the lateral join of 〈a0, b0〉 and 〈a1, b1〉 is defined if a0 = a1
or b0 = b1, in which case it is the join 〈a0 ∨ a1, b0 ∨ b1〉.

Third, we define bi-ideals: a nonempty subset I of A×B is a bi-ideal of
A×B if it satisfies the following conditions:

(i) I is hereditary;

(ii) I contains ⊥A,B;

(iii) I is closed under lateral joins.

The extended tensor product of A and B, denoted by A ⊗ B, is the
lattice of all bi-ideals of A×B. It is easy to see that A ⊗ B is an algebraic
lattice. For a ∈ A and b ∈ B, we define a⊗ b ∈ A ⊗ B by

a⊗ b = ⊥A,B ∪ {〈x, y〉 ∈ A×B | 〈x, y〉 ≤ 〈a, b〉}

and call a ⊗ b a pure tensor. A pure tensor is a principal (that is, one-
generated) bi-ideal.

Now we can state the representation:

Proposition 1.1. The tensor product A ⊗ B can be represented as the

{∨, 0}-subsemilattice of compact elements of A ⊗ B.

1.3. The construction of A ~⊗ B. The proof of the Theorem uses the
following representation of the tensor product (see J. Anderson and N. Ki-
mura [1]).

Let A and B be {∨, 0}-semilattices. Define

A ~⊗ B = Hom(〈A−;∨〉, 〈IdB;∩〉),

and for ξ ∈ A ~⊗ B, let

ε(ξ) = {〈a, b〉 ∈ A− ×B− | b ∈ ξ(a)} ∪ ⊥A,B.

Proposition 1.2. The map ε is an order preserving isomorphism be-

tween A ⊗ B and A ~⊗ B and , for H ∈ A ⊗ B, ε−1(H) is given by

ε−1(H)(a) = {b ∈ B | 〈a, b〉 ∈ H},

for a ∈ A−.
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If a ∈ A and b ∈ B, then ε(a⊗ b) is the map ξ : A− → IdB given by

ξ(x) =

{
(b] if x ≤ a,
{0} otherwise.

If A is finite, then a homomorphism from 〈A−;∨〉 to 〈IdB;∩〉 is deter-
mined by its restriction to J(A), the set of all join-irreducible elements of A.
For example, let A be a finite Boolean semilattice, say A = P(n) (n is a
non-negative integer, n = {0, 1, . . . , n− 1}); then A ⊗ B ∼= (IdB)n, and the
isomorphism from A ⊗ B onto (IdB)n given by Proposition 1.2 is the unique
complete {∨, 0}-homomorphism sending every element of the form {i} ⊗ b

(i < n and b ∈ B) to 〈(δijb] | j < n〉 (where δij is the Kronecker symbol). If
n = 3, let β : P(3) ⊗ S → (IdS)3 denote the natural isomorphism.

Next we compute A ~⊗ B, for A = M3, the diamond, and A = N5, the
pentagon (see Figure 1). In the following two subsections, we let S be a

{∨, 0}-semilattice. Furthermore, we denote by S̃ the ideal lattice of S, and

identify every element s of S with its image, (s], in S̃.

Fig. 1

1.4. The lattices M3 ⊗ S and M3[S̃]; the map i. Let M3 = {0, p, q, r, 1},
J(M3) = {p, q, r} (see Figure 1). The nontrivial relations of J(M3) are the
following:

(1) p < q ∨ r, q < p ∨ r, r < p ∨ q.

Accordingly, for every lattice L, we define

(2) M3[L] = {〈x, y, z〉 ∈ L3 | x ∧ y = x ∧ z = y ∧ z}

(this is the Schmidt’s construction; see [9] and [10]). The isomorphism from

M3 ⊗ S onto M3[S̃] given by Proposition 1.2 is the unique complete {∨, 0}-
homomorphism α such that, for all x ∈ S,

α(p ⊗ x) = 〈x, 0, 0〉, α(q ⊗ x) = 〈0, x, 0〉, α(r ⊗ x) = 〈0, 0, x〉.

We shall later make use of the unique {∨, 0}-embedding

i : M3 →֒ P(3)



188 G. GRÄTZER AND F. WEHRUNG

defined by

i(p) = {1, 2}, i(q) = {0, 2}, i(r) = {0, 1}.

1.5. The lattices N5 ⊗ S and N5[S̃]; the map i′. Let N5 = {0, a, b, c, 1},
J(N5) = {a, b, c} with a > c (see Figure 1). The nontrivial relations of J(N5)
are the following:

(3) c < a and a < b ∨ c.

Accordingly, for every lattice L, we define

N5[L] = {〈x, y, z〉 ∈ L3 | y ∧ z ≤ x ≤ z}.

The isomorphism from N5 ⊗ S onto N5[S̃] given by Proposition 1.2 is the
unique complete {∨, 0}-homomorphism α′ such that, for all x ∈ S,

α′(a⊗ x) = 〈x, 0, x〉, α′(b⊗ x) = 〈0, x, 0〉, α′(c⊗ x) = 〈0, 0, x〉.

We shall later make use of the unique {∨, 0}-embedding

i′ : N5 →֒ P(3)

defined by

i′(a) = {0, 2}, i′(b) = {1, 2}, i′(c) = {0}.

1.6. The complete homomorphisms f ⊗ g. The proof of the following
lemma is straightforward:

Lemma 1.3. Let A,B,A′, and B′ be {∨, 0}-semilattices, let f :A → A′

and g : B → B′ be {∨, 0}-homomorphisms. Then the natural {∨, 0}-homo-

morphism h = f ⊗ g from A ⊗ B to A′ ⊗ B′ extends to a unique complete

{∨, 0}-homomorphism h = f ⊗ g from A ⊗ B to A′ ⊗ B′. Furthermore, if
h is an embedding , then so is h.

We refer to Proposition 3.4 of [6] for an explicit description of the map h.

2. Characterization of flat {∨, 0}-semilattices. Our definition of
flatness is similar to the usual one for modules over a commutative ring:

Definition. A {∨, 0}-semilattice S is flat if for every embedding f :
A →֒ B of {∨, 0}-semilattices, the tensor map f ⊗ idS : A ⊗ S → B ⊗ S is
an embedding.

In this definition, idS is the identity map on S.

In Lemmas 2.1–2.3, we let S be a {∨, 0}-semilattice and assume that
both homomorphisms f = i ⊗ idS and f ′ = i′ ⊗ idS are embeddings. As
in the previous section, we use the notation S̃ = IdS, and identify every
element s of S with the corresponding principal ideal (s].
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We define the maps g : M3[S̃] → S̃3 and g′ : N5[S̃] → S̃3 by

g(〈x, y, z〉) = 〈y ∨ z, x ∨ z, x ∨ y〉, for all 〈x, y, z〉 ∈ M3[S̃],

g′(〈x, y, z〉) = 〈z, y, x ∨ y〉, for all 〈x, y, z〉 ∈ N5[S̃].

Note that g and g′ are complete {∨, 0}-homomorphisms. The proof of
the following lemma is a straightforward calculation.

Lemma 2.1. The following two diagrams commute:

M3 ⊗ S
f
→ P(3) ⊗ S

α ↓ ↓ β

M3[S̃] →
g

S̃3

N5 ⊗ S
f ′

→ P(3) ⊗ S

α′ ↓ ↓ β

N5[S̃] →
g′

S̃3

Therefore, both g and g′ are embeddings.

Lemma 2.2. The lattice S̃ does not contain a copy of M3.

P r o o f. Suppose, on the contrary, that S̃ contains a copy of M3, say
{o, x, y, z, i} with o < x, y, z < i. Then both elements u = 〈x, y, z〉 and v =

〈i, i, i〉 of L3 belong to M3[S̃], and g(u) = g(v) = 〈i, i, i〉. This contradicts
the fact, justified by Lemma 2.1, that g is one-to-one.

Lemma 2.3. The lattice S̃ does not contain a copy of N5.

P r o o f. Suppose, on the contrary, that S̃ contains a copy of N5, say
{o, x, y, z, i} with o < x < z < i and o < y < i. Then both elements u =

〈x, y, z〉 and v = 〈z, y, z〉 of L3 belong to N5[S̃], and g′(u) = g′(v) = 〈z, y, i〉.
This contradicts the fact (again Lemma 2.1) that g′ is one-to-one.

Lemmas 2.2 and 2.3 together prove that S̃ is distributive, and therefore
S is a distributive semilattice. Now we are in a position to prove the main
result of this paper in the following form:

Theorem 1. Let S be a {∨, 0}-semilattice. Then the following are equiv-

alent :

(i) S is flat.

(ii) Both homomorphisms i⊗ idS and i′ ⊗ idS are embeddings.

(iii) S is distributive.

P r o o f. (i)⇒(ii). This is trivial.
(ii)⇒(iii). This was proved in Lemmas 2.2 and 2.3.
(iii)⇒(i). Let S be a distributive {∨, 0}-semilattice; we prove that S

is flat. Since the tensor product by a fixed factor preserves direct limits
(see Proposition 2.6 of [6]), flatness is preserved under direct limits. By
P. Pudlák [8], every distributive join-semilattice is the direct union of all its
finite distributive subsemilattices; therefore, it suffices to prove that every
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finite distributive {∨, 0}-semilattice S is flat. Since S is a distributive lat-
tice, it admits a lattice embedding into a finite Boolean lattice B. We have
seen in Section 1.3 that if B = P(n), then A ⊗ B = An (up to a natural
isomorphism), for every {∨, 0}-semilattice A. It follows that B is flat. Fur-
thermore, the inclusion map S →֒ B is a lattice embedding; in particular,
with the terminology of [6], it is an L-homomorphism. Thus, the natural
map from A⊗ S to A⊗B is, by Proposition 3.4 of [6], a {∨, 0}-semilattice
embedding. This implies the flatness of S.

3. Discussion. It is well known that a module over a given principal
ideal domain R is flat if and only if it is torsion-free, which is equivalent to
the module being a direct limit of (finitely generated) free modules over R.
So the analogue of the concept of torsion-free module for semilattices is the
concept of distributive semilattice. This analogy can be pushed further, by
using the following result, proved in [3]: a join-semilattice is distributive iff

it is a direct limit of finite Boolean semilattices.

Problem 1. Let V be a variety of lattices. Let us say that a {∨, 0}-
semilattice S is in V if IdS as a lattice is in V. Is every {∨, 0}-semilattice
in V a direct limit (resp., direct union) of finite join-semilattices in V?

If V is the variety of all lattices, we obtain the obvious result that every
{∨, 0}-semilattice is the direct union of its finite {∨, 0}-subsemilattices. If V
is the variety of all distributive lattices, there are two results (both quoted
above): P. Pudlák’s result and K. R. Goodearl and the second author’s
result.

Problem 2. Let V be a variety of lattices. When is a {∨, 0}-semilattice
S flat with respect to {∨, 0}-semilattice embeddings in V? That is, when is
it the case that for all {∨, 0}-semilattices A and B inV and every semilattice
embedding f : A →֒ B, the natural map f ⊗ idS is an embedding?
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